mirror of
https://github.com/tesseract-ocr/tesseract.git
synced 2024-12-04 01:39:16 +08:00
82b1b201fc
git-svn-id: https://tesseract-ocr.googlecode.com/svn/trunk@568 d0cd1f9f-072b-0410-8dd7-cf729c803f20
200 lines
6.1 KiB
C++
200 lines
6.1 KiB
C++
/**********************************************************************
|
|
* File: linlsq.cpp (Formerly llsq.c)
|
|
* Description: Linear Least squares fitting code.
|
|
* Author: Ray Smith
|
|
* Created: Thu Sep 12 08:44:51 BST 1991
|
|
*
|
|
* (C) Copyright 1991, Hewlett-Packard Ltd.
|
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
|
** you may not use this file except in compliance with the License.
|
|
** You may obtain a copy of the License at
|
|
** http://www.apache.org/licenses/LICENSE-2.0
|
|
** Unless required by applicable law or agreed to in writing, software
|
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
** See the License for the specific language governing permissions and
|
|
** limitations under the License.
|
|
*
|
|
**********************************************************************/
|
|
|
|
#include "mfcpch.h" // Must be first include for windows.
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "errcode.h"
|
|
#include "linlsq.h"
|
|
|
|
const ERRCODE EMPTY_LLSQ = "Can't delete from an empty LLSQ";
|
|
|
|
/**********************************************************************
|
|
* LLSQ::clear
|
|
*
|
|
* Function to initialize a LLSQ.
|
|
**********************************************************************/
|
|
|
|
void LLSQ::clear() { // initialize
|
|
total_weight = 0.0; // no elements
|
|
sigx = 0.0; // update accumulators
|
|
sigy = 0.0;
|
|
sigxx = 0.0;
|
|
sigxy = 0.0;
|
|
sigyy = 0.0;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LLSQ::add
|
|
*
|
|
* Add an element to the accumulator.
|
|
**********************************************************************/
|
|
|
|
void LLSQ::add(double x, double y) { // add an element
|
|
total_weight++; // count elements
|
|
sigx += x; // update accumulators
|
|
sigy += y;
|
|
sigxx += x * x;
|
|
sigxy += x * y;
|
|
sigyy += y * y;
|
|
}
|
|
// Adds an element with a specified weight.
|
|
void LLSQ::add(double x, double y, double weight) {
|
|
total_weight += weight;
|
|
sigx += x * weight; // update accumulators
|
|
sigy += y * weight;
|
|
sigxx += x * x * weight;
|
|
sigxy += x * y * weight;
|
|
sigyy += y * y * weight;
|
|
}
|
|
// Adds a whole LLSQ.
|
|
void LLSQ::add(const LLSQ& other) {
|
|
total_weight += other.total_weight;
|
|
sigx += other.sigx; // update accumulators
|
|
sigy += other.sigy;
|
|
sigxx += other.sigxx;
|
|
sigxy += other.sigxy;
|
|
sigyy += other.sigyy;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LLSQ::remove
|
|
*
|
|
* Delete an element from the acculuator.
|
|
**********************************************************************/
|
|
|
|
void LLSQ::remove(double x, double y) { // delete an element
|
|
if (total_weight <= 0.0) // illegal
|
|
EMPTY_LLSQ.error("LLSQ::remove", ABORT, NULL);
|
|
total_weight--; // count elements
|
|
sigx -= x; // update accumulators
|
|
sigy -= y;
|
|
sigxx -= x * x;
|
|
sigxy -= x * y;
|
|
sigyy -= y * y;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LLSQ::m
|
|
*
|
|
* Return the gradient of the line fit.
|
|
**********************************************************************/
|
|
|
|
double LLSQ::m() const { // get gradient
|
|
double covar = covariance();
|
|
double x_var = x_variance();
|
|
if (x_var != 0.0)
|
|
return covar / x_var;
|
|
else
|
|
return 0.0; // too little
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LLSQ::c
|
|
*
|
|
* Return the constant of the line fit.
|
|
**********************************************************************/
|
|
|
|
double LLSQ::c(double m) const { // get constant
|
|
if (total_weight > 0.0)
|
|
return (sigy - m * sigx) / total_weight;
|
|
else
|
|
return 0; // too little
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LLSQ::rms
|
|
*
|
|
* Return the rms error of the fit.
|
|
**********************************************************************/
|
|
|
|
double LLSQ::rms(double m, double c) const { // get error
|
|
double error; // total error
|
|
|
|
if (total_weight > 0) {
|
|
error = sigyy + m * (m * sigxx + 2 * (c * sigx - sigxy)) + c *
|
|
(total_weight * c - 2 * sigy);
|
|
if (error >= 0)
|
|
error = sqrt(error / total_weight); // sqrt of mean
|
|
else
|
|
error = 0;
|
|
} else {
|
|
error = 0; // too little
|
|
}
|
|
return error;
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
* LLSQ::pearson
|
|
*
|
|
* Return the pearson product moment correlation coefficient.
|
|
**********************************************************************/
|
|
|
|
double LLSQ::pearson() const { // get correlation
|
|
double r = 0.0; // Correlation is 0 if insufficent data.
|
|
|
|
double covar = covariance();
|
|
if (covar != 0.0) {
|
|
double var_product = x_variance() * y_variance();
|
|
if (var_product > 0.0)
|
|
r = covar / sqrt(var_product);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
// Returns the x,y means as an FCOORD.
|
|
FCOORD LLSQ::mean_point() const {
|
|
if (total_weight > 0.0) {
|
|
return FCOORD(sigx / total_weight, sigy / total_weight);
|
|
} else {
|
|
return FCOORD(0.0f, 0.0f);
|
|
}
|
|
}
|
|
|
|
// Returns the direction of the fitted line as a unit vector, using the
|
|
// least mean squared perpendicular distance. The line runs through the
|
|
// mean_point, i.e. a point p on the line is given by:
|
|
// p = mean_point() + lambda * vector_fit() for some real number lambda.
|
|
// Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous
|
|
// and may be negated without changing its meaning.
|
|
FCOORD LLSQ::vector_fit() const {
|
|
double x_var = x_variance();
|
|
double y_var = y_variance();
|
|
double covar = covariance();
|
|
FCOORD result;
|
|
if (x_var >= y_var) {
|
|
if (x_var == 0.0)
|
|
return FCOORD(0.0f, 0.0f);
|
|
result.set_x(x_var / sqrt(x_var * x_var + covar * covar));
|
|
result.set_y(sqrt(1.0 - result.x() * result.x()));
|
|
} else {
|
|
result.set_y(y_var / sqrt(y_var * y_var + covar * covar));
|
|
result.set_x(sqrt(1.0 - result.y() * result.y()));
|
|
}
|
|
if (covar < 0.0)
|
|
result.set_y(-result.y());
|
|
return result;
|
|
}
|