2017-06-26 18:35:51 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
/*
|
|
|
|
Implementation of shift layer, which adds up const values to blob.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "../precomp.hpp"
|
2018-02-07 16:28:45 +08:00
|
|
|
#include "op_inf_engine.hpp"
|
2017-06-26 18:35:51 +08:00
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
namespace dnn
|
|
|
|
{
|
|
|
|
|
|
|
|
class ShiftLayerImpl : public ShiftLayer
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
ShiftLayerImpl(const LayerParams ¶ms)
|
|
|
|
{
|
|
|
|
setParamsFrom(params);
|
|
|
|
CV_Assert(blobs.size() == 1);
|
|
|
|
}
|
|
|
|
|
2018-02-07 16:28:45 +08:00
|
|
|
virtual bool supportBackend(int backendId)
|
|
|
|
{
|
|
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
|
|
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
|
|
const int requiredOutputs,
|
|
|
|
std::vector<MatShape> &outputs,
|
|
|
|
std::vector<MatShape> &internals) const
|
|
|
|
{
|
|
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
|
|
internals.assign(1, shape(1, total(inputs[0], 2)));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-11-09 12:57:37 +08:00
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
|
|
{
|
2017-06-28 19:46:58 +08:00
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
CV_Assert(inputs.size() > 0);
|
|
|
|
CV_Assert(blobs.size() > 0);
|
|
|
|
|
|
|
|
if(inputs[0]->dims == blobs[0].dims)
|
|
|
|
{
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
|
|
{
|
|
|
|
Mat &inpBlob = *inputs[ii];
|
|
|
|
Mat &outBlob = outputs[ii];
|
|
|
|
|
|
|
|
outBlob = inpBlob + blobs[0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
Mat biasOnesMat = internals[0];
|
|
|
|
biasOnesMat.setTo(1);
|
|
|
|
for (size_t ii = 0; ii < outputs.size(); ii++)
|
|
|
|
{
|
|
|
|
Mat &inpBlob = *inputs[ii];
|
|
|
|
Mat &outBlob = outputs[ii];
|
|
|
|
|
|
|
|
inpBlob.copyTo(outBlob);
|
|
|
|
|
|
|
|
for (int n = 0; n < inpBlob.size[0]; n++)
|
|
|
|
{
|
|
|
|
Mat dstMat(inpBlob.size[1], inpBlob.size[2] * inpBlob.size[3],
|
|
|
|
outBlob.type(), outBlob.ptr(n));
|
|
|
|
gemm(blobs[0], biasOnesMat, 1, dstMat, 1, dstMat); //TODO: gemv
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-02-07 16:28:45 +08:00
|
|
|
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
|
|
|
|
{
|
|
|
|
switch (node->backendId)
|
|
|
|
{
|
|
|
|
case DNN_BACKEND_INFERENCE_ENGINE:
|
|
|
|
{
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
auto base = node.dynamicCast<InfEngineBackendNode>();
|
|
|
|
auto conv = std::dynamic_pointer_cast<InferenceEngine::ConvolutionLayer>(base->layer);
|
|
|
|
if (conv)
|
|
|
|
{
|
|
|
|
fuseConvWeights(conv, Mat(), blobs[0]);
|
|
|
|
return base;
|
|
|
|
}
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_INF_ENGINE
|
|
|
|
// Inference Engine has no layer just for biases. Create a linear
|
|
|
|
// transformation layer with ones weights.
|
|
|
|
InferenceEngine::LayerParams lp;
|
|
|
|
lp.name = name;
|
|
|
|
lp.type = "ScaleShift";
|
|
|
|
lp.precision = InferenceEngine::Precision::FP32;
|
|
|
|
std::shared_ptr<InferenceEngine::ScaleShiftLayer> ieLayer(new InferenceEngine::ScaleShiftLayer(lp));
|
|
|
|
|
|
|
|
auto weights = InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
|
|
|
|
{blobs[0].total()});
|
|
|
|
weights->allocate();
|
|
|
|
|
|
|
|
std::vector<float> ones(blobs[0].total(), 1);
|
|
|
|
weights->set(ones);
|
|
|
|
ieLayer->_weights = weights;
|
|
|
|
|
|
|
|
ieLayer->_biases = wrapToInfEngineBlob(blobs[0]);
|
|
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
|
|
#endif // HAVE_INF_ENGINE
|
|
|
|
return Ptr<BackendNode>();
|
|
|
|
}
|
|
|
|
|
2018-02-13 17:07:56 +08:00
|
|
|
void getScaleShift(Mat& scale, Mat& shift) const
|
|
|
|
{
|
|
|
|
scale = Mat();
|
|
|
|
shift = blobs[0];
|
|
|
|
}
|
|
|
|
|
2017-06-26 18:35:51 +08:00
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
|
|
const std::vector<MatShape> &outputs) const
|
|
|
|
{
|
|
|
|
(void)outputs; // suppress unused variable warning
|
|
|
|
long flops = 0;
|
|
|
|
|
|
|
|
for(int i= 0; i < inputs.size(); i++)
|
|
|
|
{
|
|
|
|
flops += total(inputs[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
return flops;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
Ptr<ShiftLayer> ShiftLayer::create(const LayerParams& params)
|
|
|
|
{
|
|
|
|
return Ptr<ShiftLayer>(new ShiftLayerImpl(params));
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|