tesseract/ccstruct/linlsq.cpp

200 lines
6.1 KiB
C++
Raw Normal View History

/**********************************************************************
* File: linlsq.cpp (Formerly llsq.c)
* Description: Linear Least squares fitting code.
* Author: Ray Smith
* Created: Thu Sep 12 08:44:51 BST 1991
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#include "mfcpch.h" // Must be first include for windows.
#include <stdio.h>
#include <math.h>
#include "errcode.h"
#include "linlsq.h"
const ERRCODE EMPTY_LLSQ = "Can't delete from an empty LLSQ";
/**********************************************************************
* LLSQ::clear
*
* Function to initialize a LLSQ.
**********************************************************************/
void LLSQ::clear() { // initialize
total_weight = 0.0; // no elements
sigx = 0.0; // update accumulators
sigy = 0.0;
sigxx = 0.0;
sigxy = 0.0;
sigyy = 0.0;
}
/**********************************************************************
* LLSQ::add
*
* Add an element to the accumulator.
**********************************************************************/
void LLSQ::add(double x, double y) { // add an element
total_weight++; // count elements
sigx += x; // update accumulators
sigy += y;
sigxx += x * x;
sigxy += x * y;
sigyy += y * y;
}
// Adds an element with a specified weight.
void LLSQ::add(double x, double y, double weight) {
total_weight += weight;
sigx += x * weight; // update accumulators
sigy += y * weight;
sigxx += x * x * weight;
sigxy += x * y * weight;
sigyy += y * y * weight;
}
// Adds a whole LLSQ.
void LLSQ::add(const LLSQ& other) {
total_weight += other.total_weight;
sigx += other.sigx; // update accumulators
sigy += other.sigy;
sigxx += other.sigxx;
sigxy += other.sigxy;
sigyy += other.sigyy;
}
/**********************************************************************
* LLSQ::remove
*
* Delete an element from the acculuator.
**********************************************************************/
void LLSQ::remove(double x, double y) { // delete an element
if (total_weight <= 0.0) // illegal
EMPTY_LLSQ.error("LLSQ::remove", ABORT, NULL);
total_weight--; // count elements
sigx -= x; // update accumulators
sigy -= y;
sigxx -= x * x;
sigxy -= x * y;
sigyy -= y * y;
}
/**********************************************************************
* LLSQ::m
*
* Return the gradient of the line fit.
**********************************************************************/
double LLSQ::m() const { // get gradient
double covar = covariance();
double x_var = x_variance();
if (x_var != 0.0)
return covar / x_var;
else
return 0.0; // too little
}
/**********************************************************************
* LLSQ::c
*
* Return the constant of the line fit.
**********************************************************************/
double LLSQ::c(double m) const { // get constant
if (total_weight > 0.0)
return (sigy - m * sigx) / total_weight;
else
return 0; // too little
}
/**********************************************************************
* LLSQ::rms
*
* Return the rms error of the fit.
**********************************************************************/
double LLSQ::rms(double m, double c) const { // get error
double error; // total error
if (total_weight > 0) {
error = sigyy + m * (m * sigxx + 2 * (c * sigx - sigxy)) + c *
(total_weight * c - 2 * sigy);
if (error >= 0)
error = sqrt(error / total_weight); // sqrt of mean
else
error = 0;
} else {
error = 0; // too little
}
return error;
}
/**********************************************************************
* LLSQ::pearson
*
* Return the pearson product moment correlation coefficient.
**********************************************************************/
double LLSQ::pearson() const { // get correlation
double r = 0.0; // Correlation is 0 if insufficent data.
double covar = covariance();
if (covar != 0.0) {
double var_product = x_variance() * y_variance();
if (var_product > 0.0)
r = covar / sqrt(var_product);
}
return r;
}
// Returns the x,y means as an FCOORD.
FCOORD LLSQ::mean_point() const {
if (total_weight > 0.0) {
return FCOORD(sigx / total_weight, sigy / total_weight);
} else {
return FCOORD(0.0f, 0.0f);
}
}
// Returns the direction of the fitted line as a unit vector, using the
// least mean squared perpendicular distance. The line runs through the
// mean_point, i.e. a point p on the line is given by:
// p = mean_point() + lambda * vector_fit() for some real number lambda.
// Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous
// and may be negated without changing its meaning.
FCOORD LLSQ::vector_fit() const {
double x_var = x_variance();
double y_var = y_variance();
double covar = covariance();
FCOORD result;
if (x_var >= y_var) {
if (x_var == 0.0)
return FCOORD(0.0f, 0.0f);
result.set_x(x_var / sqrt(x_var * x_var + covar * covar));
result.set_y(sqrt(1.0 - result.x() * result.x()));
} else {
result.set_y(y_var / sqrt(y_var * y_var + covar * covar));
result.set_x(sqrt(1.0 - result.y() * result.y()));
}
if (covar < 0.0)
result.set_y(-result.y());
return result;
}