2018-03-03 21:43:21 +08:00
|
|
|
#include <fstream>
|
|
|
|
#include <sstream>
|
2021-11-24 05:15:31 +08:00
|
|
|
#include <iostream>
|
2018-03-03 21:43:21 +08:00
|
|
|
|
|
|
|
#include <opencv2/dnn.hpp>
|
2018-03-04 00:29:37 +08:00
|
|
|
#include <opencv2/imgproc.hpp>
|
|
|
|
#include <opencv2/highgui.hpp>
|
2018-03-03 21:43:21 +08:00
|
|
|
|
2018-09-20 22:59:04 +08:00
|
|
|
#include "common.hpp"
|
|
|
|
|
|
|
|
std::string keys =
|
2021-01-26 19:06:15 +08:00
|
|
|
"{ help h | | Print help message. }"
|
|
|
|
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
|
|
|
|
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
|
|
|
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
|
|
|
"{ initial_width | 0 | Preprocess input image by initial resizing to a specific width.}"
|
|
|
|
"{ initial_height | 0 | Preprocess input image by initial resizing to a specific height.}"
|
|
|
|
"{ std | 0.0 0.0 0.0 | Preprocess input image by dividing on a standard deviation.}"
|
|
|
|
"{ crop | false | Preprocess input image by center cropping.}"
|
|
|
|
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
2021-11-24 05:15:31 +08:00
|
|
|
"{ needSoftmax | false | Use Softmax to post-process the output of the net.}"
|
2021-01-26 19:06:15 +08:00
|
|
|
"{ classes | | Optional path to a text file with names of classes. }"
|
|
|
|
"{ backend | 0 | Choose one of computation backends: "
|
|
|
|
"0: automatically (by default), "
|
|
|
|
"1: Halide language (http://halide-lang.org/), "
|
|
|
|
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
2021-06-01 22:00:51 +08:00
|
|
|
"3: OpenCV implementation, "
|
|
|
|
"4: VKCOM, "
|
2021-11-24 05:15:31 +08:00
|
|
|
"5: CUDA, "
|
|
|
|
"6: WebNN }"
|
2021-01-26 19:06:15 +08:00
|
|
|
"{ target | 0 | Choose one of target computation devices: "
|
|
|
|
"0: CPU target (by default), "
|
|
|
|
"1: OpenCL, "
|
|
|
|
"2: OpenCL fp16 (half-float precision), "
|
2021-06-01 22:00:51 +08:00
|
|
|
"3: VPU, "
|
|
|
|
"4: Vulkan, "
|
|
|
|
"6: CUDA, "
|
|
|
|
"7: CUDA fp16 (half-float preprocess) }";
|
2018-03-03 21:43:21 +08:00
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace dnn;
|
|
|
|
|
|
|
|
std::vector<std::string> classes;
|
|
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
CommandLineParser parser(argc, argv, keys);
|
2018-09-20 22:59:04 +08:00
|
|
|
|
|
|
|
const std::string modelName = parser.get<String>("@alias");
|
|
|
|
const std::string zooFile = parser.get<String>("zoo");
|
|
|
|
|
|
|
|
keys += genPreprocArguments(modelName, zooFile);
|
|
|
|
|
|
|
|
parser = CommandLineParser(argc, argv, keys);
|
2018-03-03 21:43:21 +08:00
|
|
|
parser.about("Use this script to run classification deep learning networks using OpenCV.");
|
|
|
|
if (argc == 1 || parser.has("help"))
|
|
|
|
{
|
|
|
|
parser.printMessage();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2021-01-26 19:06:15 +08:00
|
|
|
int rszWidth = parser.get<int>("initial_width");
|
|
|
|
int rszHeight = parser.get<int>("initial_height");
|
2018-03-03 21:43:21 +08:00
|
|
|
float scale = parser.get<float>("scale");
|
2018-03-07 00:29:23 +08:00
|
|
|
Scalar mean = parser.get<Scalar>("mean");
|
2021-01-26 19:06:15 +08:00
|
|
|
Scalar std = parser.get<Scalar>("std");
|
2018-03-03 21:43:21 +08:00
|
|
|
bool swapRB = parser.get<bool>("rgb");
|
2021-01-26 19:06:15 +08:00
|
|
|
bool crop = parser.get<bool>("crop");
|
2018-03-03 21:43:21 +08:00
|
|
|
int inpWidth = parser.get<int>("width");
|
|
|
|
int inpHeight = parser.get<int>("height");
|
2018-09-20 22:59:04 +08:00
|
|
|
String model = findFile(parser.get<String>("model"));
|
|
|
|
String config = findFile(parser.get<String>("config"));
|
2018-03-04 00:29:37 +08:00
|
|
|
String framework = parser.get<String>("framework");
|
|
|
|
int backendId = parser.get<int>("backend");
|
|
|
|
int targetId = parser.get<int>("target");
|
2021-11-24 05:15:31 +08:00
|
|
|
bool needSoftmax = parser.get<bool>("needSoftmax");
|
|
|
|
std::cout<<"mean: "<<mean<<std::endl;
|
|
|
|
std::cout<<"std: "<<std<<std::endl;
|
2018-03-03 21:43:21 +08:00
|
|
|
|
|
|
|
// Open file with classes names.
|
|
|
|
if (parser.has("classes"))
|
|
|
|
{
|
|
|
|
std::string file = parser.get<String>("classes");
|
|
|
|
std::ifstream ifs(file.c_str());
|
|
|
|
if (!ifs.is_open())
|
|
|
|
CV_Error(Error::StsError, "File " + file + " not found");
|
|
|
|
std::string line;
|
|
|
|
while (std::getline(ifs, line))
|
|
|
|
{
|
|
|
|
classes.push_back(line);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-08-15 19:55:47 +08:00
|
|
|
if (!parser.check())
|
|
|
|
{
|
|
|
|
parser.printErrors();
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
CV_Assert(!model.empty());
|
|
|
|
|
2018-03-04 00:29:37 +08:00
|
|
|
//! [Read and initialize network]
|
|
|
|
Net net = readNet(model, config, framework);
|
|
|
|
net.setPreferableBackend(backendId);
|
|
|
|
net.setPreferableTarget(targetId);
|
|
|
|
//! [Read and initialize network]
|
2018-03-03 21:43:21 +08:00
|
|
|
|
|
|
|
// Create a window
|
|
|
|
static const std::string kWinName = "Deep learning image classification in OpenCV";
|
|
|
|
namedWindow(kWinName, WINDOW_NORMAL);
|
|
|
|
|
2018-03-04 00:29:37 +08:00
|
|
|
//! [Open a video file or an image file or a camera stream]
|
2018-03-03 21:43:21 +08:00
|
|
|
VideoCapture cap;
|
|
|
|
if (parser.has("input"))
|
|
|
|
cap.open(parser.get<String>("input"));
|
|
|
|
else
|
|
|
|
cap.open(0);
|
2018-03-04 00:29:37 +08:00
|
|
|
//! [Open a video file or an image file or a camera stream]
|
2018-03-03 21:43:21 +08:00
|
|
|
|
|
|
|
// Process frames.
|
|
|
|
Mat frame, blob;
|
|
|
|
while (waitKey(1) < 0)
|
|
|
|
{
|
|
|
|
cap >> frame;
|
|
|
|
if (frame.empty())
|
|
|
|
{
|
|
|
|
waitKey();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2021-01-26 19:06:15 +08:00
|
|
|
if (rszWidth != 0 && rszHeight != 0)
|
|
|
|
{
|
|
|
|
resize(frame, frame, Size(rszWidth, rszHeight));
|
|
|
|
}
|
|
|
|
|
2018-03-04 00:29:37 +08:00
|
|
|
//! [Create a 4D blob from a frame]
|
2021-01-26 19:06:15 +08:00
|
|
|
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, crop);
|
|
|
|
|
|
|
|
// Check std values.
|
|
|
|
if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0)
|
|
|
|
{
|
|
|
|
// Divide blob by std.
|
|
|
|
divide(blob, std, blob);
|
|
|
|
}
|
2018-03-04 00:29:37 +08:00
|
|
|
//! [Create a 4D blob from a frame]
|
2018-03-03 21:43:21 +08:00
|
|
|
|
2018-03-04 00:29:37 +08:00
|
|
|
//! [Set input blob]
|
2018-03-03 21:43:21 +08:00
|
|
|
net.setInput(blob);
|
2018-03-04 00:29:37 +08:00
|
|
|
//! [Set input blob]
|
|
|
|
//! [Make forward pass]
|
2021-11-24 05:15:31 +08:00
|
|
|
// double t_sum = 0.0;
|
|
|
|
// double t;
|
|
|
|
int classId;
|
2018-03-03 21:43:21 +08:00
|
|
|
double confidence;
|
2021-11-24 05:15:31 +08:00
|
|
|
cv::TickMeter timeRecorder;
|
|
|
|
timeRecorder.reset();
|
|
|
|
Mat prob = net.forward();
|
|
|
|
double t1;
|
|
|
|
timeRecorder.start();
|
|
|
|
prob = net.forward();
|
|
|
|
timeRecorder.stop();
|
|
|
|
t1 = timeRecorder.getTimeMilli();
|
|
|
|
|
|
|
|
timeRecorder.reset();
|
|
|
|
for(int i = 0; i < 200; i++) {
|
|
|
|
//! [Make forward pass]
|
|
|
|
timeRecorder.start();
|
|
|
|
prob = net.forward();
|
|
|
|
timeRecorder.stop();
|
|
|
|
|
|
|
|
//! [Get a class with a highest score]
|
|
|
|
Point classIdPoint;
|
|
|
|
minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
|
|
|
|
classId = classIdPoint.x;
|
|
|
|
//! [Get a class with a highest score]
|
|
|
|
|
|
|
|
// Put efficiency information.
|
|
|
|
// std::vector<double> layersTimes;
|
|
|
|
// double freq = getTickFrequency() / 1000;
|
|
|
|
// t = net.getPerfProfile(layersTimes) / freq;
|
|
|
|
// t_sum += t;
|
|
|
|
}
|
|
|
|
if (needSoftmax == true)
|
|
|
|
{
|
|
|
|
float maxProb = 0.0;
|
|
|
|
float sum = 0.0;
|
|
|
|
Mat softmaxProb;
|
|
|
|
|
|
|
|
maxProb = *std::max_element(prob.begin<float>(), prob.end<float>());
|
|
|
|
cv::exp(prob-maxProb, softmaxProb);
|
|
|
|
sum = (float)cv::sum(softmaxProb)[0];
|
|
|
|
softmaxProb /= sum;
|
|
|
|
Point classIdPoint;
|
|
|
|
minMaxLoc(softmaxProb.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
|
|
|
|
classId = classIdPoint.x;
|
|
|
|
}
|
|
|
|
std::string label = format("Inference time of 1 round: %.2f ms", t1);
|
|
|
|
std::string label2 = format("Average time of 200 rounds: %.2f ms", timeRecorder.getTimeMilli()/200);
|
2018-03-03 21:43:21 +08:00
|
|
|
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
2021-11-24 05:15:31 +08:00
|
|
|
putText(frame, label2, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
2018-03-03 21:43:21 +08:00
|
|
|
|
|
|
|
// Print predicted class.
|
|
|
|
label = format("%s: %.4f", (classes.empty() ? format("Class #%d", classId).c_str() :
|
|
|
|
classes[classId].c_str()),
|
|
|
|
confidence);
|
2021-11-24 05:15:31 +08:00
|
|
|
putText(frame, label, Point(0, 55), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
2018-03-03 21:43:21 +08:00
|
|
|
|
|
|
|
imshow(kWinName, frame);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|