2016-11-08 07:38:07 +08:00
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
// File: tfnetwork.h
|
|
|
|
// Description: Encapsulation of an entire tensorflow graph as a
|
|
|
|
// Tesseract Network.
|
|
|
|
// Author: Ray Smith
|
|
|
|
// Created: Fri Feb 26 09:35:29 PST 2016
|
|
|
|
//
|
|
|
|
// (C) Copyright 2016, Google Inc.
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
#ifdef INCLUDE_TENSORFLOW
|
|
|
|
|
|
|
|
#include "tfnetwork.h"
|
|
|
|
|
|
|
|
#include "allheaders.h"
|
|
|
|
#include "input.h"
|
|
|
|
#include "networkscratch.h"
|
|
|
|
|
|
|
|
using tensorflow::Status;
|
|
|
|
using tensorflow::Tensor;
|
|
|
|
using tensorflow::TensorShape;
|
|
|
|
|
|
|
|
namespace tesseract {
|
|
|
|
|
|
|
|
TFNetwork::TFNetwork(const STRING& name) : Network(NT_TENSORFLOW, name, 0, 0) {}
|
|
|
|
|
|
|
|
TFNetwork::~TFNetwork() {}
|
|
|
|
|
|
|
|
int TFNetwork::InitFromProtoStr(const string& proto_str) {
|
|
|
|
if (!model_proto_.ParseFromString(proto_str)) return 0;
|
|
|
|
return InitFromProto();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Writes to the given file. Returns false in case of error.
|
|
|
|
// Should be overridden by subclasses, but called by their Serialize.
|
|
|
|
bool TFNetwork::Serialize(TFile* fp) const {
|
|
|
|
if (!Network::Serialize(fp)) return false;
|
|
|
|
string proto_str;
|
|
|
|
model_proto_.SerializeToString(&proto_str);
|
|
|
|
GenericVector<char> data;
|
|
|
|
data.init_to_size(proto_str.size(), 0);
|
|
|
|
memcpy(&data[0], proto_str.data(), proto_str.size());
|
|
|
|
if (!data.Serialize(fp)) return false;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Reads from the given file. Returns false in case of error.
|
|
|
|
// Should be overridden by subclasses, but NOT called by their DeSerialize.
|
2017-05-04 07:09:44 +08:00
|
|
|
bool TFNetwork::DeSerialize(TFile* fp) {
|
2016-11-08 07:38:07 +08:00
|
|
|
GenericVector<char> data;
|
2017-05-04 07:09:44 +08:00
|
|
|
if (!data.DeSerialize(fp)) return false;
|
2016-11-08 07:38:07 +08:00
|
|
|
if (!model_proto_.ParseFromArray(&data[0], data.size())) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return InitFromProto();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Runs forward propagation of activations on the input line.
|
|
|
|
// See Network for a detailed discussion of the arguments.
|
|
|
|
void TFNetwork::Forward(bool debug, const NetworkIO& input,
|
|
|
|
const TransposedArray* input_transpose,
|
|
|
|
NetworkScratch* scratch, NetworkIO* output) {
|
2016-12-01 07:45:36 +08:00
|
|
|
std::vector<std::pair<string, Tensor>> tf_inputs;
|
2016-11-08 07:38:07 +08:00
|
|
|
int depth = input_shape_.depth();
|
|
|
|
ASSERT_HOST(depth == input.NumFeatures());
|
|
|
|
// TODO(rays) Allow batching. For now batch_size = 1.
|
|
|
|
const StrideMap& stride_map = input.stride_map();
|
|
|
|
// TF requires a tensor of shape float[batch, height, width, depth].
|
|
|
|
TensorShape shape{1, stride_map.Size(FD_HEIGHT), stride_map.Size(FD_WIDTH),
|
|
|
|
depth};
|
|
|
|
Tensor input_tensor(tensorflow::DT_FLOAT, shape);
|
|
|
|
// The flat() member gives a 1d array, with a data() member to get the data.
|
|
|
|
auto eigen_tensor = input_tensor.flat<float>();
|
|
|
|
memcpy(eigen_tensor.data(), input.f(0),
|
|
|
|
input.Width() * depth * sizeof(input.f(0)[0]));
|
|
|
|
// Add the tensor to the vector of inputs.
|
|
|
|
tf_inputs.emplace_back(model_proto_.image_input(), input_tensor);
|
|
|
|
|
|
|
|
// Provide tensors giving the width and/or height of the image if they are
|
|
|
|
// required. Some tf ops require a separate tensor with knowledge of the
|
|
|
|
// size of the input as they cannot obtain it from the input tensor. This is
|
|
|
|
// usually true in the case of ops that process a batch of variable-sized
|
|
|
|
// objects.
|
|
|
|
if (!model_proto_.image_widths().empty()) {
|
|
|
|
TensorShape size_shape{1};
|
2017-05-06 07:42:44 +08:00
|
|
|
Tensor width_tensor(tensorflow::DT_INT64, size_shape);
|
|
|
|
auto eigen_wtensor = width_tensor.flat<int64>();
|
2016-11-08 07:38:07 +08:00
|
|
|
*eigen_wtensor.data() = stride_map.Size(FD_WIDTH);
|
|
|
|
tf_inputs.emplace_back(model_proto_.image_widths(), width_tensor);
|
|
|
|
}
|
|
|
|
if (!model_proto_.image_heights().empty()) {
|
|
|
|
TensorShape size_shape{1};
|
2017-05-06 07:42:44 +08:00
|
|
|
Tensor height_tensor(tensorflow::DT_INT64, size_shape);
|
|
|
|
auto eigen_htensor = height_tensor.flat<int64>();
|
2016-11-08 07:38:07 +08:00
|
|
|
*eigen_htensor.data() = stride_map.Size(FD_HEIGHT);
|
|
|
|
tf_inputs.emplace_back(model_proto_.image_heights(), height_tensor);
|
|
|
|
}
|
2016-12-01 07:45:36 +08:00
|
|
|
std::vector<string> target_layers = {model_proto_.output_layer()};
|
|
|
|
std::vector<Tensor> outputs;
|
2016-11-08 07:38:07 +08:00
|
|
|
Status s = session_->Run(tf_inputs, target_layers, {}, &outputs);
|
2017-05-06 07:42:44 +08:00
|
|
|
if (!s.ok()) tprintf("session->Run failed:%s\n", s.error_message().c_str());
|
2016-11-08 07:38:07 +08:00
|
|
|
ASSERT_HOST(s.ok());
|
|
|
|
ASSERT_HOST(outputs.size() == 1);
|
|
|
|
const Tensor& output_tensor = outputs[0];
|
|
|
|
// Check the dimensions of the output.
|
2017-05-06 07:42:44 +08:00
|
|
|
ASSERT_HOST(output_tensor.shape().dims() == 3);
|
|
|
|
int output_batch = output_tensor.shape().dim_size(0);
|
|
|
|
int output_steps = output_tensor.shape().dim_size(1);
|
|
|
|
int output_depth = output_tensor.shape().dim_size(2);
|
|
|
|
ASSERT_HOST(output_batch == 1);
|
|
|
|
ASSERT_HOST(output_depth == output_shape_.depth());
|
|
|
|
output->Resize2d(false, output_steps, output_depth);
|
2016-11-08 07:38:07 +08:00
|
|
|
auto eigen_output = output_tensor.flat<float>();
|
|
|
|
memcpy(output->f(0), eigen_output.data(),
|
2017-05-06 07:42:44 +08:00
|
|
|
output_steps * output_depth * sizeof(output->f(0)[0]));
|
2016-11-08 07:38:07 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
int TFNetwork::InitFromProto() {
|
|
|
|
spec_ = model_proto_.spec();
|
|
|
|
input_shape_.SetShape(
|
|
|
|
model_proto_.batch_size(), std::max(0, model_proto_.y_size()),
|
|
|
|
std::max(0, model_proto_.x_size()), model_proto_.depth());
|
|
|
|
output_shape_.SetShape(model_proto_.batch_size(), 1, 0,
|
|
|
|
model_proto_.num_classes());
|
|
|
|
output_shape_.set_loss_type(model_proto_.using_ctc() ? LT_CTC : LT_SOFTMAX);
|
|
|
|
ni_ = input_shape_.height();
|
|
|
|
no_ = output_shape_.depth();
|
|
|
|
// Initialize the session_ with the graph. Since we can't get the graph
|
|
|
|
// back from the session_, we have to keep the proto as well
|
|
|
|
tensorflow::SessionOptions options;
|
|
|
|
session_.reset(NewSession(options));
|
|
|
|
Status s = session_->Create(model_proto_.graph());
|
|
|
|
if (s.ok()) return model_proto_.global_step();
|
|
|
|
tprintf("Session_->Create returned '%s'\n", s.error_message().c_str());
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace tesseract
|
|
|
|
|
|
|
|
#endif // ifdef INCLUDE_TENSORFLOW
|