mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 12:20:10 +08:00
370 lines
15 KiB
C++
370 lines
15 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace std;
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int, int, int&, int&, int&) { throw_nogpu(); }
|
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, int) { throw_nogpu(); }
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int, int, int, float, float, float, float, int) { throw_nogpu(); }
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
{
|
|
namespace stereobp
|
|
{
|
|
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump);
|
|
template<typename T, typename D>
|
|
void comp_data_gpu(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
|
|
template<typename T>
|
|
void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
|
|
template <typename T>
|
|
void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
|
|
template <typename T>
|
|
void calc_all_iterations_gpu(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d,
|
|
const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
|
|
template <typename T>
|
|
void output_gpu(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data,
|
|
const PtrStepSz<short>& disp, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
using namespace ::cv::gpu::device::stereobp;
|
|
|
|
namespace
|
|
{
|
|
const float DEFAULT_MAX_DATA_TERM = 10.0f;
|
|
const float DEFAULT_DATA_WEIGHT = 0.07f;
|
|
const float DEFAULT_MAX_DISC_TERM = 1.7f;
|
|
const float DEFAULT_DISC_SINGLE_JUMP = 1.0f;
|
|
}
|
|
|
|
void cv::gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
|
|
{
|
|
ndisp = width / 4;
|
|
if ((ndisp & 1) != 0)
|
|
ndisp++;
|
|
|
|
int mm = ::max(width, height);
|
|
iters = mm / 100 + 2;
|
|
|
|
levels = (int)(::log(static_cast<double>(mm)) + 1) * 4 / 5;
|
|
if (levels == 0) levels++;
|
|
}
|
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, int msg_type_)
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_),
|
|
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
|
|
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP),
|
|
msg_type(msg_type_), datas(levels_)
|
|
{
|
|
}
|
|
|
|
cv::gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp_, int iters_, int levels_, float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_, int msg_type_)
|
|
: ndisp(ndisp_), iters(iters_), levels(levels_),
|
|
max_data_term(max_data_term_), data_weight(data_weight_),
|
|
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_),
|
|
msg_type(msg_type_), datas(levels_)
|
|
{
|
|
}
|
|
|
|
namespace
|
|
{
|
|
class StereoBeliefPropagationImpl
|
|
{
|
|
public:
|
|
StereoBeliefPropagationImpl(StereoBeliefPropagation& rthis_,
|
|
GpuMat& u_, GpuMat& d_, GpuMat& l_, GpuMat& r_,
|
|
GpuMat& u2_, GpuMat& d2_, GpuMat& l2_, GpuMat& r2_,
|
|
vector<GpuMat>& datas_, GpuMat& out_)
|
|
: rthis(rthis_), u(u_), d(d_), l(l_), r(r_), u2(u2_), d2(d2_), l2(l2_), r2(r2_), datas(datas_), out(out_),
|
|
zero(Scalar::all(0)), scale(rthis_.msg_type == CV_32F ? 1.0f : 10.0f)
|
|
{
|
|
CV_Assert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels);
|
|
CV_Assert(rthis.msg_type == CV_32F || rthis.msg_type == CV_16S);
|
|
CV_Assert(rthis.msg_type == CV_32F || (1 << (rthis.levels - 1)) * scale * rthis.max_data_term < numeric_limits<short>::max());
|
|
}
|
|
|
|
void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
|
|
{
|
|
typedef void (*comp_data_t)(const PtrStepSzb& left, const PtrStepSzb& right, const PtrStepSzb& data, cudaStream_t stream);
|
|
static const comp_data_t comp_data_callers[2][5] =
|
|
{
|
|
{0, comp_data_gpu<unsigned char, short>, 0, comp_data_gpu<uchar3, short>, comp_data_gpu<uchar4, short>},
|
|
{0, comp_data_gpu<unsigned char, float>, 0, comp_data_gpu<uchar3, float>, comp_data_gpu<uchar4, float>}
|
|
};
|
|
|
|
CV_Assert(left.size() == right.size() && left.type() == right.type());
|
|
CV_Assert(left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4);
|
|
|
|
rows = left.rows;
|
|
cols = left.cols;
|
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
|
|
int lowest_cols = cols / divisor;
|
|
int lowest_rows = rows / divisor;
|
|
const int min_image_dim_size = 2;
|
|
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
|
|
|
|
init(stream);
|
|
|
|
datas[0].create(rows * rthis.ndisp, cols, rthis.msg_type);
|
|
|
|
comp_data_callers[rthis.msg_type == CV_32F][left.channels()](left, right, datas[0], StreamAccessor::getStream(stream));
|
|
|
|
calcBP(disp, stream);
|
|
}
|
|
|
|
void operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
|
|
{
|
|
CV_Assert((data.type() == rthis.msg_type) && (data.rows % rthis.ndisp == 0));
|
|
|
|
rows = data.rows / rthis.ndisp;
|
|
cols = data.cols;
|
|
|
|
int divisor = (int)pow(2.f, rthis.levels - 1.0f);
|
|
int lowest_cols = cols / divisor;
|
|
int lowest_rows = rows / divisor;
|
|
const int min_image_dim_size = 2;
|
|
CV_Assert(min(lowest_cols, lowest_rows) > min_image_dim_size);
|
|
|
|
init(stream);
|
|
|
|
datas[0] = data;
|
|
|
|
calcBP(disp, stream);
|
|
}
|
|
private:
|
|
void init(Stream& stream)
|
|
{
|
|
u.create(rows * rthis.ndisp, cols, rthis.msg_type);
|
|
d.create(rows * rthis.ndisp, cols, rthis.msg_type);
|
|
l.create(rows * rthis.ndisp, cols, rthis.msg_type);
|
|
r.create(rows * rthis.ndisp, cols, rthis.msg_type);
|
|
|
|
if (rthis.levels & 1)
|
|
{
|
|
//can clear less area
|
|
if (stream)
|
|
{
|
|
stream.enqueueMemSet(u, zero);
|
|
stream.enqueueMemSet(d, zero);
|
|
stream.enqueueMemSet(l, zero);
|
|
stream.enqueueMemSet(r, zero);
|
|
}
|
|
else
|
|
{
|
|
u.setTo(zero);
|
|
d.setTo(zero);
|
|
l.setTo(zero);
|
|
r.setTo(zero);
|
|
}
|
|
}
|
|
|
|
if (rthis.levels > 1)
|
|
{
|
|
int less_rows = (rows + 1) / 2;
|
|
int less_cols = (cols + 1) / 2;
|
|
|
|
u2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
|
|
d2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
|
|
l2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
|
|
r2.create(less_rows * rthis.ndisp, less_cols, rthis.msg_type);
|
|
|
|
if ((rthis.levels & 1) == 0)
|
|
{
|
|
if (stream)
|
|
{
|
|
stream.enqueueMemSet(u2, zero);
|
|
stream.enqueueMemSet(d2, zero);
|
|
stream.enqueueMemSet(l2, zero);
|
|
stream.enqueueMemSet(r2, zero);
|
|
}
|
|
else
|
|
{
|
|
u2.setTo(zero);
|
|
d2.setTo(zero);
|
|
l2.setTo(zero);
|
|
r2.setTo(zero);
|
|
}
|
|
}
|
|
}
|
|
|
|
load_constants(rthis.ndisp, rthis.max_data_term, scale * rthis.data_weight, scale * rthis.max_disc_term, scale * rthis.disc_single_jump);
|
|
|
|
datas.resize(rthis.levels);
|
|
|
|
cols_all.resize(rthis.levels);
|
|
rows_all.resize(rthis.levels);
|
|
|
|
cols_all[0] = cols;
|
|
rows_all[0] = rows;
|
|
}
|
|
|
|
void calcBP(GpuMat& disp, Stream& stream)
|
|
{
|
|
typedef void (*data_step_down_t)(int dst_cols, int dst_rows, int src_rows, const PtrStepSzb& src, const PtrStepSzb& dst, cudaStream_t stream);
|
|
static const data_step_down_t data_step_down_callers[2] =
|
|
{
|
|
data_step_down_gpu<short>, data_step_down_gpu<float>
|
|
};
|
|
|
|
typedef void (*level_up_messages_t)(int dst_idx, int dst_cols, int dst_rows, int src_rows, PtrStepSzb* mus, PtrStepSzb* mds, PtrStepSzb* mls, PtrStepSzb* mrs, cudaStream_t stream);
|
|
static const level_up_messages_t level_up_messages_callers[2] =
|
|
{
|
|
level_up_messages_gpu<short>, level_up_messages_gpu<float>
|
|
};
|
|
|
|
typedef void (*calc_all_iterations_t)(int cols, int rows, int iters, const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, cudaStream_t stream);
|
|
static const calc_all_iterations_t calc_all_iterations_callers[2] =
|
|
{
|
|
calc_all_iterations_gpu<short>, calc_all_iterations_gpu<float>
|
|
};
|
|
|
|
typedef void (*output_t)(const PtrStepSzb& u, const PtrStepSzb& d, const PtrStepSzb& l, const PtrStepSzb& r, const PtrStepSzb& data, const PtrStepSz<short>& disp, cudaStream_t stream);
|
|
static const output_t output_callers[2] =
|
|
{
|
|
output_gpu<short>, output_gpu<float>
|
|
};
|
|
|
|
const int funcIdx = rthis.msg_type == CV_32F;
|
|
|
|
cudaStream_t cudaStream = StreamAccessor::getStream(stream);
|
|
|
|
for (int i = 1; i < rthis.levels; ++i)
|
|
{
|
|
cols_all[i] = (cols_all[i-1] + 1) / 2;
|
|
rows_all[i] = (rows_all[i-1] + 1) / 2;
|
|
|
|
datas[i].create(rows_all[i] * rthis.ndisp, cols_all[i], rthis.msg_type);
|
|
|
|
data_step_down_callers[funcIdx](cols_all[i], rows_all[i], rows_all[i-1], datas[i-1], datas[i], cudaStream);
|
|
}
|
|
|
|
PtrStepSzb mus[] = {u, u2};
|
|
PtrStepSzb mds[] = {d, d2};
|
|
PtrStepSzb mrs[] = {r, r2};
|
|
PtrStepSzb mls[] = {l, l2};
|
|
|
|
int mem_idx = (rthis.levels & 1) ? 0 : 1;
|
|
|
|
for (int i = rthis.levels - 1; i >= 0; --i)
|
|
{
|
|
// for lower level we have already computed messages by setting to zero
|
|
if (i != rthis.levels - 1)
|
|
level_up_messages_callers[funcIdx](mem_idx, cols_all[i], rows_all[i], rows_all[i+1], mus, mds, mls, mrs, cudaStream);
|
|
|
|
calc_all_iterations_callers[funcIdx](cols_all[i], rows_all[i], rthis.iters, mus[mem_idx], mds[mem_idx], mls[mem_idx], mrs[mem_idx], datas[i], cudaStream);
|
|
|
|
mem_idx = (mem_idx + 1) & 1;
|
|
}
|
|
|
|
if (disp.empty())
|
|
disp.create(rows, cols, CV_16S);
|
|
|
|
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
|
|
|
|
if (stream)
|
|
stream.enqueueMemSet(out, zero);
|
|
else
|
|
out.setTo(zero);
|
|
|
|
output_callers[funcIdx](u, d, l, r, datas.front(), out, cudaStream);
|
|
|
|
if (disp.type() != CV_16S)
|
|
{
|
|
if (stream)
|
|
stream.enqueueConvert(out, disp, disp.type());
|
|
else
|
|
out.convertTo(disp, disp.type());
|
|
}
|
|
}
|
|
|
|
StereoBeliefPropagation& rthis;
|
|
|
|
GpuMat& u;
|
|
GpuMat& d;
|
|
GpuMat& l;
|
|
GpuMat& r;
|
|
|
|
GpuMat& u2;
|
|
GpuMat& d2;
|
|
GpuMat& l2;
|
|
GpuMat& r2;
|
|
|
|
vector<GpuMat>& datas;
|
|
GpuMat& out;
|
|
|
|
const Scalar zero;
|
|
const float scale;
|
|
|
|
int rows, cols;
|
|
|
|
vector<int> cols_all, rows_all;
|
|
};
|
|
}
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
|
|
{
|
|
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
|
|
impl(left, right, disp, stream);
|
|
}
|
|
|
|
void cv::gpu::StereoBeliefPropagation::operator()(const GpuMat& data, GpuMat& disp, Stream& stream)
|
|
{
|
|
StereoBeliefPropagationImpl impl(*this, u, d, l, r, u2, d2, l2, r2, datas, out);
|
|
impl(data, disp, stream);
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|