opencv/samples/dnn
Alessandro de Oliveira Faria (A.K.A.CABELO) 0b3232a160
Merge pull request #25095 from cabelo:yolov8x
Added and tested yolov8x model #25095

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [X] The feature is well documented and sample code can be built with the project CMake

Below is evidence of the test:
![opencv](https://github.com/opencv/opencv/assets/675645/40e81951-a8fd-410b-9dfc-c08254f99bdc)
2024-02-27 15:34:15 +03:00
..
dnn_model_runner/dnn_conversion Merge pull request #20290 from wjj19950828:add_paddle_humanseg_demo 2021-09-27 21:59:09 +00:00
face_detector Merge pull request #18591 from sl-sergei:download_utilities 2020-12-11 10:15:32 +00:00
results Merge pull request #20422 from fengyuentau:dnn_face 2021-10-08 19:13:49 +00:00
.gitignore Merge pull request #18591 from sl-sergei:download_utilities 2020-12-11 10:15:32 +00:00
action_recognition.py Merge pull request #14627 from l-bat:demo_kinetics 2019-05-30 17:36:00 +03:00
classification.cpp Merge pull request #20406 from MarkGHX:gsoc_2021_webnn 2021-11-23 21:15:31 +00:00
classification.py Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
CMakeLists.txt Merge pull request #20422 from fengyuentau:dnn_face 2021-10-08 19:13:49 +00:00
colorization.cpp dnn: update links for the colorization samples 2021-07-09 13:21:44 +02:00
colorization.py dnn: update links for the colorization samples 2021-07-09 13:21:44 +02:00
common.hpp Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2018-10-26 17:56:55 +03:00
common.py Merge pull request #24396 from Tsai-chia-hsiang:yolov8cv 2023-11-16 13:40:00 +03:00
custom_layers.hpp Merge pull request #12264 from dkurt:dnn_remove_forward_method 2018-09-06 13:26:47 +03:00
dasiamrpn_tracker.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
download_models.py Merge pull request #18591 from sl-sergei:download_utilities 2020-12-11 10:15:32 +00:00
edge_detection.py Fix edge_detection.py sample for Python 3 2019-01-09 15:28:10 +03:00
face_detect.cpp Update documentation 2022-01-10 18:34:39 +03:00
face_detect.py Update documentation 2022-01-10 18:34:39 +03:00
fast_neural_style.py changed readNetFromONNX to readNet 2023-09-08 18:36:13 +07:00
human_parsing.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
human_parsing.py Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
js_face_recognition.html Merge pull request #24244 from alexlyulkov:al/update-dnn-js-face-recognition-sample 2023-09-08 15:36:01 +03:00
mask_rcnn.py Merge pull request #17394 from huningxin:fix_segmentation_py 2020-05-27 11:20:07 +03:00
mobilenet_ssd_accuracy.py fix pylint warnings 2019-10-16 18:49:33 +03:00
models.yml Merge pull request #25095 from cabelo:yolov8x 2024-02-27 15:34:15 +03:00
nanotrack_tracker.cpp Merge pull request #22808 from zihaomu:nanotrack 2022-12-06 08:54:32 +03:00
object_detection.cpp Merge pull request #23736 from seanm:c++11-simplifications 2024-01-19 16:53:08 +03:00
object_detection.py Merge pull request #24396 from Tsai-chia-hsiang:yolov8cv 2023-11-16 13:40:00 +03:00
openpose.cpp fix 4.x links 2021-12-22 13:24:30 +00:00
openpose.py samples/dnn: better errormsg in openpose.py 2021-05-05 10:39:12 +02:00
optical_flow.py Merge pull request #24913 from usyntest:optical-flow-sample-raft 2024-01-29 17:37:52 +03:00
person_reid.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
person_reid.py Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
README.md fix: update location to samples/dnn/download_models.py 2023-09-29 12:30:46 +03:00
scene_text_detection.cpp samples: replace regex 2020-12-05 12:50:37 +00:00
scene_text_recognition.cpp Merge pull request #17570 from HannibalAPE:text_det_recog_demo 2020-12-03 18:47:40 +00:00
scene_text_spotting.cpp solve Issue 23685 2023-05-25 21:34:51 +02:00
segmentation.cpp Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
segmentation.py Merge pull request #24397 from richard28039:add_fcnresnet101_to_dnn_sample 2023-11-03 15:42:43 +03:00
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 2017-10-08 22:25:29 +03:00
siamrpnpp.py Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2021-11-27 16:50:55 +00:00
speech_recognition.cpp dnn: fix various dnn related typos 2022-03-23 18:12:12 -04:00
speech_recognition.py dnn: fix various dnn related typos 2022-03-23 18:12:12 -04:00
text_detection.cpp solve Issue I23683 2023-05-25 19:42:01 +02:00
text_detection.py Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2022-02-11 17:32:37 +00:00
tf_text_graph_common.py Merge pull request #19417 from LupusSanctus:am/text_graph_identity 2021-02-17 18:01:41 +00:00
tf_text_graph_efficientdet.py dnn: EfficientDet 2020-05-28 17:23:42 +03:00
tf_text_graph_faster_rcnn.py StridedSlice from TensorFlow 2019-05-22 12:45:52 +03:00
tf_text_graph_mask_rcnn.py Enable ResNet-based Mask-RCNN models from TensorFlow Object Detection API 2019-02-06 13:05:11 +03:00
tf_text_graph_ssd.py Use ==/!= to compare constant literals (str, bytes, int, float, tuple) 2021-11-25 15:39:58 +01:00
virtual_try_on.py Merge pull request #20175 from rogday:dnn_samples_cuda 2021-06-01 14:00:51 +00:00
vit_tracker.cpp Merge pull request #24201 from lpylpy0514:4.x 2023-09-19 15:36:38 +03:00
yolo_detector.cpp Merge pull request #24898 from Abdurrahheem:ash/yolo_ducumentation 2024-01-31 09:46:58 +03:00

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Sample models

You can download sample models using download_models.py. For example, the following command will download network weights for OpenCV Face Detector model and store them in FaceDetector folder:

python download_models.py --save_dir FaceDetector opencv_fd

You can use default configuration files adopted for OpenCV from here.

You also can use the script to download necessary files from your code. Assume you have the following code inside your_script.py:

from download_models import downloadFile

filepath1 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", None, filename="MobileNetSSD_deploy.caffemodel", save_dir="save_dir_1")
filepath2 = downloadFile("https://drive.google.com/uc?export=download&id=0B3gersZ2cHIxRm5PMWRoTkdHdHc", "994d30a8afaa9e754d17d2373b2d62a7dfbaaf7a", filename="MobileNetSSD_deploy.caffemodel")
print(filepath1)
print(filepath2)
# Your code

By running the following commands, you will get MobileNetSSD_deploy.caffemodel file:

export OPENCV_DOWNLOAD_DATA_PATH=download_folder
python your_script.py

Note that you can provide a directory using save_dir parameter or via OPENCV_SAVE_DIR environment variable.

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References