2018-02-06 16:57:35 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "op_inf_engine.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
|
|
|
|
InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::CNNLayerPtr& _layer)
|
|
|
|
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {}
|
|
|
|
|
|
|
|
void InfEngineBackendNode::connect(std::vector<Ptr<BackendWrapper> >& inputs,
|
|
|
|
std::vector<Ptr<BackendWrapper> >& outputs)
|
|
|
|
{
|
|
|
|
layer->insData.resize(inputs.size());
|
|
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
|
|
{
|
|
|
|
InferenceEngine::DataPtr dataPtr = infEngineDataNode(inputs[i]);
|
|
|
|
layer->insData[i] = InferenceEngine::DataWeakPtr(dataPtr);
|
|
|
|
dataPtr->inputTo[layer->name] = layer;
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_Assert(!outputs.empty());
|
|
|
|
|
|
|
|
layer->outData.resize(1);
|
|
|
|
InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]);
|
|
|
|
dataPtr->name = layer->name;
|
|
|
|
layer->outData[0] = dataPtr;
|
|
|
|
dataPtr->creatorLayer = InferenceEngine::CNNLayerWeakPtr(layer);
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::vector<Ptr<InfEngineBackendWrapper> >
|
|
|
|
infEngineWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
|
|
|
|
{
|
|
|
|
std::vector<Ptr<InfEngineBackendWrapper> > wrappers(ptrs.size());
|
|
|
|
for (int i = 0; i < ptrs.size(); ++i)
|
|
|
|
{
|
|
|
|
CV_Assert(!ptrs[i].empty());
|
|
|
|
wrappers[i] = ptrs[i].dynamicCast<InfEngineBackendWrapper>();
|
|
|
|
CV_Assert(!wrappers[i].empty());
|
|
|
|
}
|
|
|
|
return wrappers;
|
|
|
|
}
|
|
|
|
|
|
|
|
static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "")
|
|
|
|
{
|
|
|
|
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
|
|
|
|
std::reverse(reversedShape.begin(), reversedShape.end());
|
|
|
|
return InferenceEngine::DataPtr(
|
2018-02-07 16:28:45 +08:00
|
|
|
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32,
|
|
|
|
InferenceEngine::Layout::ANY)
|
2018-02-06 16:57:35 +08:00
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape)
|
|
|
|
{
|
|
|
|
return InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
|
|
|
|
shape, (float*)m.data);
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m)
|
|
|
|
{
|
|
|
|
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
|
|
|
|
std::reverse(reversedShape.begin(), reversedShape.end());
|
|
|
|
return wrapToInfEngineBlob(m, reversedShape);
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
|
|
|
|
{
|
|
|
|
CV_Assert(!ptr.empty());
|
|
|
|
Ptr<InfEngineBackendWrapper> p = ptr.dynamicCast<InfEngineBackendWrapper>();
|
|
|
|
CV_Assert(!p.empty());
|
|
|
|
return p->dataPtr;
|
|
|
|
}
|
|
|
|
|
|
|
|
InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m)
|
|
|
|
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId)
|
|
|
|
{
|
|
|
|
dataPtr = wrapToInfEngineDataNode(m);
|
|
|
|
blob = wrapToInfEngineBlob(m);
|
|
|
|
}
|
|
|
|
|
|
|
|
InfEngineBackendWrapper::~InfEngineBackendWrapper()
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendWrapper::copyToHost()
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendWrapper::setHostDirty()
|
|
|
|
{
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2018-03-17 00:27:04 +08:00
|
|
|
InfEngineBackendNet::InfEngineBackendNet()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net)
|
|
|
|
{
|
|
|
|
inputs = net.getInputsInfo();
|
|
|
|
outputs = net.getOutputsInfo();
|
|
|
|
layers.resize(net.layerCount()); // A hack to execute InfEngineBackendNet::layerCount correctly.
|
|
|
|
initPlugin(net);
|
|
|
|
}
|
|
|
|
|
2018-02-06 16:57:35 +08:00
|
|
|
void InfEngineBackendNet::Release() noexcept
|
|
|
|
{
|
|
|
|
layers.clear();
|
|
|
|
inputs.clear();
|
|
|
|
outputs.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::Precision InfEngineBackendNet::getPrecision() noexcept
|
|
|
|
{
|
|
|
|
return InferenceEngine::Precision::FP32;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Assume that outputs of network is unconnected blobs.
|
|
|
|
void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) noexcept
|
|
|
|
{
|
|
|
|
outputs_ = outputs;
|
|
|
|
}
|
2018-03-15 21:16:56 +08:00
|
|
|
void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) const noexcept
|
|
|
|
{
|
|
|
|
outputs_ = outputs;
|
|
|
|
}
|
2018-02-06 16:57:35 +08:00
|
|
|
|
|
|
|
// Returns input references that aren't connected to internal outputs.
|
|
|
|
void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) noexcept
|
|
|
|
{
|
|
|
|
inputs_ = inputs;
|
|
|
|
}
|
|
|
|
|
2018-02-14 19:17:44 +08:00
|
|
|
// Returns input references that aren't connected to internal outputs.
|
|
|
|
void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) const noexcept
|
|
|
|
{
|
|
|
|
inputs_ = inputs;
|
|
|
|
}
|
|
|
|
|
2018-02-06 16:57:35 +08:00
|
|
|
InferenceEngine::InputInfo::Ptr InfEngineBackendNet::getInput(const std::string &inputName) noexcept
|
|
|
|
{
|
|
|
|
getInputsInfo(inputs);
|
|
|
|
const auto& it = inputs.find(inputName);
|
|
|
|
CV_Assert(it != inputs.end());
|
|
|
|
return it->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendNet::getName(char *pName, size_t len) noexcept
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t InfEngineBackendNet::layerCount() noexcept
|
|
|
|
{
|
|
|
|
return layers.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::DataPtr& InfEngineBackendNet::getData(const char *dname) noexcept
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
|
|
return outputs.begin()->second; // Just return something.
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendNet::addLayer(const InferenceEngine::CNNLayerPtr &layer) noexcept
|
|
|
|
{
|
|
|
|
layers.push_back(layer);
|
|
|
|
inputs.clear();
|
|
|
|
outputs.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::StatusCode
|
|
|
|
InfEngineBackendNet::addOutput(const std::string &layerName, size_t outputIndex,
|
|
|
|
InferenceEngine::ResponseDesc *resp) noexcept
|
|
|
|
{
|
2018-02-06 21:23:18 +08:00
|
|
|
for (const auto& l : layers)
|
|
|
|
{
|
|
|
|
for (const InferenceEngine::DataPtr& out : l->outData)
|
|
|
|
{
|
|
|
|
if (out->name == layerName)
|
|
|
|
{
|
|
|
|
outputs[out->name] = out;
|
|
|
|
return InferenceEngine::StatusCode::OK;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
CV_Error(Error::StsObjectNotFound, "Cannot find a layer " + layerName);
|
2018-02-06 16:57:35 +08:00
|
|
|
return InferenceEngine::StatusCode::OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::StatusCode
|
|
|
|
InfEngineBackendNet::getLayerByName(const char *layerName, InferenceEngine::CNNLayerPtr &out,
|
|
|
|
InferenceEngine::ResponseDesc *resp) noexcept
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
|
|
return InferenceEngine::StatusCode::OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendNet::setTargetDevice(InferenceEngine::TargetDevice device) noexcept
|
|
|
|
{
|
|
|
|
if (device != InferenceEngine::TargetDevice::eCPU)
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::TargetDevice InfEngineBackendNet::getTargetDevice() noexcept
|
|
|
|
{
|
|
|
|
return InferenceEngine::TargetDevice::eCPU;
|
|
|
|
}
|
|
|
|
|
|
|
|
InferenceEngine::StatusCode InfEngineBackendNet::setBatchSize(const size_t size) noexcept
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
|
|
return InferenceEngine::StatusCode::OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t InfEngineBackendNet::getBatchSize() const noexcept
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsNotImplemented, "");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2018-03-17 00:27:04 +08:00
|
|
|
void InfEngineBackendNet::init()
|
2018-02-06 16:57:35 +08:00
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
if (inputs.empty())
|
2018-02-07 16:28:45 +08:00
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
// Collect all external input blobs.
|
|
|
|
inputs.clear();
|
|
|
|
std::map<std::string, InferenceEngine::DataPtr> internalOutputs;
|
|
|
|
for (const auto& l : layers)
|
2018-02-07 16:28:45 +08:00
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
for (const InferenceEngine::DataWeakPtr& ptr : l->insData)
|
2018-02-07 16:28:45 +08:00
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
InferenceEngine::DataPtr inp(ptr);
|
|
|
|
if (internalOutputs.find(inp->name) == internalOutputs.end())
|
|
|
|
{
|
|
|
|
InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo());
|
|
|
|
inpInfo->setInputData(inp);
|
|
|
|
if (inputs.find(inp->name) == inputs.end())
|
|
|
|
inputs[inp->name] = inpInfo;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (const InferenceEngine::DataPtr& out : l->outData)
|
|
|
|
{
|
|
|
|
// TODO: Replace to uniquness assertion.
|
|
|
|
if (internalOutputs.find(out->name) == internalOutputs.end())
|
|
|
|
internalOutputs[out->name] = out;
|
2018-02-07 16:28:45 +08:00
|
|
|
}
|
|
|
|
}
|
2018-03-17 00:27:04 +08:00
|
|
|
CV_Assert(!inputs.empty());
|
2018-02-07 16:28:45 +08:00
|
|
|
}
|
2018-02-06 21:23:18 +08:00
|
|
|
|
2018-03-17 00:27:04 +08:00
|
|
|
if (outputs.empty())
|
2018-02-06 21:23:18 +08:00
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
// Add all unconnected blobs to output blobs.
|
|
|
|
InferenceEngine::OutputsDataMap unconnectedOuts;
|
|
|
|
for (const auto& l : layers)
|
2018-02-06 21:23:18 +08:00
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
// Add all outputs.
|
|
|
|
for (const InferenceEngine::DataPtr& out : l->outData)
|
|
|
|
{
|
|
|
|
// TODO: Replace to uniquness assertion.
|
|
|
|
if (unconnectedOuts.find(out->name) == unconnectedOuts.end())
|
|
|
|
unconnectedOuts[out->name] = out;
|
|
|
|
}
|
|
|
|
// Remove internally connected outputs.
|
|
|
|
for (const InferenceEngine::DataWeakPtr& inp : l->insData)
|
|
|
|
{
|
|
|
|
unconnectedOuts.erase(InferenceEngine::DataPtr(inp)->name);
|
|
|
|
}
|
2018-02-06 21:23:18 +08:00
|
|
|
}
|
2018-03-17 00:27:04 +08:00
|
|
|
CV_Assert(!unconnectedOuts.empty());
|
|
|
|
|
|
|
|
for (auto it = unconnectedOuts.begin(); it != unconnectedOuts.end(); ++it)
|
2018-02-06 21:23:18 +08:00
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
outputs[it->first] = it->second;
|
2018-02-06 21:23:18 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-02-07 16:28:45 +08:00
|
|
|
// Set up input blobs.
|
|
|
|
inpBlobs.clear();
|
|
|
|
for (const auto& it : inputs)
|
|
|
|
{
|
|
|
|
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
|
|
|
|
inpBlobs[it.first] = allBlobs[it.first];
|
|
|
|
}
|
|
|
|
|
2018-02-06 21:23:18 +08:00
|
|
|
// Set up output blobs.
|
|
|
|
outBlobs.clear();
|
|
|
|
for (const auto& it : outputs)
|
|
|
|
{
|
|
|
|
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
|
|
|
|
outBlobs[it.first] = allBlobs[it.first];
|
|
|
|
}
|
|
|
|
|
2018-03-17 00:27:04 +08:00
|
|
|
if (!isInitialized())
|
|
|
|
initPlugin(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
|
|
|
|
{
|
|
|
|
CV_Assert(!isInitialized());
|
2018-02-07 16:28:45 +08:00
|
|
|
#ifdef _WIN32
|
2018-03-17 00:27:04 +08:00
|
|
|
plugin = InferenceEngine::InferenceEnginePluginPtr("MKLDNNPlugin.dll");
|
2018-02-07 16:28:45 +08:00
|
|
|
#else
|
2018-03-17 00:27:04 +08:00
|
|
|
plugin = InferenceEngine::InferenceEnginePluginPtr("libMKLDNNPlugin.so");
|
2018-02-07 16:28:45 +08:00
|
|
|
#endif // _WIN32
|
2018-02-06 16:57:35 +08:00
|
|
|
InferenceEngine::ResponseDesc resp;
|
2018-03-17 00:27:04 +08:00
|
|
|
InferenceEngine::StatusCode status = plugin->LoadNetwork(net, &resp);
|
2018-02-06 16:57:35 +08:00
|
|
|
if (status != InferenceEngine::StatusCode::OK)
|
|
|
|
CV_Error(Error::StsAssert, resp.msg);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool InfEngineBackendNet::isInitialized()
|
|
|
|
{
|
2018-03-17 00:27:04 +08:00
|
|
|
return (bool)plugin;
|
2018-02-06 16:57:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendNet::addBlobs(const std::vector<Ptr<BackendWrapper> >& ptrs)
|
|
|
|
{
|
|
|
|
auto wrappers = infEngineWrappers(ptrs);
|
|
|
|
for (const auto& wrapper : wrappers)
|
|
|
|
{
|
|
|
|
allBlobs[wrapper->dataPtr->name] = wrapper->blob;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendNet::forward()
|
|
|
|
{
|
|
|
|
InferenceEngine::ResponseDesc resp;
|
2018-03-17 00:27:04 +08:00
|
|
|
InferenceEngine::StatusCode status = plugin->Infer(inpBlobs, outBlobs, &resp);
|
2018-02-06 16:57:35 +08:00
|
|
|
if (status != InferenceEngine::StatusCode::OK)
|
|
|
|
CV_Error(Error::StsAssert, resp.msg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
|
|
|
|
{
|
|
|
|
// NOTE: Inference Engine sizes are reversed.
|
2018-02-07 16:28:45 +08:00
|
|
|
std::vector<size_t> dims = blob->dims();
|
|
|
|
std::vector<int> size(dims.begin(), dims.end());
|
2018-02-06 16:57:35 +08:00
|
|
|
std::reverse(size.begin(), size.end());
|
|
|
|
return Mat(size, CV_32F, (void*)blob->buffer());
|
|
|
|
}
|
|
|
|
|
|
|
|
void fuseConvWeights(const std::shared_ptr<InferenceEngine::ConvolutionLayer>& conv,
|
|
|
|
const Mat& w, const Mat& b)
|
|
|
|
{
|
2018-02-07 16:28:45 +08:00
|
|
|
CV_Assert(!w.empty() || !b.empty());
|
|
|
|
if (!w.empty())
|
2018-02-06 16:57:35 +08:00
|
|
|
{
|
2018-02-07 16:28:45 +08:00
|
|
|
// Get convolution's weights. Clone the data because Inference Engine can host it
|
|
|
|
// and conv->_weights->allocate() below will deallocate it.
|
|
|
|
Mat originWeights = infEngineBlobToMat(conv->_weights).clone();
|
|
|
|
|
|
|
|
// Create new weights blob.
|
|
|
|
conv->_weights = InferenceEngine::make_shared_blob<float>(
|
|
|
|
InferenceEngine::Precision::FP32, conv->_weights->dims());
|
|
|
|
conv->_weights->allocate();
|
|
|
|
|
|
|
|
// Convolution weights have OIHW data layout.
|
|
|
|
// (conv(I) + b1 ) * w + b2
|
|
|
|
// w*conv(I) + b1 * w + b2
|
|
|
|
Mat fusedWeights = infEngineBlobToMat(conv->_weights);
|
|
|
|
|
|
|
|
const int numChannels = fusedWeights.size[0];
|
|
|
|
// Mat weights = blobs[0].reshape(1, 1);
|
|
|
|
// Mat bias = hasBias ? blobs[1].reshape(1, 1) : Mat();
|
|
|
|
CV_Assert(numChannels == w.total());
|
|
|
|
CV_Assert(b.empty() || numChannels == b.total());
|
|
|
|
for (int i = 0; i < numChannels; ++i)
|
|
|
|
{
|
|
|
|
cv::multiply(slice(originWeights, i), w.at<float>(i), slice(fusedWeights, i));
|
|
|
|
}
|
2018-02-06 16:57:35 +08:00
|
|
|
}
|
|
|
|
if (conv->_biases)
|
|
|
|
{
|
|
|
|
// The same for biases.
|
|
|
|
Mat originBiases = infEngineBlobToMat(conv->_biases).clone();
|
|
|
|
|
|
|
|
conv->_biases = InferenceEngine::make_shared_blob<float>(
|
|
|
|
InferenceEngine::Precision::FP32, conv->_biases->dims());
|
|
|
|
conv->_biases->allocate();
|
|
|
|
Mat fusedBiases = infEngineBlobToMat(conv->_biases);
|
2018-02-07 16:28:45 +08:00
|
|
|
originBiases.copyTo(fusedBiases);
|
2018-02-06 16:57:35 +08:00
|
|
|
|
2018-02-07 16:28:45 +08:00
|
|
|
if (!w.empty())
|
|
|
|
cv::multiply(w.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases, fusedBiases);
|
2018-02-06 16:57:35 +08:00
|
|
|
if (!b.empty())
|
|
|
|
cv::add(fusedBiases, b.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
conv->_biases = wrapToInfEngineBlob(b);
|
|
|
|
}
|
|
|
|
|
2018-03-17 00:27:04 +08:00
|
|
|
InfEngineBackendLayer::InfEngineBackendLayer(const InferenceEngine::DataPtr& output_)
|
|
|
|
{
|
|
|
|
output = output_;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool InfEngineBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
|
|
|
std::vector<size_t> dims = output->dims;
|
|
|
|
std::vector<int> shape(dims.begin(), dims.end());
|
|
|
|
std::reverse(shape.begin(), shape.end());
|
|
|
|
outputs.assign(1, shape);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool InfEngineBackendLayer::supportBackend(int backendId)
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
|
|
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendLayer::forward(std::vector<Mat*> &input, std::vector<Mat> &output,
|
|
|
|
std::vector<Mat> &internals)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsError, "Choose Inference Engine as a preferable backend.");
|
|
|
|
}
|
|
|
|
|
|
|
|
void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
|
|
|
|
OutputArrayOfArrays internals)
|
|
|
|
{
|
|
|
|
CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend.");
|
|
|
|
}
|
|
|
|
|
2018-02-06 16:57:35 +08:00
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
|
|
|
|
bool haveInfEngine()
|
|
|
|
{
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
return true;
|
|
|
|
#else
|
|
|
|
return false;
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
}
|
|
|
|
|
|
|
|
void forwardInfEngine(Ptr<BackendNode>& node)
|
|
|
|
{
|
|
|
|
CV_Assert(haveInfEngine());
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
CV_Assert(!node.empty());
|
|
|
|
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
|
|
|
|
CV_Assert(!ieNode.empty());
|
|
|
|
ieNode->net->forward();
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
}
|
|
|
|
|
|
|
|
}} // namespace dnn, namespace cv
|