tesseract/lstm/tfnetwork.cpp

149 lines
6.1 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// File: tfnetwork.h
// Description: Encapsulation of an entire tensorflow graph as a
// Tesseract Network.
// Author: Ray Smith
// Created: Fri Feb 26 09:35:29 PST 2016
//
// (C) Copyright 2016, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////
#ifdef INCLUDE_TENSORFLOW
#include "tfnetwork.h"
#include "allheaders.h"
#include "input.h"
#include "networkscratch.h"
using tensorflow::Status;
using tensorflow::Tensor;
using tensorflow::TensorShape;
namespace tesseract {
TFNetwork::TFNetwork(const STRING& name) : Network(NT_TENSORFLOW, name, 0, 0) {}
TFNetwork::~TFNetwork() {}
int TFNetwork::InitFromProtoStr(const string& proto_str) {
if (!model_proto_.ParseFromString(proto_str)) return 0;
return InitFromProto();
}
// Writes to the given file. Returns false in case of error.
// Should be overridden by subclasses, but called by their Serialize.
bool TFNetwork::Serialize(TFile* fp) const {
if (!Network::Serialize(fp)) return false;
string proto_str;
model_proto_.SerializeToString(&proto_str);
GenericVector<char> data;
data.init_to_size(proto_str.size(), 0);
memcpy(&data[0], proto_str.data(), proto_str.size());
if (!data.Serialize(fp)) return false;
return true;
}
// Reads from the given file. Returns false in case of error.
// Should be overridden by subclasses, but NOT called by their DeSerialize.
bool TFNetwork::DeSerialize(TFile* fp) {
GenericVector<char> data;
if (!data.DeSerialize(fp)) return false;
if (!model_proto_.ParseFromArray(&data[0], data.size())) {
return false;
}
return InitFromProto();
}
// Runs forward propagation of activations on the input line.
// See Network for a detailed discussion of the arguments.
void TFNetwork::Forward(bool debug, const NetworkIO& input,
const TransposedArray* input_transpose,
NetworkScratch* scratch, NetworkIO* output) {
2016-12-01 07:45:36 +08:00
std::vector<std::pair<string, Tensor>> tf_inputs;
int depth = input_shape_.depth();
ASSERT_HOST(depth == input.NumFeatures());
// TODO(rays) Allow batching. For now batch_size = 1.
const StrideMap& stride_map = input.stride_map();
// TF requires a tensor of shape float[batch, height, width, depth].
TensorShape shape{1, stride_map.Size(FD_HEIGHT), stride_map.Size(FD_WIDTH),
depth};
Tensor input_tensor(tensorflow::DT_FLOAT, shape);
// The flat() member gives a 1d array, with a data() member to get the data.
auto eigen_tensor = input_tensor.flat<float>();
memcpy(eigen_tensor.data(), input.f(0),
input.Width() * depth * sizeof(input.f(0)[0]));
// Add the tensor to the vector of inputs.
tf_inputs.emplace_back(model_proto_.image_input(), input_tensor);
// Provide tensors giving the width and/or height of the image if they are
// required. Some tf ops require a separate tensor with knowledge of the
// size of the input as they cannot obtain it from the input tensor. This is
// usually true in the case of ops that process a batch of variable-sized
// objects.
if (!model_proto_.image_widths().empty()) {
TensorShape size_shape{1};
Tensor width_tensor(tensorflow::DT_INT64, size_shape);
auto eigen_wtensor = width_tensor.flat<int64>();
*eigen_wtensor.data() = stride_map.Size(FD_WIDTH);
tf_inputs.emplace_back(model_proto_.image_widths(), width_tensor);
}
if (!model_proto_.image_heights().empty()) {
TensorShape size_shape{1};
Tensor height_tensor(tensorflow::DT_INT64, size_shape);
auto eigen_htensor = height_tensor.flat<int64>();
*eigen_htensor.data() = stride_map.Size(FD_HEIGHT);
tf_inputs.emplace_back(model_proto_.image_heights(), height_tensor);
}
2016-12-01 07:45:36 +08:00
std::vector<string> target_layers = {model_proto_.output_layer()};
std::vector<Tensor> outputs;
Status s = session_->Run(tf_inputs, target_layers, {}, &outputs);
if (!s.ok()) tprintf("session->Run failed:%s\n", s.error_message().c_str());
ASSERT_HOST(s.ok());
ASSERT_HOST(outputs.size() == 1);
const Tensor& output_tensor = outputs[0];
// Check the dimensions of the output.
ASSERT_HOST(output_tensor.shape().dims() == 3);
int output_batch = output_tensor.shape().dim_size(0);
int output_steps = output_tensor.shape().dim_size(1);
int output_depth = output_tensor.shape().dim_size(2);
ASSERT_HOST(output_batch == 1);
ASSERT_HOST(output_depth == output_shape_.depth());
output->Resize2d(false, output_steps, output_depth);
auto eigen_output = output_tensor.flat<float>();
memcpy(output->f(0), eigen_output.data(),
output_steps * output_depth * sizeof(output->f(0)[0]));
}
int TFNetwork::InitFromProto() {
spec_ = model_proto_.spec();
input_shape_.SetShape(
model_proto_.batch_size(), std::max(0, model_proto_.y_size()),
std::max(0, model_proto_.x_size()), model_proto_.depth());
output_shape_.SetShape(model_proto_.batch_size(), 1, 0,
model_proto_.num_classes());
output_shape_.set_loss_type(model_proto_.using_ctc() ? LT_CTC : LT_SOFTMAX);
ni_ = input_shape_.height();
no_ = output_shape_.depth();
// Initialize the session_ with the graph. Since we can't get the graph
// back from the session_, we have to keep the proto as well
tensorflow::SessionOptions options;
session_.reset(NewSession(options));
Status s = session_->Create(model_proto_.graph());
if (s.ok()) return model_proto_.global_step();
tprintf("Session_->Create returned '%s'\n", s.error_message().c_str());
return 0;
}
} // namespace tesseract
#endif // ifdef INCLUDE_TENSORFLOW