mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
7707c9bfba
Signed-off-by: Li Peng <peng.li@intel.com>
194 lines
6.9 KiB
C++
194 lines
6.9 KiB
C++
/*M ///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
#include <opencv2/dnn/all_layers.hpp>
|
|
#include <iostream>
|
|
#include "opencl_kernels_dnn.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class ReorgLayerImpl : public ReorgLayer
|
|
{
|
|
int reorgStride;
|
|
public:
|
|
|
|
ReorgLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
|
|
reorgStride = params.get<int>("reorg_stride", 2);
|
|
CV_Assert(reorgStride > 0);
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(inputs.size() > 0);
|
|
outputs = std::vector<MatShape>(inputs.size(), shape(
|
|
inputs[0][0],
|
|
inputs[0][1] * reorgStride * reorgStride,
|
|
inputs[0][2] / reorgStride,
|
|
inputs[0][3] / reorgStride));
|
|
|
|
CV_Assert(outputs[0][0] > 0 && outputs[0][1] > 0 && outputs[0][2] > 0 && outputs[0][3] > 0);
|
|
CV_Assert(total(outputs[0]) == total(inputs[0]));
|
|
|
|
return false;
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
{
|
|
return backendId == DNN_BACKEND_DEFAULT;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
String buildopt = String("-DDtype=") + ocl::typeToStr(inputs[0].type()) + String(" ");
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
ocl::Kernel kernel("reorg", ocl::dnn::reorg_oclsrc, buildopt);
|
|
if (kernel.empty())
|
|
return false;
|
|
|
|
UMat& srcBlob = inputs[i];
|
|
UMat& dstBlob = outputs[0];
|
|
int channels = srcBlob.size[1];
|
|
int height = srcBlob.size[2];
|
|
int width = srcBlob.size[3];
|
|
size_t nthreads = channels * height * width;
|
|
|
|
kernel.set(0, (int)nthreads);
|
|
kernel.set(1, ocl::KernelArg::PtrReadOnly(srcBlob));
|
|
kernel.set(2, (int)channels);
|
|
kernel.set(3, (int)height);
|
|
kernel.set(4, (int)width);
|
|
kernel.set(5, (int)reorgStride);
|
|
kernel.set(6, ocl::KernelArg::PtrWriteOnly(dstBlob));
|
|
|
|
if (!kernel.run(1, &nthreads, NULL, false))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN((preferableTarget == DNN_TARGET_OPENCL) &&
|
|
OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
}
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
Mat srcBlob = *inputs[i];
|
|
MatShape inputShape = shape(srcBlob), outShape = shape(outputs[i]);
|
|
float *dstData = outputs[0].ptr<float>();
|
|
const float *srcData = srcBlob.ptr<float>();
|
|
|
|
int channels = inputShape[1], height = inputShape[2], width = inputShape[3];
|
|
|
|
int out_c = channels / (reorgStride*reorgStride);
|
|
|
|
for (int k = 0; k < channels; ++k) {
|
|
for (int j = 0; j < height; ++j) {
|
|
for (int i = 0; i < width; ++i) {
|
|
int out_index = i + width*(j + height*k);
|
|
int c2 = k % out_c;
|
|
int offset = k / out_c;
|
|
int w2 = i*reorgStride + offset % reorgStride;
|
|
int h2 = j*reorgStride + offset / reorgStride;
|
|
int in_index = w2 + width*reorgStride*(h2 + height*reorgStride*c2);
|
|
dstData[out_index] = srcData[in_index];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const
|
|
{
|
|
(void)outputs; // suppress unused variable warning
|
|
|
|
int64 flops = 0;
|
|
for(int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += 21*total(inputs[i]);
|
|
}
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
Ptr<ReorgLayer> ReorgLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<ReorgLayer>(new ReorgLayerImpl(params));
|
|
}
|
|
|
|
} // namespace dnn
|
|
} // namespace cv
|