opencv/modules/features2d/src/blobdetector.cpp

502 lines
17 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
2010-12-27 17:15:08 +08:00
#include "precomp.hpp"
2011-02-10 06:45:45 +08:00
#include <iterator>
#include <limits>
#include <opencv2/core/utils/logger.hpp>
2019-04-16 02:59:51 +08:00
// Requires CMake flag: DEBUG_opencv_features2d=ON
//#define DEBUG_BLOB_DETECTOR
#ifdef DEBUG_BLOB_DETECTOR
2019-04-16 02:59:51 +08:00
#include "opencv2/highgui.hpp"
#endif
namespace cv
{
// TODO: To be removed in 5.x branch
const std::vector<std::vector<cv::Point> >& SimpleBlobDetector::getBlobContours() const
{
CV_Error(Error::StsNotImplemented, "Method SimpleBlobDetector::getBlobContours() is not implemented");
}
class CV_EXPORTS_W SimpleBlobDetectorImpl : public SimpleBlobDetector
{
public:
explicit SimpleBlobDetectorImpl(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
2018-03-15 21:16:54 +08:00
virtual void read( const FileNode& fn ) CV_OVERRIDE;
virtual void write( FileStorage& fs ) const CV_OVERRIDE;
void setParams(const SimpleBlobDetector::Params& _params ) CV_OVERRIDE {
SimpleBlobDetectorImpl::validateParameters(_params);
params = _params;
}
SimpleBlobDetector::Params getParams() const CV_OVERRIDE { return params; }
static void validateParameters(const SimpleBlobDetector::Params& p)
{
if (p.thresholdStep <= 0)
CV_Error(Error::StsBadArg, "thresholdStep>0");
2022-12-26 17:07:00 +08:00
if (p.minThreshold > p.maxThreshold || p.minThreshold < 0)
CV_Error(Error::StsBadArg, "0<=minThreshold<=maxThreshold");
if (p.minDistBetweenBlobs <=0 )
CV_Error(Error::StsBadArg, "minDistBetweenBlobs>0");
if (p.minArea > p.maxArea || p.minArea <=0)
CV_Error(Error::StsBadArg, "0<minArea<=maxArea");
if (p.minCircularity > p.maxCircularity || p.minCircularity <= 0)
CV_Error(Error::StsBadArg, "0<minCircularity<=maxCircularity");
if (p.minInertiaRatio > p.maxInertiaRatio || p.minInertiaRatio <= 0)
CV_Error(Error::StsBadArg, "0<minInertiaRatio<=maxInertiaRatio");
if (p.minConvexity > p.maxConvexity || p.minConvexity <= 0)
CV_Error(Error::StsBadArg, "0<minConvexity<=maxConvexity");
}
protected:
struct CV_EXPORTS Center
{
Point2d location;
double radius;
double confidence;
};
2018-03-15 21:16:54 +08:00
virtual void detect( InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask=noArray() ) CV_OVERRIDE;
virtual void findBlobs(InputArray image, InputArray binaryImage, std::vector<Center> &centers,
std::vector<std::vector<Point> > &contours, std::vector<Moments> &moments) const;
virtual const std::vector<std::vector<Point> >& getBlobContours() const CV_OVERRIDE;
Params params;
std::vector<std::vector<Point> > blobContours;
};
2010-12-27 17:15:08 +08:00
/*
* SimpleBlobDetector
*/
2010-12-27 17:15:08 +08:00
SimpleBlobDetector::Params::Params()
{
2012-10-17 15:12:04 +08:00
thresholdStep = 10;
minThreshold = 50;
maxThreshold = 220;
minRepeatability = 2;
minDistBetweenBlobs = 10;
filterByColor = true;
blobColor = 0;
filterByArea = true;
minArea = 25;
maxArea = 5000;
filterByCircularity = false;
minCircularity = 0.8f;
maxCircularity = std::numeric_limits<float>::max();
filterByInertia = true;
//minInertiaRatio = 0.6;
minInertiaRatio = 0.1f;
maxInertiaRatio = std::numeric_limits<float>::max();
filterByConvexity = true;
//minConvexity = 0.8;
minConvexity = 0.95f;
maxConvexity = std::numeric_limits<float>::max();
collectContours = false;
}
void SimpleBlobDetector::Params::read(const cv::FileNode& fn )
{
thresholdStep = fn["thresholdStep"];
minThreshold = fn["minThreshold"];
maxThreshold = fn["maxThreshold"];
minRepeatability = (size_t)(int)fn["minRepeatability"];
minDistBetweenBlobs = fn["minDistBetweenBlobs"];
filterByColor = (int)fn["filterByColor"] != 0 ? true : false;
blobColor = (uchar)(int)fn["blobColor"];
filterByArea = (int)fn["filterByArea"] != 0 ? true : false;
minArea = fn["minArea"];
maxArea = fn["maxArea"];
filterByCircularity = (int)fn["filterByCircularity"] != 0 ? true : false;
minCircularity = fn["minCircularity"];
maxCircularity = fn["maxCircularity"];
filterByInertia = (int)fn["filterByInertia"] != 0 ? true : false;
minInertiaRatio = fn["minInertiaRatio"];
maxInertiaRatio = fn["maxInertiaRatio"];
filterByConvexity = (int)fn["filterByConvexity"] != 0 ? true : false;
minConvexity = fn["minConvexity"];
maxConvexity = fn["maxConvexity"];
collectContours = (int)fn["collectContours"] != 0 ? true : false;
}
void SimpleBlobDetector::Params::write(cv::FileStorage& fs) const
{
fs << "thresholdStep" << thresholdStep;
fs << "minThreshold" << minThreshold;
fs << "maxThreshold" << maxThreshold;
fs << "minRepeatability" << (int)minRepeatability;
fs << "minDistBetweenBlobs" << minDistBetweenBlobs;
fs << "filterByColor" << (int)filterByColor;
fs << "blobColor" << (int)blobColor;
fs << "filterByArea" << (int)filterByArea;
fs << "minArea" << minArea;
fs << "maxArea" << maxArea;
fs << "filterByCircularity" << (int)filterByCircularity;
fs << "minCircularity" << minCircularity;
fs << "maxCircularity" << maxCircularity;
fs << "filterByInertia" << (int)filterByInertia;
fs << "minInertiaRatio" << minInertiaRatio;
fs << "maxInertiaRatio" << maxInertiaRatio;
fs << "filterByConvexity" << (int)filterByConvexity;
fs << "minConvexity" << minConvexity;
fs << "maxConvexity" << maxConvexity;
fs << "collectContours" << (int)collectContours;
}
SimpleBlobDetectorImpl::SimpleBlobDetectorImpl(const SimpleBlobDetector::Params &parameters) :
params(parameters)
{
}
void SimpleBlobDetectorImpl::read( const cv::FileNode& fn )
{
SimpleBlobDetector::Params rp;
rp.read(fn);
SimpleBlobDetectorImpl::validateParameters(rp);
params = rp;
}
void SimpleBlobDetectorImpl::write( cv::FileStorage& fs ) const
{
writeFormat(fs);
params.write(fs);
}
void SimpleBlobDetectorImpl::findBlobs(InputArray _image, InputArray _binaryImage, std::vector<Center> &centers,
std::vector<std::vector<Point> > &contoursOut, std::vector<Moments> &momentss) const
{
CV_INSTRUMENT_REGION();
2014-02-04 20:34:18 +08:00
Mat image = _image.getMat(), binaryImage = _binaryImage.getMat();
2018-09-07 19:33:52 +08:00
CV_UNUSED(image);
2012-10-17 15:12:04 +08:00
centers.clear();
contoursOut.clear();
momentss.clear();
std::vector < std::vector<Point> > contours;
2019-01-12 01:31:55 +08:00
findContours(binaryImage, contours, RETR_LIST, CHAIN_APPROX_NONE);
#ifdef DEBUG_BLOB_DETECTOR
2019-04-16 02:59:51 +08:00
Mat keypointsImage;
cvtColor(binaryImage, keypointsImage, COLOR_GRAY2RGB);
Mat contoursImage;
cvtColor(binaryImage, contoursImage, COLOR_GRAY2RGB);
drawContours( contoursImage, contours, -1, Scalar(0,255,0) );
imshow("contours", contoursImage );
#endif
2012-10-17 15:12:04 +08:00
for (size_t contourIdx = 0; contourIdx < contours.size(); contourIdx++)
{
Center center;
center.confidence = 1;
2019-01-12 01:31:55 +08:00
Moments moms = moments(contours[contourIdx]);
2012-10-17 15:12:04 +08:00
if (params.filterByArea)
{
double area = moms.m00;
if (area < params.minArea || area >= params.maxArea)
continue;
}
if (params.filterByCircularity)
{
double area = moms.m00;
2019-01-12 01:31:55 +08:00
double perimeter = arcLength(contours[contourIdx], true);
2012-10-17 15:12:04 +08:00
double ratio = 4 * CV_PI * area / (perimeter * perimeter);
if (ratio < params.minCircularity || ratio >= params.maxCircularity)
continue;
}
if (params.filterByInertia)
{
double denominator = std::sqrt(std::pow(2 * moms.mu11, 2) + std::pow(moms.mu20 - moms.mu02, 2));
2012-10-17 15:12:04 +08:00
const double eps = 1e-2;
double ratio;
if (denominator > eps)
{
double cosmin = (moms.mu20 - moms.mu02) / denominator;
double sinmin = 2 * moms.mu11 / denominator;
double cosmax = -cosmin;
double sinmax = -sinmin;
double imin = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmin - moms.mu11 * sinmin;
double imax = 0.5 * (moms.mu20 + moms.mu02) - 0.5 * (moms.mu20 - moms.mu02) * cosmax - moms.mu11 * sinmax;
ratio = imin / imax;
}
else
{
ratio = 1;
}
if (ratio < params.minInertiaRatio || ratio >= params.maxInertiaRatio)
continue;
center.confidence = ratio * ratio;
}
if (params.filterByConvexity)
{
std::vector < Point > hull;
2019-01-12 01:31:55 +08:00
convexHull(contours[contourIdx], hull);
double area = moms.m00;
2019-01-12 01:31:55 +08:00
double hullArea = contourArea(hull);
if (fabs(hullArea) < DBL_EPSILON)
continue;
2012-10-17 15:12:04 +08:00
double ratio = area / hullArea;
if (ratio < params.minConvexity || ratio >= params.maxConvexity)
continue;
}
if(moms.m00 == 0.0)
continue;
2012-10-17 15:12:04 +08:00
center.location = Point2d(moms.m10 / moms.m00, moms.m01 / moms.m00);
if (params.filterByColor)
{
if (binaryImage.at<uchar> (cvRound(center.location.y), cvRound(center.location.x)) != params.blobColor)
continue;
}
//compute blob radius
{
std::vector<double> dists;
2012-10-17 15:12:04 +08:00
for (size_t pointIdx = 0; pointIdx < contours[contourIdx].size(); pointIdx++)
{
Point2d pt = contours[contourIdx][pointIdx];
dists.push_back(norm(center.location - pt));
}
std::sort(dists.begin(), dists.end());
center.radius = (dists[(dists.size() - 1) / 2] + dists[dists.size() / 2]) / 2.;
}
centers.push_back(center);
if (params.collectContours)
{
contoursOut.push_back(contours[contourIdx]);
momentss.push_back(moms);
}
#ifdef DEBUG_BLOB_DETECTOR
2019-04-16 02:59:51 +08:00
circle( keypointsImage, center.location, 1, Scalar(0,0,255), 1 );
#endif
2012-10-17 15:12:04 +08:00
}
#ifdef DEBUG_BLOB_DETECTOR
2019-04-16 02:59:51 +08:00
imshow("bk", keypointsImage );
waitKey();
#endif
}
2018-01-25 20:34:12 +08:00
void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>& keypoints, InputArray mask)
{
CV_INSTRUMENT_REGION();
2012-10-17 15:12:04 +08:00
keypoints.clear();
blobContours.clear();
CV_Assert(params.minRepeatability != 0);
2012-10-17 15:12:04 +08:00
Mat grayscaleImage;
2018-01-07 13:30:40 +08:00
if (image.channels() == 3 || image.channels() == 4)
cvtColor(image, grayscaleImage, COLOR_BGR2GRAY);
2012-10-17 15:12:04 +08:00
else
2014-01-24 23:39:05 +08:00
grayscaleImage = image.getMat();
2012-10-17 15:12:04 +08:00
if (grayscaleImage.type() != CV_8UC1) {
CV_Error(Error::StsUnsupportedFormat, "Blob detector only supports 8-bit images!");
2014-09-04 22:17:51 +08:00
}
CV_CheckGT(params.thresholdStep, 0.0f, "");
if (params.minThreshold + params.thresholdStep >= params.maxThreshold)
{
// https://github.com/opencv/opencv/issues/6667
CV_LOG_ONCE_INFO(NULL, "SimpleBlobDetector: params.minDistBetweenBlobs is ignored for case with single threshold");
#if 0 // OpenCV 5.0
CV_CheckEQ(params.minRepeatability, 1u, "Incompatible parameters for case with single threshold");
#else
if (params.minRepeatability != 1)
CV_LOG_WARNING(NULL, "SimpleBlobDetector: params.minRepeatability=" << params.minRepeatability << " is incompatible for case with single threshold. Empty result is expected.");
#endif
}
std::vector < std::vector<Center> > centers;
std::vector<Moments> momentss;
2012-10-17 15:12:04 +08:00
for (double thresh = params.minThreshold; thresh < params.maxThreshold; thresh += params.thresholdStep)
{
Mat binarizedImage;
threshold(grayscaleImage, binarizedImage, thresh, 255, THRESH_BINARY);
std::vector < Center > curCenters;
std::vector<std::vector<Point> > curContours;
std::vector<Moments> curMomentss;
findBlobs(grayscaleImage, binarizedImage, curCenters, curContours, curMomentss);
std::vector < std::vector<Center> > newCenters;
std::vector<std::vector<Point> > newContours;
std::vector<Moments> newMomentss;
2012-10-17 15:12:04 +08:00
for (size_t i = 0; i < curCenters.size(); i++)
{
bool isNew = true;
for (size_t j = 0; j < centers.size(); j++)
{
double dist = norm(centers[j][ centers[j].size() / 2 ].location - curCenters[i].location);
2012-10-17 15:12:04 +08:00
isNew = dist >= params.minDistBetweenBlobs && dist >= centers[j][ centers[j].size() / 2 ].radius && dist >= curCenters[i].radius;
if (!isNew)
{
centers[j].push_back(curCenters[i]);
size_t k = centers[j].size() - 1;
2019-07-01 23:48:48 +08:00
while( k > 0 && curCenters[i].radius < centers[j][k-1].radius )
2012-10-17 15:12:04 +08:00
{
centers[j][k] = centers[j][k-1];
k--;
}
if (params.collectContours)
{
if (curCenters[i].confidence > centers[j][k].confidence
|| (curCenters[i].confidence == centers[j][k].confidence && curMomentss[i].m00 > momentss[j].m00))
{
blobContours[j] = curContours[i];
momentss[j] = curMomentss[i];
}
}
2012-10-17 15:12:04 +08:00
centers[j][k] = curCenters[i];
break;
}
}
if (isNew)
{
newCenters.push_back(std::vector<Center> (1, curCenters[i]));
if (params.collectContours)
{
newContours.push_back(curContours[i]);
newMomentss.push_back(curMomentss[i]);
}
}
2012-10-17 15:12:04 +08:00
}
std::copy(newCenters.begin(), newCenters.end(), std::back_inserter(centers));
if (params.collectContours)
{
std::copy(newContours.begin(), newContours.end(), std::back_inserter(blobContours));
std::copy(newMomentss.begin(), newMomentss.end(), std::back_inserter(momentss));
}
2012-10-17 15:12:04 +08:00
}
for (size_t i = 0; i < centers.size(); i++)
{
if (centers[i].size() < params.minRepeatability)
continue;
Point2d sumPoint(0, 0);
double normalizer = 0;
for (size_t j = 0; j < centers[i].size(); j++)
{
sumPoint += centers[i][j].confidence * centers[i][j].location;
normalizer += centers[i][j].confidence;
}
sumPoint *= (1. / normalizer);
KeyPoint kpt(sumPoint, (float)(centers[i][centers[i].size() / 2].radius) * 2.0f);
2012-10-17 15:12:04 +08:00
keypoints.push_back(kpt);
}
2018-01-25 20:34:12 +08:00
if (!mask.empty())
{
if (params.collectContours)
{
KeyPointsFilter::runByPixelsMask2VectorPoint(keypoints, blobContours, mask.getMat());
}
else
{
KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
}
2018-01-25 20:34:12 +08:00
}
}
const std::vector<std::vector<Point> >& SimpleBlobDetectorImpl::getBlobContours() const {
return blobContours;
}
Ptr<SimpleBlobDetector> SimpleBlobDetector::create(const SimpleBlobDetector::Params& params)
{
SimpleBlobDetectorImpl::validateParameters(params);
return makePtr<SimpleBlobDetectorImpl>(params);
}
String SimpleBlobDetector::getDefaultName() const
{
return (Feature2D::getDefaultName() + ".SimpleBlobDetector");
}
}