mirror of
https://github.com/opencv/opencv.git
synced 2025-01-12 15:49:32 +08:00
132 lines
5.2 KiB
Python
132 lines
5.2 KiB
Python
#!/usr/bin/env python
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import cv2 as cv
|
|
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
from tests_common import NewOpenCVTests
|
|
|
|
try:
|
|
if sys.version_info[:2] < (3, 0):
|
|
raise unittest.SkipTest('Python 2.x is not supported')
|
|
|
|
|
|
class MatTest(NewOpenCVTests):
|
|
|
|
def test_mat_construct(self):
|
|
data = np.random.random([10, 10, 3])
|
|
|
|
#print(np.ndarray.__dictoffset__) # 0
|
|
#print(cv.Mat.__dictoffset__) # 88 (> 0)
|
|
#print(cv.Mat) # <class cv2.Mat>
|
|
#print(cv.Mat.__base__) # <class 'numpy.ndarray'>
|
|
|
|
mat_data0 = cv.Mat(data)
|
|
assert isinstance(mat_data0, cv.Mat)
|
|
assert isinstance(mat_data0, np.ndarray)
|
|
self.assertEqual(mat_data0.wrap_channels, False)
|
|
res0 = cv.utils.dumpInputArray(mat_data0)
|
|
self.assertEqual(res0, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=300 dims(-1)=3 size(-1)=[10 10 3] type(-1)=CV_64FC1")
|
|
|
|
mat_data1 = cv.Mat(data, wrap_channels=True)
|
|
assert isinstance(mat_data1, cv.Mat)
|
|
assert isinstance(mat_data1, np.ndarray)
|
|
self.assertEqual(mat_data1.wrap_channels, True)
|
|
res1 = cv.utils.dumpInputArray(mat_data1)
|
|
self.assertEqual(res1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=100 dims(-1)=2 size(-1)=10x10 type(-1)=CV_64FC3")
|
|
|
|
mat_data2 = cv.Mat(mat_data1)
|
|
assert isinstance(mat_data2, cv.Mat)
|
|
assert isinstance(mat_data2, np.ndarray)
|
|
self.assertEqual(mat_data2.wrap_channels, True) # fail if __array_finalize__ doesn't work
|
|
res2 = cv.utils.dumpInputArray(mat_data2)
|
|
self.assertEqual(res2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=100 dims(-1)=2 size(-1)=10x10 type(-1)=CV_64FC3")
|
|
|
|
|
|
def test_mat_construct_4d(self):
|
|
data = np.random.random([5, 10, 10, 3])
|
|
|
|
mat_data0 = cv.Mat(data)
|
|
assert isinstance(mat_data0, cv.Mat)
|
|
assert isinstance(mat_data0, np.ndarray)
|
|
self.assertEqual(mat_data0.wrap_channels, False)
|
|
res0 = cv.utils.dumpInputArray(mat_data0)
|
|
self.assertEqual(res0, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=1500 dims(-1)=4 size(-1)=[5 10 10 3] type(-1)=CV_64FC1")
|
|
|
|
mat_data1 = cv.Mat(data, wrap_channels=True)
|
|
assert isinstance(mat_data1, cv.Mat)
|
|
assert isinstance(mat_data1, np.ndarray)
|
|
self.assertEqual(mat_data1.wrap_channels, True)
|
|
res1 = cv.utils.dumpInputArray(mat_data1)
|
|
self.assertEqual(res1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=500 dims(-1)=3 size(-1)=[5 10 10] type(-1)=CV_64FC3")
|
|
|
|
mat_data2 = cv.Mat(mat_data1)
|
|
assert isinstance(mat_data2, cv.Mat)
|
|
assert isinstance(mat_data2, np.ndarray)
|
|
self.assertEqual(mat_data2.wrap_channels, True) # __array_finalize__ doesn't work
|
|
res2 = cv.utils.dumpInputArray(mat_data2)
|
|
self.assertEqual(res2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=500 dims(-1)=3 size(-1)=[5 10 10] type(-1)=CV_64FC3")
|
|
|
|
|
|
def test_mat_wrap_channels_fail(self):
|
|
data = np.random.random([2, 3, 4, 520])
|
|
|
|
mat_data0 = cv.Mat(data)
|
|
assert isinstance(mat_data0, cv.Mat)
|
|
assert isinstance(mat_data0, np.ndarray)
|
|
self.assertEqual(mat_data0.wrap_channels, False)
|
|
res0 = cv.utils.dumpInputArray(mat_data0)
|
|
self.assertEqual(res0, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=12480 dims(-1)=4 size(-1)=[2 3 4 520] type(-1)=CV_64FC1")
|
|
|
|
with self.assertRaises(cv.error):
|
|
mat_data1 = cv.Mat(data, wrap_channels=True) # argument unable to wrap channels, too high (520 > CV_CN_MAX=512)
|
|
res1 = cv.utils.dumpInputArray(mat_data1)
|
|
print(mat_data1.__dict__)
|
|
print(res1)
|
|
|
|
|
|
def test_ufuncs(self):
|
|
data = np.arange(10)
|
|
mat_data = cv.Mat(data)
|
|
mat_data2 = 2 * mat_data
|
|
self.assertEqual(type(mat_data2), cv.Mat)
|
|
np.testing.assert_equal(2 * data, 2 * mat_data)
|
|
|
|
|
|
def test_comparison(self):
|
|
# Undefined behavior, do NOT use that.
|
|
# Behavior may be changed in the future
|
|
|
|
data = np.ones((10, 10, 3))
|
|
mat_wrapped = cv.Mat(data, wrap_channels=True)
|
|
mat_simple = cv.Mat(data)
|
|
np.testing.assert_equal(mat_wrapped, mat_simple) # ???: wrap_channels is not checked for now
|
|
np.testing.assert_equal(data, mat_simple)
|
|
np.testing.assert_equal(data, mat_wrapped)
|
|
|
|
#self.assertEqual(mat_wrapped, mat_simple) # ???
|
|
#self.assertTrue(mat_wrapped == mat_simple) # ???
|
|
#self.assertTrue((mat_wrapped == mat_simple).all())
|
|
|
|
|
|
except unittest.SkipTest as e:
|
|
|
|
message = str(e)
|
|
|
|
class TestSkip(unittest.TestCase):
|
|
def setUp(self):
|
|
self.skipTest('Skip tests: ' + message)
|
|
|
|
def test_skip():
|
|
pass
|
|
|
|
pass
|
|
|
|
|
|
if __name__ == '__main__':
|
|
NewOpenCVTests.bootstrap()
|