opencv/apps/sft/sft.cpp
2013-02-01 17:47:05 +04:00

161 lines
5.7 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// Training application for Soft Cascades.
#include <sft/common.hpp>
#include <iostream>
#include <sft/dataset.hpp>
#include <sft/config.hpp>
#include <opencv2/core/core_c.h>
int main(int argc, char** argv)
{
using namespace sft;
const string keys =
"{help h usage ? | | print this message }"
"{config c | | path to configuration xml }"
;
cv::CommandLineParser parser(argc, argv, keys);
parser.about("Soft cascade training application.");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
if (!parser.check())
{
parser.printErrors();
return 1;
}
string configPath = parser.get<string>("config");
if (configPath.empty())
{
std::cout << "Configuration file is missing or empty. Could not start training." << std::endl;
return 0;
}
std::cout << "Read configuration from file " << configPath << std::endl;
cv::FileStorage fs(configPath, cv::FileStorage::READ);
if(!fs.isOpened())
{
std::cout << "Configuration file " << configPath << " can't be opened." << std::endl;
return 1;
}
// 1. load config
sft::Config cfg;
fs["config"] >> cfg;
std::cout << std::endl << "Training will be executed for configuration:" << std::endl << cfg << std::endl;
// 2. check and open output file
cv::FileStorage fso(cfg.outXmlPath, cv::FileStorage::WRITE);
if(!fso.isOpened())
{
std::cout << "Training stopped. Output classifier Xml file " << cfg.outXmlPath << " can't be opened." << std::endl;
return 1;
}
fso << cfg.cascadeName
<< "{"
<< "stageType" << "BOOST"
<< "featureType" << "ICF"
<< "octavesNum" << (int)cfg.octaves.size()
<< "width" << cfg.modelWinSize.width
<< "height" << cfg.modelWinSize.height
<< "shrinkage" << cfg.shrinkage
<< "octaves" << "[";
// 3. Train all octaves
for (ivector::const_iterator it = cfg.octaves.begin(); it != cfg.octaves.end(); ++it)
{
// a. create random feature pool
int nfeatures = cfg.poolSize;
cv::Size model = cfg.model(it);
std::cout << "Model " << model << std::endl;
cv::Ptr<cv::FeaturePool> pool = cv::FeaturePool::create(model, nfeatures);
nfeatures = pool->size();
int npositives = cfg.positives;
int nnegatives = cfg.negatives;
int shrinkage = cfg.shrinkage;
cv::Rect boundingBox = cfg.bbox(it);
std::cout << "Object bounding box" << boundingBox << std::endl;
typedef cv::Octave Octave;
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
std::string path = cfg.trainPath;
sft::ScaledDataset dataset(path, *it);
if (boost->train(&dataset, pool, cfg.weaks, cfg.treeDepth))
{
CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE);
boost->write(fout, cfg.cascadeName);
cvReleaseFileStorage( &fout);
cv::Mat thresholds;
boost->setRejectThresholds(thresholds);
boost->write(fso, pool, thresholds);
cv::FileStorage tfs(("thresholds." + cfg.resPath(it)).c_str(), cv::FileStorage::WRITE);
tfs << "thresholds" << thresholds;
std::cout << "Octave " << *it << " was successfully trained..." << std::endl;
}
}
fso << "]" << "}";
fso.release();
std::cout << "Training complete..." << std::endl;
return 0;
}