opencv/modules/ocl/src/opencl/imgproc_calcMinEigenVal.cl
2013-03-21 17:57:01 +04:00

206 lines
9.0 KiB
Common Lisp

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Shengen Yan,yanshengen@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if defined (DOUBLE_SUPPORT)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
///////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////Macro for border type////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef BORDER_REPLICATE
//BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? (l_edge) : (i))
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? (r_edge)-1 : (addr))
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? (t_edge) :(i))
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? (b_edge)-1 :(addr))
#endif
#ifdef BORDER_REFLECT
//BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? -(i)-1 : (i))
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? -(i)-1+((r_edge)<<1) : (addr))
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? -(i)-1 : (i))
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? -(i)-1+((b_edge)<<1) : (addr))
#endif
#ifdef BORDER_REFLECT101
//BORDER_REFLECT101: gfedcb|abcdefgh|gfedcba
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? -(i) : (i))
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? -(i)-2+((r_edge)<<1) : (addr))
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? -(i) : (i))
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? -(i)-2+((b_edge)<<1) : (addr))
#endif
#ifdef BORDER_WRAP
//BORDER_WRAP: cdefgh|abcdefgh|abcdefg
#define ADDR_L(i, l_edge, r_edge) ((i) < (l_edge) ? (i)+(r_edge) : (i))
#define ADDR_R(i, r_edge, addr) ((i) >= (r_edge) ? (i)-(r_edge) : (addr))
#define ADDR_H(i, t_edge, b_edge) ((i) < (t_edge) ? (i)+(b_edge) : (i))
#define ADDR_B(i, b_edge, addr) ((i) >= (b_edge) ? (i)-(b_edge) : (addr))
#endif
#define THREADS 256
#define ELEM(i, l_edge, r_edge, elem1, elem2) (i) >= (l_edge) && (i) < (r_edge) ? (elem1) : (elem2)
///////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////calcHarris////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////
__kernel void calcMinEigenVal(__global const float *Dx,__global const float *Dy, __global float *dst,
int dx_offset, int dx_whole_rows, int dx_whole_cols, int dx_step,
int dy_offset, int dy_whole_rows, int dy_whole_cols, int dy_step,
int dst_offset, int dst_rows, int dst_cols, int dst_step,
float k)
{
int col = get_local_id(0);
const int gX = get_group_id(0);
const int gY = get_group_id(1);
const int glx = get_global_id(0);
const int gly = get_global_id(1);
int dx_x_off = (dx_offset % dx_step) >> 2;
int dx_y_off = dx_offset / dx_step;
int dy_x_off = (dy_offset % dy_step) >> 2;
int dy_y_off = dy_offset / dy_step;
int dst_x_off = (dst_offset % dst_step) >> 2;
int dst_y_off = dst_offset / dst_step;
int dx_startX = gX * (THREADS-ksX+1) - anX + dx_x_off;
int dx_startY = (gY << 1) - anY + dx_y_off;
int dy_startX = gX * (THREADS-ksX+1) - anX + dy_x_off;
int dy_startY = (gY << 1) - anY + dy_y_off;
int dst_startX = gX * (THREADS-ksX+1) + dst_x_off;
int dst_startY = (gY << 1) + dst_y_off;
float dx_data[ksY+1],dy_data[ksY+1],data[3][ksY+1];
__local float temp[6][THREADS];
#ifdef BORDER_CONSTANT
bool dx_con,dy_con;
float dx_s,dy_s;
for(int i=0; i < ksY+1; i++)
{
dx_con = dx_startX+col >= 0 && dx_startX+col < dx_whole_cols && dx_startY+i >= 0 && dx_startY+i < dx_whole_rows;
dx_s = Dx[(dx_startY+i)*(dx_step>>2)+(dx_startX+col)];
dx_data[i] = dx_con ? dx_s : 0.0;
dy_con = dy_startX+col >= 0 && dy_startX+col < dy_whole_cols && dy_startY+i >= 0 && dy_startY+i < dy_whole_rows;
dy_s = Dy[(dy_startY+i)*(dy_step>>2)+(dy_startX+col)];
dy_data[i] = dy_con ? dy_s : 0.0;
data[0][i] = dx_data[i] * dx_data[i];
data[1][i] = dx_data[i] * dy_data[i];
data[2][i] = dy_data[i] * dy_data[i];
}
#else
for(int i=0; i < ksY+1; i++)
{
int dx_selected_row;
int dx_selected_col;
dx_selected_row = ADDR_H(dx_startY+i, 0, dx_whole_rows);
dx_selected_row = ADDR_B(dx_startY+i, dx_whole_rows, dx_selected_row);
dx_selected_col = ADDR_L(dx_startX+col, 0, dx_whole_cols);
dx_selected_col = ADDR_R(dx_startX+col, dx_whole_cols, dx_selected_col);
dx_data[i] = Dx[dx_selected_row * (dx_step>>2) + dx_selected_col];
int dy_selected_row;
int dy_selected_col;
dy_selected_row = ADDR_H(dy_startY+i, 0, dy_whole_rows);
dy_selected_row = ADDR_B(dy_startY+i, dy_whole_rows, dy_selected_row);
dy_selected_col = ADDR_L(dy_startX+col, 0, dy_whole_cols);
dy_selected_col = ADDR_R(dy_startX+col, dy_whole_cols, dy_selected_col);
dy_data[i] = Dy[dy_selected_row * (dy_step>>2) + dy_selected_col];
data[0][i] = dx_data[i] * dx_data[i];
data[1][i] = dx_data[i] * dy_data[i];
data[2][i] = dy_data[i] * dy_data[i];
}
#endif
float sum0 = 0.0, sum1 = 0.0, sum2 = 0.0;
for(int i=1; i < ksY; i++)
{
sum0 += (data[0][i]);
sum1 += (data[1][i]);
sum2 += (data[2][i]);
}
float sum01,sum02,sum11,sum12,sum21,sum22;
sum01 = sum0 + (data[0][0]);
sum02 = sum0 + (data[0][ksY]);
temp[0][col] = sum01;
temp[1][col] = sum02;
sum11 = sum1 + (data[1][0]);
sum12 = sum1 + (data[1][ksY]);
temp[2][col] = sum11;
temp[3][col] = sum12;
sum21 = sum2 + (data[2][0]);
sum22 = sum2 + (data[2][ksY]);
temp[4][col] = sum21;
temp[5][col] = sum22;
barrier(CLK_LOCAL_MEM_FENCE);
if(col < (THREADS-(ksX-1)))
{
col += anX;
int posX = dst_startX - dst_x_off + col - anX;
int posY = (gly << 1);
int till = (ksX + 1)%2;
float tmp_sum[6]={ 0.0, 0.0 , 0.0, 0.0, 0.0, 0.0 };
for(int k=0; k<6; k++)
for(int i=-anX; i<=anX - till; i++)
{
tmp_sum[k] += temp[k][col+i];
}
if(posX < dst_cols && (posY) < dst_rows)
{
float a = tmp_sum[0] * 0.5f;
float b = tmp_sum[2];
float c = tmp_sum[4] * 0.5f;
dst[(dst_startY+0) * (dst_step>>2)+ dst_startX + col - anX] = (float)((a+c) - sqrt((a-c)*(a-c) + b*b));
}
if(posX < dst_cols && (posY + 1) < dst_rows)
{
float a = tmp_sum[1] * 0.5f;
float b = tmp_sum[3];
float c = tmp_sum[5] * 0.5f;
dst[(dst_startY+1) * (dst_step>>2)+ dst_startX + col - anX] = (float)((a+c) - sqrt((a-c)*(a-c) + b*b));
}
}
}