mirror of
https://github.com/opencv/opencv.git
synced 2024-12-15 18:09:11 +08:00
dbb57cd0ae
Found via `codespell -q 3 --skip="./3rdparty" -I ../opencv-whitelist.txt`
183 lines
5.6 KiB
C++
183 lines
5.6 KiB
C++
#include <vector>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
#include "opencv2/core.hpp"
|
|
#include "opencv2/core/utility.hpp"
|
|
#include "opencv2/imgproc.hpp"
|
|
#include "opencv2/cudaimgproc.hpp"
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
static Mat loadImage(const string& name)
|
|
{
|
|
Mat image = imread(name, IMREAD_GRAYSCALE);
|
|
if (image.empty())
|
|
{
|
|
cerr << "Can't load image - " << name << endl;
|
|
exit(-1);
|
|
}
|
|
return image;
|
|
}
|
|
|
|
int main(int argc, const char* argv[])
|
|
{
|
|
CommandLineParser cmd(argc, argv,
|
|
"{ image i | ../data/pic1.png | input image }"
|
|
"{ template t | templ.png | template image }"
|
|
"{ full | | estimate scale and rotation }"
|
|
"{ gpu | | use gpu version }"
|
|
"{ minDist | 100 | minimum distance between the centers of the detected objects }"
|
|
"{ levels | 360 | R-Table levels }"
|
|
"{ votesThreshold | 30 | the accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected }"
|
|
"{ angleThresh | 10000 | angle votes threshold }"
|
|
"{ scaleThresh | 1000 | scale votes threshold }"
|
|
"{ posThresh | 100 | position votes threshold }"
|
|
"{ dp | 2 | inverse ratio of the accumulator resolution to the image resolution }"
|
|
"{ minScale | 0.5 | minimal scale to detect }"
|
|
"{ maxScale | 2 | maximal scale to detect }"
|
|
"{ scaleStep | 0.05 | scale step }"
|
|
"{ minAngle | 0 | minimal rotation angle to detect in degrees }"
|
|
"{ maxAngle | 360 | maximal rotation angle to detect in degrees }"
|
|
"{ angleStep | 1 | angle step in degrees }"
|
|
"{ maxBufSize | 1000 | maximal size of inner buffers }"
|
|
"{ help h ? | | print help message }"
|
|
);
|
|
|
|
cmd.about("This program demonstrates arbitrary object finding with the Generalized Hough transform.");
|
|
|
|
if (cmd.has("help"))
|
|
{
|
|
cmd.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
const string templName = cmd.get<string>("template");
|
|
const string imageName = cmd.get<string>("image");
|
|
const bool full = cmd.has("full");
|
|
const bool useGpu = cmd.has("gpu");
|
|
const double minDist = cmd.get<double>("minDist");
|
|
const int levels = cmd.get<int>("levels");
|
|
const int votesThreshold = cmd.get<int>("votesThreshold");
|
|
const int angleThresh = cmd.get<int>("angleThresh");
|
|
const int scaleThresh = cmd.get<int>("scaleThresh");
|
|
const int posThresh = cmd.get<int>("posThresh");
|
|
const double dp = cmd.get<double>("dp");
|
|
const double minScale = cmd.get<double>("minScale");
|
|
const double maxScale = cmd.get<double>("maxScale");
|
|
const double scaleStep = cmd.get<double>("scaleStep");
|
|
const double minAngle = cmd.get<double>("minAngle");
|
|
const double maxAngle = cmd.get<double>("maxAngle");
|
|
const double angleStep = cmd.get<double>("angleStep");
|
|
const int maxBufSize = cmd.get<int>("maxBufSize");
|
|
|
|
if (!cmd.check())
|
|
{
|
|
cmd.printErrors();
|
|
return -1;
|
|
}
|
|
|
|
Mat templ = loadImage(templName);
|
|
Mat image = loadImage(imageName);
|
|
|
|
Ptr<GeneralizedHough> alg;
|
|
|
|
if (!full)
|
|
{
|
|
Ptr<GeneralizedHoughBallard> ballard = useGpu ? cuda::createGeneralizedHoughBallard() : createGeneralizedHoughBallard();
|
|
|
|
ballard->setMinDist(minDist);
|
|
ballard->setLevels(levels);
|
|
ballard->setDp(dp);
|
|
ballard->setMaxBufferSize(maxBufSize);
|
|
ballard->setVotesThreshold(votesThreshold);
|
|
|
|
alg = ballard;
|
|
}
|
|
else
|
|
{
|
|
Ptr<GeneralizedHoughGuil> guil = useGpu ? cuda::createGeneralizedHoughGuil() : createGeneralizedHoughGuil();
|
|
|
|
guil->setMinDist(minDist);
|
|
guil->setLevels(levels);
|
|
guil->setDp(dp);
|
|
guil->setMaxBufferSize(maxBufSize);
|
|
|
|
guil->setMinAngle(minAngle);
|
|
guil->setMaxAngle(maxAngle);
|
|
guil->setAngleStep(angleStep);
|
|
guil->setAngleThresh(angleThresh);
|
|
|
|
guil->setMinScale(minScale);
|
|
guil->setMaxScale(maxScale);
|
|
guil->setScaleStep(scaleStep);
|
|
guil->setScaleThresh(scaleThresh);
|
|
|
|
guil->setPosThresh(posThresh);
|
|
|
|
alg = guil;
|
|
}
|
|
|
|
vector<Vec4f> position;
|
|
TickMeter tm;
|
|
|
|
if (useGpu)
|
|
{
|
|
cuda::GpuMat d_templ(templ);
|
|
cuda::GpuMat d_image(image);
|
|
cuda::GpuMat d_position;
|
|
|
|
alg->setTemplate(d_templ);
|
|
|
|
tm.start();
|
|
|
|
alg->detect(d_image, d_position);
|
|
d_position.download(position);
|
|
|
|
tm.stop();
|
|
}
|
|
else
|
|
{
|
|
alg->setTemplate(templ);
|
|
|
|
tm.start();
|
|
|
|
alg->detect(image, position);
|
|
|
|
tm.stop();
|
|
}
|
|
|
|
cout << "Found : " << position.size() << " objects" << endl;
|
|
cout << "Detection time : " << tm.getTimeMilli() << " ms" << endl;
|
|
|
|
Mat out;
|
|
cv::cvtColor(image, out, COLOR_GRAY2BGR);
|
|
|
|
for (size_t i = 0; i < position.size(); ++i)
|
|
{
|
|
Point2f pos(position[i][0], position[i][1]);
|
|
float scale = position[i][2];
|
|
float angle = position[i][3];
|
|
|
|
RotatedRect rect;
|
|
rect.center = pos;
|
|
rect.size = Size2f(templ.cols * scale, templ.rows * scale);
|
|
rect.angle = angle;
|
|
|
|
Point2f pts[4];
|
|
rect.points(pts);
|
|
|
|
line(out, pts[0], pts[1], Scalar(0, 0, 255), 3);
|
|
line(out, pts[1], pts[2], Scalar(0, 0, 255), 3);
|
|
line(out, pts[2], pts[3], Scalar(0, 0, 255), 3);
|
|
line(out, pts[3], pts[0], Scalar(0, 0, 255), 3);
|
|
}
|
|
|
|
imshow("out", out);
|
|
waitKey();
|
|
|
|
return 0;
|
|
}
|