tesseract/cutil/oldlist.cpp

427 lines
13 KiB
C++
Raw Normal View History

/* -*-C-*-
###############################################################################
#
# File: list.c
# Description: List processing procedures.
# Author: Mark Seaman, Software Productivity
# Created: Thu Jul 23 13:24:09 1987
# Modified: Thu Dec 22 10:59:52 1988 (Mark Seaman) marks@hpgrlt
# Language: C
# Package: N/A
# Status: Reusable Software Component
#
# (c) Copyright 1987, Hewlett-Packard Company.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
#
################################################################################
* Revision 1.13 90/03/06 15:37:54 15:37:54 marks (Mark Seaman)
* Look for correct file of <malloc.h> or <stdlib.h>
*
* Revision 1.12 90/02/26 17:37:36 17:37:36 marks (Mark Seaman)
* Added pop_off and join_on
*
This file contains a set of general purpose list manipulation routines.
These routines can be used in a wide variety of ways to provide several
different popular data structures. A new list can be created by declaring
a variable of type 'LIST', and can be initialized with the value 'NIL'.
All of these routines check for the NIL condition before dereferencing
pointers. NOTE: There is a users' manual available in printed form from
Mark Seaman at (303) 350-4492 at Greeley Hard Copy.
To implement a STACK use:
push to add to the Stack l = push (l, (LIST) "jim");
pop to remove items from the Stack l = pop (l);
first_node to access the head name = (char *) first_node (l);
To implement a QUEUE use:
push_last to add to the Queue l = push_last (l, (LIST) "jim");
pop remove items from the Queue l = pop (l);
first_node to access the head name = (char *) first_node (l);
To implement LISP like functions use:
first_node CAR x = (int) first_node (l);
rest CDR l = rest (l);
push CONS l = push (l, (LIST) this);
last LAST x = last (l);
concat APPEND l = concat (r, s);
count LENGTH x = count (l);
search MEMBER if (search (l, x, NULL))
To implement SETS use:
adjoin l = adjoin (l, x);
set_union l = set_union (r, s);
intersection l = intersection (r, s);
set_difference l = set_difference (r, s);
delete l = delete (s, x, NULL);
search if (search (l, x, NULL))
To Implement Associated LISTS use:
lpush l = lpush (l, p);
assoc s = assoc (l, x);
adelete l = adelete (l, x);
The following rules of closure exist for the functions provided.
a = first_node (push (a, b))
b = rest (push (a, b))
a = push (pop (a), a)) For all a <> NIL
a = reverse (reverse (a))
******************************************************************************/
#include "oldlist.h"
#include "structures.h"
#include <stdio.h>
#if MAC_OR_DOS
#include <stdlib.h>
#else
#include "freelist.h"
#endif
/*----------------------------------------------------------------------
M a c r o s
----------------------------------------------------------------------*/
#define add_on(l,x) l = push (l,first_node (x))
#define next_one(l) l = rest (l)
/*----------------------------------------------------------------------
F u n c t i o n s
----------------------------------------------------------------------*/
/**********************************************************************
* c o u n t
*
* Recursively count the elements in a list. Return the count.
**********************************************************************/
int count(LIST var_list) {
int temp = 0;
iterate (var_list) temp += 1;
return (temp);
}
/**********************************************************************
* d e l e t e d
*
* Delete all the elements out of the current list that match the key.
* This operation destroys the original list. The caller will supply a
* routine that will compare each node to the
* key, and return a non-zero value when they match. If the value
* NULL is supplied for is_equal, the is_key routine will be used.
**********************************************************************/
LIST delete_d(LIST list, void *key, int_compare is_equal) {
LIST result = NIL;
LIST last_one = NIL;
if (is_equal == NULL)
is_equal = is_same;
while (list != NIL) {
if (!(*is_equal) (first_node (list), key)) {
if (last_one == NIL) {
last_one = list;
list = rest (list);
result = last_one;
set_rest(last_one, NIL);
}
else {
set_rest(last_one, list);
last_one = list;
list = rest (list);
set_rest(last_one, NIL);
}
}
else {
list = pop (list);
}
}
return (result);
}
LIST delete_d(LIST list, void *key,
ResultCallback2<int, void*, void*>* is_equal) {
LIST result = NIL;
LIST last_one = NIL;
while (list != NIL) {
if (!(*is_equal).Run (first_node (list), key)) {
if (last_one == NIL) {
last_one = list;
list = rest (list);
result = last_one;
set_rest(last_one, NIL);
}
else {
set_rest(last_one, list);
last_one = list;
list = rest (list);
set_rest(last_one, NIL);
}
}
else {
list = pop (list);
}
}
return (result);
}
/**********************************************************************
* d e s t r o y
*
* Return the space taken by a list to the heap.
**********************************************************************/
LIST destroy(LIST list) {
LIST next;
while (list != NIL) {
next = rest (list);
free_cell(list);
list = next;
}
return (NIL);
}
/**********************************************************************
* d e s t r o y n o d e s
*
* Return the space taken by the LISTs of a list to the heap.
**********************************************************************/
void destroy_nodes(LIST list, void_dest destructor) {
if (destructor == NULL)
destructor = memfree;
while (list != NIL) {
(*destructor) (first_node (list));
list = pop (list);
}
}
/**********************************************************************
* i n s e r t
*
* Create a list element and rearange the pointers so that the first
* element in the list is the second aurgment.
**********************************************************************/
void insert(LIST list, void *node) {
LIST element;
if (list != NIL) {
element = push (NIL, node);
set_rest (element, rest (list));
set_rest(list, element);
node = first_node (list);
list->node = first_node (rest (list));
list->next->node = (LIST) node;
}
}
/**********************************************************************
* i s s a m e n o d e
*
* Compare the list node with the key value return TRUE (non-zero)
* if they are equivalent strings. (Return FALSE if not)
**********************************************************************/
int is_same_node(void *item1, void *item2) {
return (item1 == item2);
}
/**********************************************************************
* i s s a m e
*
* Compare the list node with the key value return TRUE (non-zero)
* if they are equivalent strings. (Return FALSE if not)
**********************************************************************/
int is_same(void *item1, void *item2) {
return (!strcmp ((char *) item1, (char *) item2));
}
/**********************************************************************
* j o i n
*
* Join the two lists together. This function is similar to concat
* except that concat creates a new list. This function returns the
* first list updated.
**********************************************************************/
LIST join(LIST list1, LIST list2) {
if (list1 == NIL)
return (list2);
set_rest (last (list1), list2);
return (list1);
}
/**********************************************************************
* l a s t
*
* Return the last list item (this is list type).
**********************************************************************/
LIST last(LIST var_list) {
while (rest (var_list) != NIL)
var_list = rest (var_list);
return (var_list);
}
/**********************************************************************
* n t h c e l l
*
* Return nth list cell in the list.
**********************************************************************/
void *nth_cell(LIST var_list, int item_num) {
int x = 0;
iterate(var_list) {
if (x++ == item_num)
return (var_list);
}
return (var_list);
}
/**********************************************************************
* p o p
*
* Return the list with the first element removed. Destroy the space
* that it occupied in the list.
**********************************************************************/
LIST pop(LIST list) {
LIST temp;
temp = rest (list);
if (list != NIL) {
free_cell(list);
}
return (temp);
}
/**********************************************************************
* p u s h
*
* Create a list element. Push the second parameter (the node) onto
* the first parameter (the list). Return the new list to the caller.
**********************************************************************/
LIST push(LIST list, void *element) {
LIST t;
t = new_cell ();
t->node = (LIST) element;
set_rest(t, list);
return (t);
}
/**********************************************************************
* p u s h l a s t
*
* Create a list element. Add the element onto the end of the list.
**********************************************************************/
LIST push_last(LIST list, void *item) {
LIST t;
if (list != NIL) {
t = last (list);
t->next = push (NIL, item);
return (list);
}
else
return (push (NIL, item));
}
/**********************************************************************
* r e v e r s e
*
* Create a new list with the elements reversed. The old list is not
* destroyed.
**********************************************************************/
LIST reverse(LIST list) {
LIST newlist = NIL;
iterate (list) copy_first (list, newlist);
return (newlist);
}
/**********************************************************************
* r e v e r s e d
*
* Create a new list with the elements reversed. The old list is
* destroyed.
**********************************************************************/
LIST reverse_d(LIST list) {
LIST result = reverse (list);
destroy(list);
return (result);
}
/**********************************************************************
* s a d j o i n
*
* Adjoin an element to an assorted list. The original list is
* modified. Returns the modified list.
**********************************************************************/
LIST s_adjoin(LIST var_list, void *variable, int_compare compare) {
LIST l;
int result;
if (compare == NULL)
compare = (int_compare) strcmp;
l = var_list;
iterate(l) {
result = (*compare) (variable, first_node (l));
if (result == 0)
return (var_list);
else if (result < 0) {
insert(l, variable);
return (var_list);
}
}
return (push_last (var_list, variable));
}
/**********************************************************************
* s e a r c h
*
* Search list, return NIL if not found. Return the list starting from
* the item if found. The compare routine "is_equal" is passed in as
* the third paramter to this routine. If the value NULL is supplied
* for is_equal, the is_key routine will be used.
**********************************************************************/
LIST search(LIST list, void *key, int_compare is_equal) {
if (is_equal == NULL)
is_equal = is_same;
iterate (list) if ((*is_equal) (first_node (list), key))
return (list);
return (NIL);
}
LIST search(LIST list, void *key, ResultCallback2<int, void*, void*>* is_equal) {
iterate (list) if ((*is_equal).Run(first_node (list), key))
return (list);
return (NIL);
}