opencv/modules/core/src/system.cpp

2912 lines
87 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
2015-01-12 15:59:30 +08:00
// Copyright (C) 2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <atomic>
#include <iostream>
#include <ostream>
#ifdef __QNX__
#include <unistd.h>
#include <sys/neutrino.h>
#include <sys/syspage.h>
#ifdef __aarch64__
#include <aarch64/syspage.h>
#endif
#endif
Merge pull request #9114 from pengli:dnn_rebase add libdnn acceleration to dnn module (#9114) * import libdnn code Signed-off-by: Li Peng <peng.li@intel.com> * add convolution layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add pooling layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add softmax layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add lrn layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add innerproduct layer ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * add HAVE_OPENCL macro Signed-off-by: Li Peng <peng.li@intel.com> * fix for convolution ocl Signed-off-by: Li Peng <peng.li@intel.com> * enable getUMat() for multi-dimension Mat Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat for ocl acceleration Signed-off-by: Li Peng <peng.li@intel.com> * use CV_OCL_RUN macro Signed-off-by: Li Peng <peng.li@intel.com> * set OPENCL target when it is available and disable fuseLayer for OCL target for the time being Signed-off-by: Li Peng <peng.li@intel.com> * fix innerproduct accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * remove trailing space Signed-off-by: Li Peng <peng.li@intel.com> * Fixed tensorflow demo bug. Root cause is that tensorflow has different algorithm with libdnn to calculate convolution output dimension. libdnn don't calculate output dimension anymore and just use one passed in by config. * split gemm ocl file split it into gemm_buffer.cl and gemm_image.cl Signed-off-by: Li Peng <peng.li@intel.com> * Fix compile failure Signed-off-by: Li Peng <peng.li@intel.com> * check env flag for auto tuning Signed-off-by: Li Peng <peng.li@intel.com> * switch to new ocl kernels for softmax layer Signed-off-by: Li Peng <peng.li@intel.com> * update softmax layer on some platform subgroup extension may not work well, fallback to non subgroup ocl acceleration. Signed-off-by: Li Peng <peng.li@intel.com> * fallback to cpu path for fc layer with multi output Signed-off-by: Li Peng <peng.li@intel.com> * update output message Signed-off-by: Li Peng <peng.li@intel.com> * update fully connected layer fallback to gemm API if libdnn return false Signed-off-by: Li Peng <peng.li@intel.com> * Add ReLU OCL implementation * disable layer fusion for now Signed-off-by: Li Peng <peng.li@intel.com> * Add OCL implementation for concat layer Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> * libdnn: update license and copyrights Also refine libdnn coding style Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * DNN: Don't link OpenCL library explicitly * DNN: Make default preferableTarget to DNN_TARGET_CPU User should set it to DNN_TARGET_OPENCL explicitly if want to use OpenCL acceleration. Also don't fusion when using DNN_TARGET_OPENCL * DNN: refine coding style * Add getOpenCLErrorString * DNN: Use int32_t/uint32_t instread of alias * Use namespace ocl4dnn to include libdnn things * remove extra copyTo in softmax ocl path Signed-off-by: Li Peng <peng.li@intel.com> * update ReLU layer ocl path Signed-off-by: Li Peng <peng.li@intel.com> * Add prefer target property for layer class It is used to indicate the target for layer forwarding, either the default CPU target or OCL target. Signed-off-by: Li Peng <peng.li@intel.com> * Add cl_event based timer for cv::ocl * Rename libdnn to ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * use UMat for ocl4dnn internal buffer Remove allocateMemory which use clCreateBuffer directly Signed-off-by: Li Peng <peng.li@intel.com> Signed-off-by: wzw <zhiwen.wu@intel.com> * enable buffer gemm in ocl4dnn innerproduct Signed-off-by: Li Peng <peng.li@intel.com> * replace int_tp globally for ocl4dnn kernels. Signed-off-by: wzw <zhiwen.wu@intel.com> Signed-off-by: Li Peng <peng.li@intel.com> * create UMat for layer params Signed-off-by: Li Peng <peng.li@intel.com> * update sign ocl kernel Signed-off-by: Li Peng <peng.li@intel.com> * update image based gemm of inner product layer Signed-off-by: Li Peng <peng.li@intel.com> * remove buffer gemm of inner product layer call cv::gemm API instead Signed-off-by: Li Peng <peng.li@intel.com> * change ocl4dnn forward parameter to UMat Signed-off-by: Li Peng <peng.li@intel.com> * Refine auto-tuning mechanism. - Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory for fine-tuned kernel configuration. e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp, the cache directory will be /home/tmp/spatialkernels/ on Linux. - Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable auto-tuning. - OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling for OpenCL command queue. This fix basic kernel get wrong running time, i.e. 0ms. - If creating cache directory failed, disable auto-tuning. * Detect and create cache dir on windows Signed-off-by: Li Peng <peng.li@intel.com> * Refine gemm like convolution kernel. Signed-off-by: Li Peng <peng.li@intel.com> * Fix redundant swizzleWeights calling when use cached kernel config. * Fix "out of resource" bug when auto-tuning too many kernels. * replace cl_mem with UMat in ocl4dnnConvSpatial class * OCL4DNN: reduce the tuning kernel candidate. This patch could reduce 75% of the tuning candidates with less than 2% performance impact for the final result. Signed-off-by: Zhigang Gong <zhigang.gong@intel.com> * replace cl_mem with umat in ocl4dnn convolution Signed-off-by: Li Peng <peng.li@intel.com> * remove weight_image_ of ocl4dnn inner product Actually it is unused in the computation Signed-off-by: Li Peng <peng.li@intel.com> * Various fixes for ocl4dnn 1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel()) 2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp 3. Code comments cleanup 4. ignore check on OCL cpu device Signed-off-by: Li Peng <peng.li@intel.com> * add build option for log softmax Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ocl kernels in ocl4dnn Signed-off-by: Li Peng <peng.li@intel.com> * replace ocl4dnnSet with opencv setTo Signed-off-by: Li Peng <peng.li@intel.com> * replace ALIGN with cv::alignSize Signed-off-by: Li Peng <peng.li@intel.com> * check kernel build options Signed-off-by: Li Peng <peng.li@intel.com> * Handle program compilation fail properly. * Use std::numeric_limits<float>::infinity() for large float number * check ocl4dnn kernel compilation result Signed-off-by: Li Peng <peng.li@intel.com> * remove unused ctx_id Signed-off-by: Li Peng <peng.li@intel.com> * change clEnqueueNDRangeKernel to kernel.run() Signed-off-by: Li Peng <peng.li@intel.com> * change cl_mem to UMat in image based gemm Signed-off-by: Li Peng <peng.li@intel.com> * check intel subgroup support for lrn and pooling layer Signed-off-by: Li Peng <peng.li@intel.com> * Fix convolution bug if group is greater than 1 Signed-off-by: Li Peng <peng.li@intel.com> * Set default layer preferableTarget to be DNN_TARGET_CPU Signed-off-by: Li Peng <peng.li@intel.com> * Add ocl perf test for convolution Signed-off-by: Li Peng <peng.li@intel.com> * Add more ocl accuracy test Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_image with ocl::Image2D Signed-off-by: Li Peng <peng.li@intel.com> * Fix build failure in elementwise layer Signed-off-by: Li Peng <peng.li@intel.com> * use getUMat() to get blob data Signed-off-by: Li Peng <peng.li@intel.com> * replace cl_mem handle with ocl::KernelArg Signed-off-by: Li Peng <peng.li@intel.com> * dnn(build): don't use C++11, OPENCL_LIBRARIES fix * dnn(ocl4dnn): remove unused OpenCL kernels * dnn(ocl4dnn): extract OpenCL code into .cl files * dnn(ocl4dnn): refine auto-tuning Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING environment variable to enable it. Use a set of pre-tuned configs as default config if auto-tuning is disabled. These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet, AlexNet, ResNet-50 If default config is not suitable, use the first available kernel config from the candidates. Candidate priority from high to low is gemm like kernel, IDLF kernel, basick kernel. * dnn(ocl4dnn): pooling doesn't use OpenCL subgroups * dnn(ocl4dnn): fix perf test OpenCV has default 3sec time limit for each performance test. Warmup OpenCL backend outside of perf measurement loop. * use ocl::KernelArg as much as possible Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): fix bias bug for gemm like kernel * dnn(ocl4dnn): wrap cl_mem into UMat Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): Refine signature of kernel config - Use more readable string as signture of kernel config - Don't count device name and vendor in signature string - Default kernel configurations are tuned for Intel GPU with 24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model. * dnn(ocl4dnn): swap width/height in configuration * dnn(ocl4dnn): enable configs for Intel OpenCL runtime only * core: make configuration helper functions accessible from non-core modules * dnn(ocl4dnn): update kernel auto-tuning behavior Avoid unwanted creation of directories * dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash * dnn(ocl4dnn): remove redundant code * dnn(ocl4dnn): Add more clear message for simd size dismatch. * dnn(ocl4dnn): add const to const argument Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel * dnn(ocl4dnn): drop unused tuneLocalSize() * dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method * dnn(ocl4dnn): sanitize file names used for cache * dnn(perf): enable Network tests with OpenCL * dnn(ocl4dnn/conv): drop computeGlobalSize() * dnn(ocl4dnn/conv): drop unused fields * dnn(ocl4dnn/conv): simplify ctor * dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL * dnn(ocl4dnn/conv): drop unsupported double / untested half types * dnn(ocl4dnn/conv): drop unused variable * dnn(ocl4dnn/conv): alignSize/divUp * dnn(ocl4dnn/conv): use enum values * dnn(ocl4dnn): drop unused innerproduct variable Signed-off-by: Li Peng <peng.li@intel.com> * dnn(ocl4dnn): add an generic function to check cl option support * dnn(ocl4dnn): run softmax subgroup version kernel first Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
#include <opencv2/core/utils/configuration.private.hpp>
2017-05-25 23:59:01 +08:00
#include <opencv2/core/utils/trace.private.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <opencv2/core/utils/tls.hpp>
#include <opencv2/core/utils/instrumentation.hpp>
#include <opencv2/core/utils/filesystem.private.hpp>
2022-01-11 11:06:43 +08:00
#include <opencv2/core/utils/fp_control_utils.hpp>
#include <opencv2/core/utils/fp_control.private.hpp>
namespace cv {
static void _initSystem()
{
#ifdef __ANDROID__
// https://github.com/opencv/opencv/issues/14906
// "ios_base::Init" object is not a part of Android's "iostream" header (in case of clang toolchain, NDK 20).
// Ref1: https://en.cppreference.com/w/cpp/io/ios_base/Init
// The header <iostream> behaves as if it defines (directly or indirectly) an instance of std::ios_base::Init with static storage duration
// Ref2: https://github.com/gcc-mirror/gcc/blob/gcc-8-branch/libstdc%2B%2B-v3/include/std/iostream#L73-L74
static std::ios_base::Init s_iostream_initializer;
#endif
}
static Mutex* __initialization_mutex = NULL;
Mutex& getInitializationMutex()
{
if (__initialization_mutex == NULL)
{
(void)_initSystem();
__initialization_mutex = new Mutex();
}
return *__initialization_mutex;
}
// force initialization (single-threaded environment)
Mutex* __initialization_mutex_initializer = &getInitializationMutex();
static bool param_dumpErrors = utils::getConfigurationParameterBool("OPENCV_DUMP_ERRORS",
#if defined(_DEBUG) || defined(__ANDROID__)
true
#else
false
#endif
);
void* allocSingletonBuffer(size_t size) { return fastMalloc(size); }
void* allocSingletonNewBuffer(size_t size) { return malloc(size); }
} // namespace cv
#ifndef CV_ERROR_SET_TERMINATE_HANDLER // build config option
# if defined(_WIN32)
# define CV_ERROR_SET_TERMINATE_HANDLER 1
# endif
#endif
#if defined(CV_ERROR_SET_TERMINATE_HANDLER) && !CV_ERROR_SET_TERMINATE_HANDLER
# undef CV_ERROR_SET_TERMINATE_HANDLER
#endif
#ifdef _MSC_VER
# if _MSC_VER >= 1700
# pragma warning(disable:4447) // Disable warning 'main' signature found without threading model
# endif
#endif
#ifdef CV_ERROR_SET_TERMINATE_HANDLER
#include <exception> // std::set_terminate
#include <cstdlib> // std::abort
#endif
#if defined __ANDROID__ || defined __unix__ || defined __FreeBSD__ || defined __OpenBSD__ || defined __HAIKU__ || defined __Fuchsia__ || defined __QNX__
2014-12-30 21:53:19 +08:00
# include <unistd.h>
# include <fcntl.h>
#if defined __QNX__
# include <sys/elf.h>
# include <sys/auxv.h>
using Elf64_auxv_t = auxv64_t;
# include <elfdefinitions.h>
const uint64_t AT_HWCAP = NT_GNU_HWCAP;
#else
2014-12-30 21:53:19 +08:00
# include <elf.h>
#endif
#if defined __ANDROID__ || defined __linux__
2014-12-30 21:53:19 +08:00
# include <linux/auxvec.h>
#endif
#endif
2014-12-30 21:53:19 +08:00
#if defined __ANDROID__ && defined HAVE_CPUFEATURES
2017-05-19 21:14:01 +08:00
# include <cpu-features.h>
#endif
#if (defined __ppc64__ || defined __PPC64__) && defined __unix__
# include "sys/auxv.h"
# ifndef AT_HWCAP2
# define AT_HWCAP2 26
# endif
# ifndef PPC_FEATURE2_ARCH_2_07
# define PPC_FEATURE2_ARCH_2_07 0x80000000
# endif
# ifndef PPC_FEATURE2_ARCH_3_00
# define PPC_FEATURE2_ARCH_3_00 0x00800000
2017-10-03 06:54:31 +08:00
# endif
# ifndef PPC_FEATURE_HAS_VSX
# define PPC_FEATURE_HAS_VSX 0x00000080
# endif
2017-10-03 06:54:31 +08:00
#endif
#if defined __loongarch64
#include "sys/auxv.h"
#define LA_HWCAP_LSX (1<<4)
#define LA_HWCAP_LASX (1<<5)
#endif
2017-07-25 18:23:44 +08:00
#if defined _WIN32 || defined WINCE
#ifndef _WIN32_WINNT // This is needed for the declaration of TryEnterCriticalSection in winbase.h with Visual Studio 2005 (and older?)
#define _WIN32_WINNT 0x0400 // http://msdn.microsoft.com/en-us/library/ms686857(VS.85).aspx
#endif
#include <windows.h>
#if (_WIN32_WINNT >= 0x0602)
#include <synchapi.h>
#endif
#if ((_WIN32_WINNT >= 0x0600) && !defined(CV_DISABLE_FLS)) || defined(CV_FORCE_FLS)
#include <fibersapi.h>
#define CV_USE_FLS
#endif
#undef small
#undef min
#undef max
#undef abs
#include <tchar.h>
#ifdef WINRT
#include <wrl/client.h>
#ifndef __cplusplus_winrt
#include <windows.storage.h>
#pragma comment(lib, "runtimeobject.lib")
#endif // WINRT
std::wstring GetTempPathWinRT()
{
#ifdef __cplusplus_winrt
return std::wstring(Windows::Storage::ApplicationData::Current->TemporaryFolder->Path->Data());
#else
Microsoft::WRL::ComPtr<ABI::Windows::Storage::IApplicationDataStatics> appdataFactory;
Microsoft::WRL::ComPtr<ABI::Windows::Storage::IApplicationData> appdataRef;
Microsoft::WRL::ComPtr<ABI::Windows::Storage::IStorageFolder> storagefolderRef;
Microsoft::WRL::ComPtr<ABI::Windows::Storage::IStorageItem> storageitemRef;
HSTRING str;
HSTRING_HEADER hstrHead;
std::wstring wstr;
if (FAILED(WindowsCreateStringReference(RuntimeClass_Windows_Storage_ApplicationData,
(UINT32)wcslen(RuntimeClass_Windows_Storage_ApplicationData), &hstrHead, &str)))
return wstr;
if (FAILED(RoGetActivationFactory(str, IID_PPV_ARGS(appdataFactory.ReleaseAndGetAddressOf()))))
return wstr;
if (FAILED(appdataFactory->get_Current(appdataRef.ReleaseAndGetAddressOf())))
return wstr;
if (FAILED(appdataRef->get_TemporaryFolder(storagefolderRef.ReleaseAndGetAddressOf())))
return wstr;
if (FAILED(storagefolderRef.As(&storageitemRef)))
return wstr;
str = NULL;
if (FAILED(storageitemRef->get_Path(&str)))
return wstr;
wstr = WindowsGetStringRawBuffer(str, NULL);
WindowsDeleteString(str);
return wstr;
#endif
}
std::wstring GetTempFileNameWinRT(std::wstring prefix)
{
wchar_t guidStr[40];
GUID g;
CoCreateGuid(&g);
wchar_t* mask = L"%08x_%04x_%04x_%02x%02x_%02x%02x%02x%02x%02x%02x";
swprintf(&guidStr[0], sizeof(guidStr)/sizeof(wchar_t), mask,
g.Data1, g.Data2, g.Data3, UINT(g.Data4[0]), UINT(g.Data4[1]),
UINT(g.Data4[2]), UINT(g.Data4[3]), UINT(g.Data4[4]),
UINT(g.Data4[5]), UINT(g.Data4[6]), UINT(g.Data4[7]));
return prefix.append(std::wstring(guidStr));
}
#endif
#else
#ifndef OPENCV_DISABLE_THREAD_SUPPORT
#include <pthread.h>
#endif
#include <sys/time.h>
#include <time.h>
#if defined __MACH__ && defined __APPLE__
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <sys/sysctl.h>
#endif
#endif
#ifdef _OPENMP
#include "omp.h"
#endif
2024-01-06 14:41:02 +08:00
#if defined __unix__ || defined __APPLE__ || defined __EMSCRIPTEN__ || defined __FreeBSD__ || defined __OpenBSD__ || defined __GLIBC__ || defined __HAIKU__
2011-08-02 20:42:58 +08:00
#include <unistd.h>
#include <stdio.h>
2012-06-08 01:21:29 +08:00
#include <sys/types.h>
#if defined __ANDROID__
2011-08-02 22:56:51 +08:00
#include <sys/sysconf.h>
2011-08-02 20:42:58 +08:00
#endif
2011-08-02 22:56:51 +08:00
#endif
2011-08-02 20:42:58 +08:00
#ifdef __ANDROID__
# include <android/log.h>
#endif
#ifdef DECLARE_CV_CPUID_X86
DECLARE_CV_CPUID_X86
#endif
#ifndef CV_CPUID_X86
#if defined _MSC_VER && (defined _M_IX86 || defined _M_X64)
#if _MSC_VER >= 1400 // MSVS 2005
#include <intrin.h> // __cpuidex()
#define CV_CPUID_X86 __cpuidex
#else
#error "Required MSVS 2005+"
#endif
#elif defined __GNUC__ && (defined __i386__ || defined __x86_64__)
static void cv_cpuid(int* cpuid_data, int reg_eax, int reg_ecx)
{
int __eax = reg_eax, __ebx = 0, __ecx = reg_ecx, __edx = 0;
// tested with available compilers (-fPIC -O2 -m32/-m64): https://godbolt.org/
#if !defined(__PIC__) \
|| defined(__x86_64__) || __GNUC__ >= 5 \
|| defined(__clang__) || defined(__INTEL_COMPILER)
__asm__("cpuid\n\t"
: "+a" (__eax), "=b" (__ebx), "+c" (__ecx), "=d" (__edx)
);
#elif defined(__i386__) // ebx may be reserved as the PIC register
__asm__("xchg{l}\t{%%}ebx, %1\n\t"
"cpuid\n\t"
"xchg{l}\t{%%}ebx, %1\n\t"
: "+a" (__eax), "=&r" (__ebx), "+c" (__ecx), "=d" (__edx)
);
#else
#error "Configuration error"
#endif
cpuid_data[0] = __eax; cpuid_data[1] = __ebx; cpuid_data[2] = __ecx; cpuid_data[3] = __edx;
}
#define CV_CPUID_X86 cv_cpuid
#endif
#endif
#include <chrono>
namespace cv
{
Exception::Exception() { code = 0; line = 0; }
Exception::Exception(int _code, const String& _err, const String& _func, const String& _file, int _line)
: code(_code), err(_err), func(_func), file(_file), line(_line)
{
formatMessage();
}
2024-07-16 01:48:02 +08:00
Exception::~Exception() CV_NOEXCEPT {}
/*!
\return the error description and the context as a text string.
2012-06-08 01:21:29 +08:00
*/
2024-07-16 01:48:02 +08:00
const char* Exception::what() const CV_NOEXCEPT { return msg.c_str(); }
void Exception::formatMessage()
{
2018-02-23 17:24:44 +08:00
size_t pos = err.find('\n');
bool multiline = pos != cv::String::npos;
if (multiline)
{
std::stringstream ss;
size_t prev_pos = 0;
while (pos != cv::String::npos)
{
ss << "> " << err.substr(prev_pos, pos - prev_pos) << std::endl;
prev_pos = pos + 1;
pos = err.find('\n', prev_pos);
}
ss << "> " << err.substr(prev_pos);
if (err[err.size() - 1] != '\n')
ss << std::endl;
err = ss.str();
}
if (func.size() > 0)
{
if (multiline)
msg = format("OpenCV(%s) %s:%d: error: (%d:%s) in function '%s'\n%s", CV_VERSION, file.c_str(), line, code, cvErrorStr(code), func.c_str(), err.c_str());
else
msg = format("OpenCV(%s) %s:%d: error: (%d:%s) %s in function '%s'\n", CV_VERSION, file.c_str(), line, code, cvErrorStr(code), err.c_str(), func.c_str());
}
else
2018-02-23 17:24:44 +08:00
{
msg = format("OpenCV(%s) %s:%d: error: (%d:%s) %s%s", CV_VERSION, file.c_str(), line, code, cvErrorStr(code), err.c_str(), multiline ? "" : "\n");
}
}
2012-06-08 01:21:29 +08:00
2016-09-07 23:02:36 +08:00
static const char* g_hwFeatureNames[CV_HARDWARE_MAX_FEATURE] = { NULL };
static const char* getHWFeatureName(int id)
{
return (id < CV_HARDWARE_MAX_FEATURE) ? g_hwFeatureNames[id] : NULL;
}
static const char* getHWFeatureNameSafe(int id)
{
const char* name = getHWFeatureName(id);
return name ? name : "Unknown feature";
}
2015-12-15 20:55:43 +08:00
struct HWFeatures
{
enum { MAX_FEATURE = CV_HARDWARE_MAX_FEATURE };
2016-09-07 23:02:36 +08:00
HWFeatures(bool run_initialize = false)
2015-12-15 20:55:43 +08:00
{
2016-09-07 23:02:36 +08:00
if (run_initialize)
initialize();
2015-12-15 20:55:43 +08:00
}
2016-09-07 23:02:36 +08:00
static void initializeNames()
2015-12-15 20:55:43 +08:00
{
2016-09-07 23:02:36 +08:00
for (int i = 0; i < CV_HARDWARE_MAX_FEATURE; i++)
{
g_hwFeatureNames[i] = 0;
}
g_hwFeatureNames[CPU_MMX] = "MMX";
g_hwFeatureNames[CPU_SSE] = "SSE";
g_hwFeatureNames[CPU_SSE2] = "SSE2";
g_hwFeatureNames[CPU_SSE3] = "SSE3";
g_hwFeatureNames[CPU_SSSE3] = "SSSE3";
g_hwFeatureNames[CPU_SSE4_1] = "SSE4.1";
g_hwFeatureNames[CPU_SSE4_2] = "SSE4.2";
g_hwFeatureNames[CPU_POPCNT] = "POPCNT";
g_hwFeatureNames[CPU_FP16] = "FP16";
g_hwFeatureNames[CPU_AVX] = "AVX";
g_hwFeatureNames[CPU_AVX2] = "AVX2";
g_hwFeatureNames[CPU_FMA3] = "FMA3";
g_hwFeatureNames[CPU_AVX_512F] = "AVX512F";
g_hwFeatureNames[CPU_AVX_512BW] = "AVX512BW";
g_hwFeatureNames[CPU_AVX_512CD] = "AVX512CD";
g_hwFeatureNames[CPU_AVX_512DQ] = "AVX512DQ";
g_hwFeatureNames[CPU_AVX_512ER] = "AVX512ER";
2017-12-29 13:06:52 +08:00
g_hwFeatureNames[CPU_AVX_512IFMA] = "AVX512IFMA";
2016-09-07 23:02:36 +08:00
g_hwFeatureNames[CPU_AVX_512PF] = "AVX512PF";
g_hwFeatureNames[CPU_AVX_512VBMI] = "AVX512VBMI";
g_hwFeatureNames[CPU_AVX_512VL] = "AVX512VL";
g_hwFeatureNames[CPU_AVX_512VBMI2] = "AVX512VBMI2";
g_hwFeatureNames[CPU_AVX_512VNNI] = "AVX512VNNI";
g_hwFeatureNames[CPU_AVX_512BITALG] = "AVX512BITALG";
g_hwFeatureNames[CPU_AVX_512VPOPCNTDQ] = "AVX512VPOPCNTDQ";
g_hwFeatureNames[CPU_AVX_5124VNNIW] = "AVX5124VNNIW";
g_hwFeatureNames[CPU_AVX_5124FMAPS] = "AVX5124FMAPS";
2016-09-07 23:02:36 +08:00
g_hwFeatureNames[CPU_NEON] = "NEON";
g_hwFeatureNames[CPU_NEON_DOTPROD] = "NEON_DOTPROD";
g_hwFeatureNames[CPU_NEON_FP16] = "NEON_FP16";
g_hwFeatureNames[CPU_NEON_BF16] = "NEON_BF16";
2017-10-03 06:54:31 +08:00
g_hwFeatureNames[CPU_VSX] = "VSX";
g_hwFeatureNames[CPU_VSX3] = "VSX3";
2017-12-29 13:06:52 +08:00
g_hwFeatureNames[CPU_MSA] = "CPU_MSA";
g_hwFeatureNames[CPU_RISCVV] = "RISCVV";
g_hwFeatureNames[CPU_AVX512_COMMON] = "AVX512-COMMON";
2017-12-29 13:06:52 +08:00
g_hwFeatureNames[CPU_AVX512_SKX] = "AVX512-SKX";
g_hwFeatureNames[CPU_AVX512_KNL] = "AVX512-KNL";
g_hwFeatureNames[CPU_AVX512_KNM] = "AVX512-KNM";
g_hwFeatureNames[CPU_AVX512_CNL] = "AVX512-CNL";
g_hwFeatureNames[CPU_AVX512_CLX] = "AVX512-CLX";
g_hwFeatureNames[CPU_AVX512_ICL] = "AVX512-ICL";
g_hwFeatureNames[CPU_RVV] = "RVV";
g_hwFeatureNames[CPU_LSX] = "LSX";
g_hwFeatureNames[CPU_LASX] = "LASX";
2016-09-07 23:02:36 +08:00
}
void initialize(void)
{
#ifndef NO_GETENV
2016-09-07 23:02:36 +08:00
if (getenv("OPENCV_DUMP_CONFIG"))
{
fprintf(stderr, "\nOpenCV build configuration is:\n%s\n",
cv::getBuildInformation().c_str());
}
#endif
initializeNames();
#ifdef CV_CPUID_X86
2015-12-15 20:55:43 +08:00
int cpuid_data[4] = { 0, 0, 0, 0 };
2016-09-07 23:02:36 +08:00
int cpuid_data_ex[4] = { 0, 0, 0, 0 };
2015-12-15 20:55:43 +08:00
CV_CPUID_X86(cpuid_data, 1, 0/*unused*/);
2015-12-15 20:55:43 +08:00
2016-09-07 23:02:36 +08:00
int x86_family = (cpuid_data[0] >> 8) & 15;
if( x86_family >= 6 )
2015-12-15 20:55:43 +08:00
{
2016-09-07 23:02:36 +08:00
have[CV_CPU_MMX] = (cpuid_data[3] & (1<<23)) != 0;
have[CV_CPU_SSE] = (cpuid_data[3] & (1<<25)) != 0;
have[CV_CPU_SSE2] = (cpuid_data[3] & (1<<26)) != 0;
have[CV_CPU_SSE3] = (cpuid_data[2] & (1<<0)) != 0;
have[CV_CPU_SSSE3] = (cpuid_data[2] & (1<<9)) != 0;
have[CV_CPU_FMA3] = (cpuid_data[2] & (1<<12)) != 0;
have[CV_CPU_SSE4_1] = (cpuid_data[2] & (1<<19)) != 0;
have[CV_CPU_SSE4_2] = (cpuid_data[2] & (1<<20)) != 0;
have[CV_CPU_POPCNT] = (cpuid_data[2] & (1<<23)) != 0;
have[CV_CPU_AVX] = (cpuid_data[2] & (1<<28)) != 0;
have[CV_CPU_FP16] = (cpuid_data[2] & (1<<29)) != 0;
2015-12-15 20:55:43 +08:00
// make the second call to the cpuid command in order to get
// information about extended features like AVX2
CV_CPUID_X86(cpuid_data_ex, 7, 0);
2016-09-07 23:02:36 +08:00
have[CV_CPU_AVX2] = (cpuid_data_ex[1] & (1<<5)) != 0;
have[CV_CPU_AVX_512F] = (cpuid_data_ex[1] & (1<<16)) != 0;
have[CV_CPU_AVX_512DQ] = (cpuid_data_ex[1] & (1<<17)) != 0;
have[CV_CPU_AVX_512IFMA] = (cpuid_data_ex[1] & (1<<21)) != 0;
have[CV_CPU_AVX_512PF] = (cpuid_data_ex[1] & (1<<26)) != 0;
have[CV_CPU_AVX_512ER] = (cpuid_data_ex[1] & (1<<27)) != 0;
have[CV_CPU_AVX_512CD] = (cpuid_data_ex[1] & (1<<28)) != 0;
have[CV_CPU_AVX_512BW] = (cpuid_data_ex[1] & (1<<30)) != 0;
have[CV_CPU_AVX_512VL] = (cpuid_data_ex[1] & (1<<31)) != 0;
have[CV_CPU_AVX_512VBMI] = (cpuid_data_ex[2] & (1<<1)) != 0;
have[CV_CPU_AVX_512VBMI2] = (cpuid_data_ex[2] & (1<<6)) != 0;
have[CV_CPU_AVX_512VNNI] = (cpuid_data_ex[2] & (1<<11)) != 0;
have[CV_CPU_AVX_512BITALG] = (cpuid_data_ex[2] & (1<<12)) != 0;
have[CV_CPU_AVX_512VPOPCNTDQ] = (cpuid_data_ex[2] & (1<<14)) != 0;
have[CV_CPU_AVX_5124VNNIW] = (cpuid_data_ex[3] & (1<<2)) != 0;
have[CV_CPU_AVX_5124FMAPS] = (cpuid_data_ex[3] & (1<<3)) != 0;
2016-09-07 23:02:36 +08:00
bool have_AVX_OS_support = true;
bool have_AVX512_OS_support = true;
if (!(cpuid_data[2] & (1<<27)))
have_AVX_OS_support = false; // OS uses XSAVE_XRSTORE and CPU support AVX
else
{
int xcr0 = 0;
#ifdef _XCR_XFEATURE_ENABLED_MASK // requires immintrin.h
xcr0 = (int)_xgetbv(_XCR_XFEATURE_ENABLED_MASK);
#elif defined __GNUC__ && (defined __i386__ || defined __x86_64__)
__asm__ ("xgetbv\n\t" : "=a" (xcr0) : "c" (0) : "%edx" );
2016-09-07 23:02:36 +08:00
#endif
if ((xcr0 & 0x6) != 0x6)
have_AVX_OS_support = false; // YMM registers
if ((xcr0 & 0xe6) != 0xe6)
have_AVX512_OS_support = false; // ZMM registers
}
if (!have_AVX_OS_support)
{
have[CV_CPU_AVX] = false;
have[CV_CPU_FP16] = false;
have[CV_CPU_AVX2] = false;
have[CV_CPU_FMA3] = false;
}
if (!have_AVX_OS_support || !have_AVX512_OS_support)
{
have[CV_CPU_AVX_512F] = false;
have[CV_CPU_AVX_512BW] = false;
have[CV_CPU_AVX_512CD] = false;
have[CV_CPU_AVX_512DQ] = false;
have[CV_CPU_AVX_512ER] = false;
have[CV_CPU_AVX_512IFMA] = false;
2016-09-07 23:02:36 +08:00
have[CV_CPU_AVX_512PF] = false;
have[CV_CPU_AVX_512VBMI] = false;
have[CV_CPU_AVX_512VL] = false;
have[CV_CPU_AVX_512VBMI2] = false;
have[CV_CPU_AVX_512VNNI] = false;
have[CV_CPU_AVX_512BITALG] = false;
have[CV_CPU_AVX_512VPOPCNTDQ] = false;
have[CV_CPU_AVX_5124VNNIW] = false;
have[CV_CPU_AVX_5124FMAPS] = false;
2016-09-07 23:02:36 +08:00
}
2017-12-29 13:06:52 +08:00
have[CV_CPU_AVX512_COMMON] = have[CV_CPU_AVX_512F] && have[CV_CPU_AVX_512CD];
if (have[CV_CPU_AVX512_COMMON])
2017-12-29 13:06:52 +08:00
{
have[CV_CPU_AVX512_KNL] = have[CV_CPU_AVX_512ER] && have[CV_CPU_AVX_512PF];
have[CV_CPU_AVX512_KNM] = have[CV_CPU_AVX512_KNL] && have[CV_CPU_AVX_5124FMAPS] &&
have[CV_CPU_AVX_5124VNNIW] && have[CV_CPU_AVX_512VPOPCNTDQ];
have[CV_CPU_AVX512_SKX] = have[CV_CPU_AVX_512BW] && have[CV_CPU_AVX_512DQ] && have[CV_CPU_AVX_512VL];
have[CV_CPU_AVX512_CNL] = have[CV_CPU_AVX512_SKX] && have[CV_CPU_AVX_512IFMA] && have[CV_CPU_AVX_512VBMI];
have[CV_CPU_AVX512_CLX] = have[CV_CPU_AVX512_SKX] && have[CV_CPU_AVX_512VNNI];
have[CV_CPU_AVX512_ICL] = have[CV_CPU_AVX512_SKX] &&
have[CV_CPU_AVX_512IFMA] && have[CV_CPU_AVX_512VBMI] &&
have[CV_CPU_AVX_512VNNI] &&
have[CV_CPU_AVX_512VBMI2] && have[CV_CPU_AVX_512BITALG] && have[CV_CPU_AVX_512VPOPCNTDQ];
}
else
{
have[CV_CPU_AVX512_KNL] = false;
have[CV_CPU_AVX512_KNM] = false;
have[CV_CPU_AVX512_SKX] = false;
have[CV_CPU_AVX512_CNL] = false;
have[CV_CPU_AVX512_CLX] = false;
have[CV_CPU_AVX512_ICL] = false;
2017-12-29 13:06:52 +08:00
}
2015-12-15 20:55:43 +08:00
}
#endif // CV_CPUID_X86
2015-12-15 20:55:43 +08:00
#if defined __ANDROID__ || defined __linux__ || defined __QNX__
2015-12-15 20:55:43 +08:00
#ifdef __aarch64__
2016-09-07 23:02:36 +08:00
have[CV_CPU_NEON] = true;
have[CV_CPU_FP16] = true;
int cpufile = open("/proc/self/auxv", O_RDONLY);
if (cpufile >= 0)
{
Elf64_auxv_t auxv;
const size_t size_auxv_t = sizeof(auxv);
while ((size_t)read(cpufile, &auxv, size_auxv_t) == size_auxv_t)
{
// see https://elixir.bootlin.com/linux/latest/source/arch/arm64/include/uapi/asm/hwcap.h
if (auxv.a_type == AT_HWCAP)
{
have[CV_CPU_NEON_DOTPROD] = (auxv.a_un.a_val & (1 << 20)) != 0; // HWCAP_ASIMDDP
have[CV_CPU_NEON_FP16] = (auxv.a_un.a_val & (1 << 10)) != 0; // HWCAP_ASIMDHP
}
#if defined(AT_HWCAP2)
else if (auxv.a_type == AT_HWCAP2)
{
have[CV_CPU_NEON_BF16] = (auxv.a_un.a_val & (1 << 14)) != 0; // HWCAP2_BF16
}
#endif
}
close(cpufile);
}
2017-06-09 23:24:14 +08:00
#elif defined __arm__ && defined __ANDROID__
#if defined HAVE_CPUFEATURES
CV_LOG_INFO(NULL, "calling android_getCpuFeatures() ...");
2017-06-09 23:24:14 +08:00
uint64_t features = android_getCpuFeatures();
CV_LOG_INFO(NULL, cv::format("calling android_getCpuFeatures() ... Done (%llx)", (long long)features));
2017-06-09 23:24:14 +08:00
have[CV_CPU_NEON] = (features & ANDROID_CPU_ARM_FEATURE_NEON) != 0;
have[CV_CPU_FP16] = (features & ANDROID_CPU_ARM_FEATURE_VFP_FP16) != 0;
#else
CV_LOG_INFO(NULL, "cpufeatures library is not available for CPU detection");
#if CV_NEON
CV_LOG_INFO(NULL, "- NEON instructions is enabled via build flags");
have[CV_CPU_NEON] = true;
#else
CV_LOG_INFO(NULL, "- NEON instructions is NOT enabled via build flags");
#endif
#if CV_FP16
CV_LOG_INFO(NULL, "- FP16 instructions is enabled via build flags");
have[CV_CPU_FP16] = true;
#else
CV_LOG_INFO(NULL, "- FP16 instructions is NOT enabled via build flags");
#endif
#endif
#elif defined __arm__
2015-12-15 20:55:43 +08:00
int cpufile = open("/proc/self/auxv", O_RDONLY);
if (cpufile >= 0)
{
Elf32_auxv_t auxv;
const size_t size_auxv_t = sizeof(auxv);
while ((size_t)read(cpufile, &auxv, size_auxv_t) == size_auxv_t)
{
if (auxv.a_type == AT_HWCAP)
{
2016-09-07 23:02:36 +08:00
have[CV_CPU_NEON] = (auxv.a_un.a_val & 4096) != 0;
have[CV_CPU_FP16] = (auxv.a_un.a_val & 2) != 0;
2015-12-15 20:55:43 +08:00
break;
}
}
close(cpufile);
}
#endif
#elif (defined __APPLE__)
#if defined __ARM_NEON
2016-09-07 23:02:36 +08:00
have[CV_CPU_NEON] = true;
#endif
#if (defined __ARM_FP && (((__ARM_FP & 0x2) != 0) && defined __ARM_NEON))
have[CV_CPU_FP16] = have[CV_CPU_NEON_FP16] = true;
#endif
// system.cpp may be compiled w/o special -march=armv8...+dotprod, -march=armv8...+bf16 etc.,
// so we check for the features in any case, no mater what are the compile flags.
// We check the real hardware capabilities here.
int has_feat_dotprod = 0;
size_t has_feat_dotprod_size = sizeof(has_feat_dotprod);
sysctlbyname("hw.optional.arm.FEAT_DotProd", &has_feat_dotprod, &has_feat_dotprod_size, NULL, 0);
if (has_feat_dotprod) {
have[CV_CPU_NEON_DOTPROD] = true;
}
int has_feat_bf16 = 0;
size_t has_feat_bf16_size = sizeof(has_feat_bf16);
sysctlbyname("hw.optional.arm.FEAT_BF16", &has_feat_bf16, &has_feat_bf16_size, NULL, 0);
if (has_feat_bf16) {
have[CV_CPU_NEON_BF16] = true;
}
#elif (defined __clang__)
#if defined __ARM_NEON
have[CV_CPU_NEON] = true;
#if (defined __ARM_FP && ((__ARM_FP & 0x2) != 0))
have[CV_CPU_FP16] = true;
#endif
#endif
2015-12-15 20:55:43 +08:00
#endif
#if defined _ARM_ && (defined(_WIN32_WCE) && _WIN32_WCE >= 0x800)
have[CV_CPU_NEON] = true;
#endif
#if defined _M_ARM64
have[CV_CPU_NEON] = true;
#endif
#ifdef __riscv_vector
have[CV_CPU_RISCVV] = true;
#endif
#ifdef __mips_msa
have[CV_CPU_MSA] = true;
#endif
#if (defined __ppc64__ || defined __PPC64__) && defined __linux__
unsigned int hwcap = getauxval(AT_HWCAP);
if (hwcap & PPC_FEATURE_HAS_VSX) {
hwcap = getauxval(AT_HWCAP2);
if (hwcap & PPC_FEATURE2_ARCH_3_00) {
have[CV_CPU_VSX] = have[CV_CPU_VSX3] = true;
} else {
have[CV_CPU_VSX] = (hwcap & PPC_FEATURE2_ARCH_2_07) != 0;
}
}
#elif (defined __ppc64__ || defined __PPC64__) && defined __FreeBSD__
unsigned long hwcap = 0;
elf_aux_info(AT_HWCAP, &hwcap, sizeof(hwcap));
if (hwcap & PPC_FEATURE_HAS_VSX) {
elf_aux_info(AT_HWCAP2, &hwcap, sizeof(hwcap));
if (hwcap & PPC_FEATURE2_ARCH_3_00) {
have[CV_CPU_VSX] = have[CV_CPU_VSX3] = true;
} else {
have[CV_CPU_VSX] = (hwcap & PPC_FEATURE2_ARCH_2_07) != 0;
}
}
2017-10-03 06:54:31 +08:00
#else
// TODO: AIX, OpenBSD
#if CV_VSX || defined _ARCH_PWR8 || defined __POWER9_VECTOR__
have[CV_CPU_VSX] = true;
#endif
#if CV_VSX3 || defined __POWER9_VECTOR__
have[CV_CPU_VSX3] = true;
#endif
2017-10-03 06:54:31 +08:00
#endif
#if defined __riscv && defined __riscv_vector
have[CV_CPU_RVV] = true;
#endif
#if defined __loongarch64 && defined __linux__
int flag = (int)getauxval(AT_HWCAP);
have[CV_CPU_LSX] = (flag & LA_HWCAP_LSX) != 0;
have[CV_CPU_LASX] = (flag & LA_HWCAP_LASX) != 0;
#endif
bool skip_baseline_check = false;
#ifndef NO_GETENV
if (getenv("OPENCV_SKIP_CPU_BASELINE_CHECK"))
{
skip_baseline_check = true;
}
#endif
2016-09-07 23:02:36 +08:00
int baseline_features[] = { CV_CPU_BASELINE_FEATURES };
if (!checkFeatures(baseline_features, sizeof(baseline_features) / sizeof(baseline_features[0]))
&& !skip_baseline_check)
2016-09-07 23:02:36 +08:00
{
fprintf(stderr, "\n"
"******************************************************************\n"
"* FATAL ERROR: *\n"
"* This OpenCV build doesn't support current CPU/HW configuration *\n"
"* *\n"
"* Use OPENCV_DUMP_CONFIG=1 environment variable for details *\n"
"******************************************************************\n");
fprintf(stderr, "\nRequired baseline features:\n");
checkFeatures(baseline_features, sizeof(baseline_features) / sizeof(baseline_features[0]), true);
CV_Error(cv::Error::StsAssert, "Missing support for required CPU baseline features. Check OpenCV build configuration and required CPU/HW setup.");
2016-09-07 23:02:36 +08:00
}
readSettings(baseline_features, sizeof(baseline_features) / sizeof(baseline_features[0]));
}
bool checkFeatures(const int* features, int count, bool dump = false)
{
bool result = true;
for (int i = 0; i < count; i++)
{
int feature = features[i];
if (feature)
{
if (have[feature])
{
if (dump) fprintf(stderr, " ID=%3d (%s) - OK\n", feature, getHWFeatureNameSafe(feature));
2016-09-07 23:02:36 +08:00
}
else
{
result = false;
if (dump) fprintf(stderr, " ID=%3d (%s) - NOT AVAILABLE\n", feature, getHWFeatureNameSafe(feature));
2016-09-07 23:02:36 +08:00
}
}
}
return result;
}
static inline bool isSymbolSeparator(char c)
{
return c == ',' || c == ';';
2016-09-07 23:02:36 +08:00
}
void readSettings(const int* baseline_features, int baseline_count)
{
bool dump = true;
const char* disabled_features =
#ifdef NO_GETENV
2016-09-07 23:02:36 +08:00
NULL;
#else
getenv("OPENCV_CPU_DISABLE");
2016-09-07 23:02:36 +08:00
#endif
if (disabled_features && disabled_features[0] != 0)
{
const char* start = disabled_features;
for (;;)
{
while (start[0] != 0 && isSymbolSeparator(start[0]))
{
start++;
}
if (start[0] == 0)
break;
const char* end = start;
while (end[0] != 0 && !isSymbolSeparator(end[0]))
{
end++;
}
if (end == start)
continue;
cv::String feature(start, end);
start = end;
CV_Assert(feature.size() > 0);
bool found = false;
for (int i = 0; i < CV_HARDWARE_MAX_FEATURE; i++)
{
if (!g_hwFeatureNames[i]) continue;
size_t len = strlen(g_hwFeatureNames[i]);
if (len != feature.size()) continue;
if (feature.compare(g_hwFeatureNames[i]) == 0)
{
bool isBaseline = false;
for (int k = 0; k < baseline_count; k++)
{
if (baseline_features[k] == i)
{
isBaseline = true;
break;
}
}
if (isBaseline)
{
if (dump) fprintf(stderr, "OPENCV: Trying to disable baseline CPU feature: '%s'."
"This has very limited effect, because code optimizations for this feature are executed unconditionally "
"in the most cases.\n", getHWFeatureNameSafe(i));
2016-09-07 23:02:36 +08:00
}
if (!have[i])
{
if (dump) fprintf(stderr, "OPENCV: Trying to disable unavailable CPU feature on the current platform: '%s'.\n",
getHWFeatureNameSafe(i));
2016-09-07 23:02:36 +08:00
}
have[i] = false;
found = true;
break;
}
}
if (!found)
{
if (dump) fprintf(stderr, "OPENCV: Trying to disable unknown CPU feature: '%s'.\n", feature.c_str());
}
}
}
2015-12-15 20:55:43 +08:00
}
bool have[MAX_FEATURE+1]{};
2015-12-15 20:55:43 +08:00
};
2016-09-07 23:02:36 +08:00
static HWFeatures featuresEnabled(true), featuresDisabled = HWFeatures(false);
2015-12-15 20:55:43 +08:00
static HWFeatures* currentFeatures = &featuresEnabled;
bool checkHardwareSupport(int feature)
{
CV_DbgAssert( 0 <= feature && feature <= CV_HARDWARE_MAX_FEATURE );
2015-12-15 20:55:43 +08:00
return currentFeatures->have[feature];
}
String getHardwareFeatureName(int feature)
{
const char* name = getHWFeatureName(feature);
return name ? String(name) : String();
}
2015-12-15 20:55:43 +08:00
std::string getCPUFeaturesLine()
{
const int features[] = { CV_CPU_BASELINE_FEATURES, CV_CPU_DISPATCH_FEATURES };
const int sz = sizeof(features) / sizeof(features[0]);
std::string result;
std::string prefix;
for (int i = 1; i < sz; ++i)
{
if (features[i] == 0)
{
prefix = "*";
continue;
}
if (i != 1) result.append(" ");
result.append(prefix);
result.append(getHWFeatureNameSafe(features[i]));
if (!checkHardwareSupport(features[i])) result.append("?");
}
return result;
}
2015-12-15 20:55:43 +08:00
volatile bool useOptimizedFlag = true;
void setUseOptimized( bool flag )
{
2015-12-15 20:55:43 +08:00
useOptimizedFlag = flag;
currentFeatures = flag ? &featuresEnabled : &featuresDisabled;
ipp::setUseIPP(flag);
2015-06-20 01:52:14 +08:00
#ifdef HAVE_OPENCL
ocl::setUseOpenCL(flag);
2015-06-20 01:52:14 +08:00
#endif
}
bool useOptimized(void)
{
2015-12-15 20:55:43 +08:00
return useOptimizedFlag;
}
int64 getTickCount(void)
{
std::chrono::steady_clock::time_point now = std::chrono::steady_clock::now();
return (int64)now.time_since_epoch().count();
}
double getTickFrequency(void)
{
using clock_period_t = std::chrono::steady_clock::duration::period;
double clock_freq = clock_period_t::den / clock_period_t::num;
return clock_freq;
}
#if defined __GNUC__ && (defined __i386__ || defined __x86_64__ || defined __ppc__)
#if defined(__i386__)
int64 getCPUTickCount(void)
{
int64 x;
__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));
return x;
}
#elif defined(__x86_64__)
int64 getCPUTickCount(void)
{
unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return (int64)lo | ((int64)hi << 32);
}
#elif defined(__ppc__)
int64 getCPUTickCount(void)
{
unsigned upper, lower, tmp;
__asm__ volatile(
"0: \n"
"\tmftbu %0 \n"
"\tmftb %1 \n"
"\tmftbu %2 \n"
"\tcmpw %2,%0 \n"
"\tbne 0b \n"
: "=r"(upper),"=r"(lower),"=r"(tmp)
);
return lower | ((int64)upper << 32);
}
#else
#error "RDTSC not defined"
#endif
2017-07-25 18:23:44 +08:00
#elif defined _MSC_VER && defined _WIN32 && defined _M_IX86
int64 getCPUTickCount(void)
{
__asm _emit 0x0f;
__asm _emit 0x31;
}
#else
2014-03-21 19:27:56 +08:00
//#ifdef HAVE_IPP
//int64 getCPUTickCount(void)
//{
// return ippGetCpuClocks();
//}
//#else
int64 getCPUTickCount(void)
{
return getTickCount();
}
2014-03-21 19:27:56 +08:00
//#endif
#endif
namespace internal {
class Timestamp
{
public:
const int64 zeroTickCount;
const double ns_in_ticks;
Timestamp()
: zeroTickCount(getTickCount())
, ns_in_ticks(1e9 / getTickFrequency())
{
// nothing
}
int64 getTimestamp()
{
int64 t = getTickCount();
return (int64)((t - zeroTickCount) * ns_in_ticks);
}
static Timestamp& getInstance()
{
static Timestamp g_timestamp;
return g_timestamp;
}
};
class InitTimestamp {
public:
InitTimestamp() {
Timestamp::getInstance();
}
};
static InitTimestamp g_initialize_timestamp; // force zero timestamp initialization
} // namespace
int64 getTimestampNS()
{
return internal::Timestamp::getInstance().getTimestamp();
}
const String& getBuildInformation()
{
static String build_info =
#include "version_string.inc"
;
return build_info;
}
String getVersionString() { return String(CV_VERSION); }
int getVersionMajor() { return CV_VERSION_MAJOR; }
int getVersionMinor() { return CV_VERSION_MINOR; }
int getVersionRevision() { return CV_VERSION_REVISION; }
String format( const char* fmt, ... )
{
2014-03-25 03:07:00 +08:00
AutoBuffer<char, 1024> buf;
2014-03-25 03:07:00 +08:00
for ( ; ; )
{
2014-03-25 03:07:00 +08:00
va_list va;
va_start(va, fmt);
2017-05-23 03:24:17 +08:00
int bsize = static_cast<int>(buf.size());
2018-06-11 06:42:00 +08:00
int len = cv_vsnprintf(buf.data(), bsize, fmt, va);
va_end(va);
CV_Assert(len >= 0 && "Check format string for errors");
if (len >= bsize)
2014-03-25 03:07:00 +08:00
{
buf.resize(len + 1);
2014-03-25 03:07:00 +08:00
continue;
}
2017-05-23 03:24:17 +08:00
buf[bsize - 1] = 0;
2018-06-11 06:42:00 +08:00
return String(buf.data(), len);
2014-03-25 03:07:00 +08:00
}
}
String tempfile( const char* suffix )
{
#if OPENCV_HAVE_FILESYSTEM_SUPPORT
String fname;
#ifndef NO_GETENV
const char *temp_dir = getenv("OPENCV_TEMP_PATH");
#endif
2017-07-25 18:23:44 +08:00
#if defined _WIN32
#ifdef WINRT
RoInitialize(RO_INIT_MULTITHREADED);
std::wstring temp_dir = GetTempPathWinRT();
std::wstring temp_file = GetTempFileNameWinRT(L"ocv");
if (temp_file.empty())
return String();
temp_file = temp_dir.append(std::wstring(L"\\")).append(temp_file);
DeleteFileW(temp_file.c_str());
char aname[MAX_PATH];
size_t copied = wcstombs(aname, temp_file.c_str(), MAX_PATH);
CV_Assert((copied != MAX_PATH) && (copied != (size_t)-1));
fname = String(aname);
RoUninitialize();
#elif defined(_WIN32_WCE)
const auto kMaxPathSize = MAX_PATH+1;
wchar_t temp_dir[kMaxPathSize] = {0};
wchar_t temp_file[kMaxPathSize] = {0};
::GetTempPathW(kMaxPathSize, temp_dir);
if(0 != ::GetTempFileNameW(temp_dir, L"ocv", 0, temp_file)) {
DeleteFileW(temp_file);
char aname[MAX_PATH];
size_t copied = wcstombs(aname, temp_file, MAX_PATH);
CV_Assert((copied != MAX_PATH) && (copied != (size_t)-1));
fname = String(aname);
}
#else
char temp_dir2[MAX_PATH] = { 0 };
char temp_file[MAX_PATH] = { 0 };
if (temp_dir == 0 || temp_dir[0] == 0)
{
::GetTempPathA(sizeof(temp_dir2), temp_dir2);
temp_dir = temp_dir2;
}
if(0 == ::GetTempFileNameA(temp_dir, "ocv", 0, temp_file))
return String();
DeleteFileA(temp_file);
fname = temp_file;
#endif
# else
# ifdef __ANDROID__
//char defaultTemplate[] = "/mnt/sdcard/__opencv_temp.XXXXXX";
char defaultTemplate[] = "/data/local/tmp/__opencv_temp.XXXXXX";
# else
char defaultTemplate[] = "/tmp/__opencv_temp.XXXXXX";
# endif
if (temp_dir == 0 || temp_dir[0] == 0)
fname = defaultTemplate;
else
{
fname = temp_dir;
char ech = fname[fname.size() - 1];
if(ech != '/' && ech != '\\')
fname = fname + "/";
fname = fname + "__opencv_temp.XXXXXX";
}
const int fd = mkstemp((char*)fname.c_str());
if (fd == -1) return String();
close(fd);
remove(fname.c_str());
# endif
if (suffix)
{
if (suffix[0] != '.')
return fname + "." + suffix;
else
return fname + suffix;
}
return fname;
#else // OPENCV_HAVE_FILESYSTEM_SUPPORT
CV_UNUSED(suffix);
CV_Error(Error::StsNotImplemented, "File system support is disabled in this OpenCV build!");
#endif // OPENCV_HAVE_FILESYSTEM_SUPPORT
}
static ErrorCallback customErrorCallback = 0;
static void* customErrorCallbackData = 0;
static bool breakOnError = false;
bool setBreakOnError(bool value)
{
bool prevVal = breakOnError;
breakOnError = value;
return prevVal;
}
int cv_snprintf(char* buf, int len, const char* fmt, ...)
2017-05-23 03:24:17 +08:00
{
va_list va;
va_start(va, fmt);
int res = cv_vsnprintf(buf, len, fmt, va);
2017-05-23 03:24:17 +08:00
va_end(va);
return res;
}
int cv_vsnprintf(char* buf, int len, const char* fmt, va_list args)
{
#if defined _MSC_VER
if (len <= 0) return len == 0 ? 1024 : -1;
int res = _vsnprintf_s(buf, len, _TRUNCATE, fmt, args);
// ensure null terminating on VS
if (res >= 0 && res < len)
{
buf[res] = 0;
return res;
}
else
{
buf[len - 1] = 0; // truncate happened
return res >= len ? res : (len * 2);
}
2017-05-23 03:24:17 +08:00
#else
return vsnprintf(buf, len, fmt, args);
2017-05-23 03:24:17 +08:00
#endif
}
static void dumpException(const Exception& exc)
{
const char* errorStr = cvErrorStr(exc.code);
char buf[1 << 12];
cv_snprintf(buf, sizeof(buf),
"OpenCV(%s) Error: %s (%s) in %s, file %s, line %d",
CV_VERSION,
errorStr, exc.err.c_str(), exc.func.size() > 0 ?
exc.func.c_str() : "unknown function", exc.file.c_str(), exc.line);
#ifdef __ANDROID__
__android_log_print(ANDROID_LOG_ERROR, "cv::error()", "%s", buf);
#else
fflush(stdout); fflush(stderr);
fprintf(stderr, "%s\n", buf);
fflush(stderr);
#endif
}
#ifdef CV_ERROR_SET_TERMINATE_HANDLER
static bool cv_terminate_handler_installed = false;
static std::terminate_handler cv_old_terminate_handler;
static cv::Exception cv_terminate_handler_exception;
static bool param_setupTerminateHandler = utils::getConfigurationParameterBool("OPENCV_SETUP_TERMINATE_HANDLER", true);
static void cv_terminate_handler() {
std::cerr << "OpenCV: terminate handler is called! The last OpenCV error is:\n";
dumpException(cv_terminate_handler_exception);
if (false /*cv_old_terminate_handler*/) // buggy behavior is observed with doubled "abort/retry/ignore" windows
cv_old_terminate_handler();
abort();
}
#endif
#ifdef __GNUC__
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Winvalid-noreturn"
# endif
#endif
void error( const Exception& exc )
{
#ifdef CV_ERROR_SET_TERMINATE_HANDLER
{
cv::AutoLock lock(getInitializationMutex());
if (!cv_terminate_handler_installed)
{
if (param_setupTerminateHandler)
cv_old_terminate_handler = std::set_terminate(cv_terminate_handler);
cv_terminate_handler_installed = true;
}
cv_terminate_handler_exception = exc;
}
#endif
if (customErrorCallback != 0)
customErrorCallback(exc.code, exc.func.c_str(), exc.err.c_str(),
exc.file.c_str(), exc.line, customErrorCallbackData);
else if (param_dumpErrors)
{
dumpException(exc);
}
if(breakOnError)
{
static volatile int* p = 0;
*p = 0;
}
throw exc;
#ifdef __GNUC__
# if !defined __clang__ && !defined __APPLE__
// this suppresses this warning: "noreturn" function does return [enabled by default]
__builtin_trap();
// or use infinite loop: for (;;) {}
# endif
#endif
}
void error(int _code, const String& _err, const char* _func, const char* _file, int _line)
{
error(cv::Exception(_code, _err, _func, _file, _line));
#ifdef __GNUC__
# if !defined __clang__ && !defined __APPLE__
// this suppresses this warning: "noreturn" function does return [enabled by default]
__builtin_trap();
// or use infinite loop: for (;;) {}
# endif
#endif
}
#ifdef __GNUC__
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic pop
# endif
#endif
2017-05-23 03:24:17 +08:00
ErrorCallback
redirectError( ErrorCallback errCallback, void* userdata, void** prevUserdata)
{
if( prevUserdata )
*prevUserdata = customErrorCallbackData;
ErrorCallback prevCallback = customErrorCallback;
customErrorCallback = errCallback;
customErrorCallbackData = userdata;
return prevCallback;
}
void terminate(int _code, const String& _err, const char* _func, const char* _file, int _line) CV_NOEXCEPT
{
dumpException(cv::Exception(_code, _err, _func, _file, _line));
std::terminate();
}
}
CV_IMPL int cvCheckHardwareSupport(int feature)
{
CV_DbgAssert( 0 <= feature && feature <= CV_HARDWARE_MAX_FEATURE );
2015-12-15 20:55:43 +08:00
return cv::currentFeatures->have[feature];
}
CV_IMPL int cvUseOptimized( int flag )
{
2015-12-15 20:55:43 +08:00
int prevMode = cv::useOptimizedFlag;
cv::setUseOptimized( flag != 0 );
return prevMode;
}
CV_IMPL int64 cvGetTickCount(void)
{
return cv::getTickCount();
}
CV_IMPL double cvGetTickFrequency(void)
{
return cv::getTickFrequency()*1e-6;
}
CV_IMPL CvErrorCallback
cvRedirectError( CvErrorCallback errCallback, void* userdata, void** prevUserdata)
{
return cv::redirectError(errCallback, userdata, prevUserdata);
}
CV_IMPL int cvNulDevReport( int, const char*, const char*,
const char*, int, void* )
{
return 0;
}
CV_IMPL int cvStdErrReport( int, const char*, const char*,
const char*, int, void* )
{
return 0;
}
CV_IMPL int cvGuiBoxReport( int, const char*, const char*,
const char*, int, void* )
{
return 0;
}
CV_IMPL int cvGetErrInfo( const char**, const char**, const char**, int* )
{
return 0;
}
CV_IMPL const char* cvErrorStr( int status )
{
static char buf[256];
switch (status)
{
2024-03-04 20:51:05 +08:00
case cv::Error::StsOk : return "No Error";
case cv::Error::StsBackTrace : return "Backtrace";
case cv::Error::StsError : return "Unspecified error";
case cv::Error::StsInternal : return "Internal error";
case cv::Error::StsNoMem : return "Insufficient memory";
case cv::Error::StsBadArg : return "Bad argument";
case cv::Error::StsNoConv : return "Iterations do not converge";
case cv::Error::StsAutoTrace : return "Autotrace call";
case cv::Error::StsBadSize : return "Incorrect size of input array";
case cv::Error::StsNullPtr : return "Null pointer";
case cv::Error::StsDivByZero : return "Division by zero occurred";
case cv::Error::BadStep : return "Image step is wrong";
case cv::Error::StsInplaceNotSupported : return "Inplace operation is not supported";
case cv::Error::StsObjectNotFound : return "Requested object was not found";
case cv::Error::BadDepth : return "Input image depth is not supported by function";
case cv::Error::StsUnmatchedFormats : return "Formats of input arguments do not match";
case cv::Error::StsUnmatchedSizes : return "Sizes of input arguments do not match";
case cv::Error::StsOutOfRange : return "One of the arguments\' values is out of range";
case cv::Error::StsUnsupportedFormat : return "Unsupported format or combination of formats";
case cv::Error::BadCOI : return "Input COI is not supported";
case cv::Error::BadNumChannels : return "Bad number of channels";
case cv::Error::StsBadFlag : return "Bad flag (parameter or structure field)";
case cv::Error::StsBadPoint : return "Bad parameter of type CvPoint";
case cv::Error::StsBadMask : return "Bad type of mask argument";
case cv::Error::StsParseError : return "Parsing error";
case cv::Error::StsNotImplemented : return "The function/feature is not implemented";
case cv::Error::StsBadMemBlock : return "Memory block has been corrupted";
case cv::Error::StsAssert : return "Assertion failed";
case cv::Error::GpuNotSupported : return "No CUDA support";
case cv::Error::GpuApiCallError : return "Gpu API call";
case cv::Error::OpenGlNotSupported : return "No OpenGL support";
case cv::Error::OpenGlApiCallError : return "OpenGL API call";
};
snprintf(buf, sizeof(buf), "Unknown %s code %d", status >= 0 ? "status":"error", status);
return buf;
}
CV_IMPL int cvGetErrMode(void)
{
return 0;
}
CV_IMPL int cvSetErrMode(int)
{
return 0;
}
CV_IMPL int cvGetErrStatus(void)
{
return 0;
}
CV_IMPL void cvSetErrStatus(int)
{
}
CV_IMPL void cvError( int code, const char* func_name,
const char* err_msg,
const char* file_name, int line )
{
cv::error(cv::Exception(code, err_msg, func_name, file_name, line));
}
/* function, which converts int to int */
CV_IMPL int
cvErrorFromIppStatus( int status )
{
switch (status)
{
2024-03-04 20:51:05 +08:00
case CV_BADSIZE_ERR: return cv::Error::StsBadSize;
case CV_BADMEMBLOCK_ERR: return cv::Error::StsBadMemBlock;
case CV_NULLPTR_ERR: return cv::Error::StsNullPtr;
case CV_DIV_BY_ZERO_ERR: return cv::Error::StsDivByZero;
case CV_BADSTEP_ERR: return cv::Error::BadStep;
case CV_OUTOFMEM_ERR: return cv::Error::StsNoMem;
case CV_BADARG_ERR: return cv::Error::StsBadArg;
case CV_NOTDEFINED_ERR: return cv::Error::StsError;
case CV_INPLACE_NOT_SUPPORTED_ERR: return cv::Error::StsInplaceNotSupported;
case CV_NOTFOUND_ERR: return cv::Error::StsObjectNotFound;
case CV_BADCONVERGENCE_ERR: return cv::Error::StsNoConv;
case CV_BADDEPTH_ERR: return cv::Error::BadDepth;
case CV_UNMATCHED_FORMATS_ERR: return cv::Error::StsUnmatchedFormats;
case CV_UNSUPPORTED_COI_ERR: return cv::Error::BadCOI;
case CV_UNSUPPORTED_CHANNELS_ERR: return cv::Error::BadNumChannels;
case CV_BADFLAG_ERR: return cv::Error::StsBadFlag;
case CV_BADRANGE_ERR: return cv::Error::StsBadArg;
case CV_BADCOEF_ERR: return cv::Error::StsBadArg;
case CV_BADFACTOR_ERR: return cv::Error::StsBadArg;
case CV_BADPOINT_ERR: return cv::Error::StsBadPoint;
default:
2024-03-04 20:51:05 +08:00
return cv::Error::StsError;
}
}
namespace cv {
bool __termination = false;
2013-12-11 22:49:13 +08:00
//////////////////////////////// thread-local storage ////////////////////////////////
namespace details {
#ifndef OPENCV_DISABLE_THREAD_SUPPORT
2017-07-25 18:23:44 +08:00
#ifdef _WIN32
#ifdef _MSC_VER
#pragma warning(disable:4505) // unreferenced local function has been removed
#endif
#ifndef TLS_OUT_OF_INDEXES
#define TLS_OUT_OF_INDEXES ((DWORD)0xFFFFFFFF)
#endif
#endif
// TLS platform abstraction layer
class TlsAbstraction
2013-12-11 22:49:13 +08:00
{
public:
TlsAbstraction();
~TlsAbstraction()
{
// TlsAbstraction singleton should not be released
// There is no reliable way to avoid problems caused by static initialization order fiasco
// NB: Do NOT use logging here
fprintf(stderr, "OpenCV FATAL: TlsAbstraction::~TlsAbstraction() call is not expected\n");
fflush(stderr);
}
2013-12-11 22:49:13 +08:00
void* getData() const;
void setData(void *pData);
void releaseSystemResources();
private:
2017-07-25 18:23:44 +08:00
#ifdef _WIN32
#ifndef WINRT
DWORD tlsKey;
bool disposed;
2013-12-30 16:31:00 +08:00
#endif
2017-07-25 18:23:44 +08:00
#else // _WIN32
pthread_key_t tlsKey;
std::atomic<bool> disposed;
#endif
};
2013-12-11 22:49:13 +08:00
class TlsAbstractionReleaseGuard
{
TlsAbstraction& tls_;
public:
TlsAbstractionReleaseGuard(TlsAbstraction& tls) : tls_(tls)
{
/* nothing */
}
~TlsAbstractionReleaseGuard()
{
tls_.releaseSystemResources();
}
};
// TODO use reference
static TlsAbstraction* getTlsAbstraction()
{
static TlsAbstraction *g_tls = new TlsAbstraction(); // memory leak is intended here to avoid disposing of TLS container
static TlsAbstractionReleaseGuard g_tlsReleaseGuard(*g_tls);
return g_tls;
}
2017-07-25 18:23:44 +08:00
#ifdef _WIN32
#ifdef WINRT
static __declspec( thread ) void* tlsData = NULL; // using C++11 thread attribute for local thread data
TlsAbstraction::TlsAbstraction() {}
void TlsAbstraction::releaseSystemResources()
{
cv::__termination = true; // DllMain is missing in static builds
}
void* TlsAbstraction::getData() const
{
return tlsData;
}
void TlsAbstraction::setData(void *pData)
{
tlsData = pData;
}
#else //WINRT
#ifdef CV_USE_FLS
static void NTAPI opencv_fls_destructor(void* pData);
#endif // CV_USE_FLS
TlsAbstraction::TlsAbstraction()
: disposed(false)
{
#ifndef CV_USE_FLS
tlsKey = TlsAlloc();
#else // CV_USE_FLS
tlsKey = FlsAlloc(opencv_fls_destructor);
#endif // CV_USE_FLS
CV_Assert(tlsKey != TLS_OUT_OF_INDEXES);
}
void TlsAbstraction::releaseSystemResources()
{
cv::__termination = true; // DllMain is missing in static builds
disposed = true;
#ifndef CV_USE_FLS
TlsFree(tlsKey);
#else // CV_USE_FLS
FlsFree(tlsKey);
#endif // CV_USE_FLS
tlsKey = TLS_OUT_OF_INDEXES;
}
void* TlsAbstraction::getData() const
{
if (disposed)
return NULL;
#ifndef CV_USE_FLS
return TlsGetValue(tlsKey);
#else // CV_USE_FLS
return FlsGetValue(tlsKey);
#endif // CV_USE_FLS
}
void TlsAbstraction::setData(void *pData)
{
if (disposed)
return; // no-op
#ifndef CV_USE_FLS
CV_Assert(TlsSetValue(tlsKey, pData) == TRUE);
#else // CV_USE_FLS
CV_Assert(FlsSetValue(tlsKey, pData) == TRUE);
#endif // CV_USE_FLS
}
#endif // WINRT
2017-07-25 18:23:44 +08:00
#else // _WIN32
static void opencv_tls_destructor(void* pData);
TlsAbstraction::TlsAbstraction()
: disposed(false)
{
CV_Assert(pthread_key_create(&tlsKey, opencv_tls_destructor) == 0);
}
void TlsAbstraction::releaseSystemResources()
{
cv::__termination = true; // DllMain is missing in static builds
disposed = true;
if (pthread_key_delete(tlsKey) != 0)
{
// Don't use logging here
fprintf(stderr, "OpenCV ERROR: TlsAbstraction::~TlsAbstraction(): pthread_key_delete() call failed\n");
fflush(stderr);
}
}
void* TlsAbstraction::getData() const
{
if (disposed)
return NULL;
return pthread_getspecific(tlsKey);
}
void TlsAbstraction::setData(void *pData)
{
if (disposed)
return; // no-op
CV_Assert(pthread_setspecific(tlsKey, pData) == 0);
}
#endif
2013-12-11 22:49:13 +08:00
// Per-thread data structure
struct ThreadData
{
ThreadData()
2013-12-11 22:49:13 +08:00
{
idx = 0;
slots.reserve(32);
2013-12-11 22:49:13 +08:00
}
std::vector<void*> slots; // Data array for a thread
size_t idx; // Thread index in TLS storage. This is not OS thread ID!
};
2013-12-11 22:49:13 +08:00
static bool g_isTlsStorageInitialized = false;
// Main TLS storage class
class TlsStorage
{
public:
TlsStorage() :
tlsSlotsSize(0)
2013-12-11 22:49:13 +08:00
{
(void)getTlsAbstraction(); // ensure singeton initialization (for correct order of atexit calls)
tlsSlots.reserve(32);
threads.reserve(32);
g_isTlsStorageInitialized = true;
2013-12-11 22:49:13 +08:00
}
~TlsStorage()
2013-12-11 22:49:13 +08:00
{
// TlsStorage object should not be released
// There is no reliable way to avoid problems caused by static initialization order fiasco
// Don't use logging here
fprintf(stderr, "OpenCV FATAL: TlsStorage::~TlsStorage() call is not expected\n");
fflush(stderr);
2013-12-11 22:49:13 +08:00
}
void releaseThread(void* tlsValue = NULL)
2013-12-11 22:49:13 +08:00
{
TlsAbstraction* tls = getTlsAbstraction();
if (NULL == tls)
2019-12-26 19:45:03 +08:00
return; // TLS singleton is not available (terminated)
ThreadData *pTD = tlsValue == NULL ? (ThreadData*)tls->getData() : (ThreadData*)tlsValue;
if (pTD == NULL)
return; // no OpenCV TLS data for this thread
AutoLock guard(mtxGlobalAccess);
for (size_t i = 0; i < threads.size(); i++)
{
if (pTD == threads[i])
{
threads[i] = NULL;
if (tlsValue == NULL)
tls->setData(0);
std::vector<void*>& thread_slots = pTD->slots;
for (size_t slotIdx = 0; slotIdx < thread_slots.size(); slotIdx++)
{
void* pData = thread_slots[slotIdx];
thread_slots[slotIdx] = NULL;
if (!pData)
continue;
TLSDataContainer* container = tlsSlots[slotIdx].container;
if (container)
container->deleteDataInstance(pData);
else
{
fprintf(stderr, "OpenCV ERROR: TLS: container for slotIdx=%d is NULL. Can't release thread data\n", (int)slotIdx);
fflush(stderr);
}
}
delete pTD;
return;
}
}
fprintf(stderr, "OpenCV WARNING: TLS: Can't release thread TLS data (unknown pointer or data race): %p\n", (void*)pTD); fflush(stderr);
2013-12-11 22:49:13 +08:00
}
// Reserve TLS storage index
size_t reserveSlot(TLSDataContainer* container)
2013-12-11 22:49:13 +08:00
{
AutoLock guard(mtxGlobalAccess);
CV_Assert(tlsSlotsSize == tlsSlots.size());
// Find unused slots
for(size_t slot = 0; slot < tlsSlotsSize; slot++)
{
if (tlsSlots[slot].container == NULL)
{
tlsSlots[slot].container = container;
return slot;
}
}
// Create new slot
tlsSlots.push_back(TlsSlotInfo(container)); tlsSlotsSize++;
return tlsSlotsSize - 1;
2013-12-11 22:49:13 +08:00
}
// Release TLS storage index and pass associated data to caller
2017-02-16 01:20:38 +08:00
void releaseSlot(size_t slotIdx, std::vector<void*> &dataVec, bool keepSlot = false)
2013-12-11 22:49:13 +08:00
{
AutoLock guard(mtxGlobalAccess);
CV_Assert(tlsSlotsSize == tlsSlots.size());
CV_Assert(tlsSlotsSize > slotIdx);
2013-12-11 22:49:13 +08:00
for(size_t i = 0; i < threads.size(); i++)
2013-12-11 22:49:13 +08:00
{
2016-01-14 19:38:37 +08:00
if(threads[i])
{
2016-01-14 19:38:37 +08:00
std::vector<void*>& thread_slots = threads[i]->slots;
if (thread_slots.size() > slotIdx && thread_slots[slotIdx])
{
dataVec.push_back(thread_slots[slotIdx]);
2017-02-16 01:20:38 +08:00
thread_slots[slotIdx] = NULL;
2016-01-14 19:38:37 +08:00
}
}
2013-12-11 22:49:13 +08:00
}
2017-02-16 01:20:38 +08:00
if (!keepSlot)
{
tlsSlots[slotIdx].container = NULL; // mark slot as free (see reserveSlot() implementation)
}
2013-12-11 22:49:13 +08:00
}
// Get data by TLS storage index
void* getData(size_t slotIdx) const
2013-12-11 22:49:13 +08:00
{
#ifndef CV_THREAD_SANITIZER
CV_Assert(tlsSlotsSize > slotIdx);
#endif
2013-12-11 22:49:13 +08:00
TlsAbstraction* tls = getTlsAbstraction();
if (NULL == tls)
2019-12-26 19:45:03 +08:00
return NULL; // TLS singleton is not available (terminated)
ThreadData* threadData = (ThreadData*)tls->getData();
if(threadData && threadData->slots.size() > slotIdx)
return threadData->slots[slotIdx];
return NULL;
2013-12-11 22:49:13 +08:00
}
// Gather data from threads by TLS storage index
void gather(size_t slotIdx, std::vector<void*> &dataVec)
{
AutoLock guard(mtxGlobalAccess);
CV_Assert(tlsSlotsSize == tlsSlots.size());
CV_Assert(tlsSlotsSize > slotIdx);
for(size_t i = 0; i < threads.size(); i++)
{
2016-01-14 19:38:37 +08:00
if(threads[i])
{
std::vector<void*>& thread_slots = threads[i]->slots;
if (thread_slots.size() > slotIdx && thread_slots[slotIdx])
dataVec.push_back(thread_slots[slotIdx]);
}
}
}
// Set data to storage index
void setData(size_t slotIdx, void* pData)
2013-12-11 22:49:13 +08:00
{
#ifndef CV_THREAD_SANITIZER
CV_Assert(tlsSlotsSize > slotIdx);
#endif
TlsAbstraction* tls = getTlsAbstraction();
if (NULL == tls)
2019-12-26 19:45:03 +08:00
return; // TLS singleton is not available (terminated)
ThreadData* threadData = (ThreadData*)tls->getData();
if(!threadData)
2013-12-11 22:49:13 +08:00
{
threadData = new ThreadData;
tls->setData((void*)threadData);
{
AutoLock guard(mtxGlobalAccess);
bool found = false;
// Find unused slots
for(size_t slot = 0; slot < threads.size(); slot++)
{
if (threads[slot] == NULL)
{
threadData->idx = (int)slot;
threads[slot] = threadData;
found = true;
break;
}
}
if (!found)
{
// Create new slot
threadData->idx = threads.size();
threads.push_back(threadData);
}
}
2013-12-11 22:49:13 +08:00
}
if(slotIdx >= threadData->slots.size())
{
AutoLock guard(mtxGlobalAccess); // keep synchronization with gather() calls
threadData->slots.resize(slotIdx + 1, NULL);
}
threadData->slots[slotIdx] = pData;
2013-12-11 22:49:13 +08:00
}
private:
Mutex mtxGlobalAccess; // Shared objects operation guard
size_t tlsSlotsSize; // equal to tlsSlots.size() in synchronized sections
// without synchronization this counter doesn't decrease - it is used for slotIdx sanity checks
struct TlsSlotInfo
{
TlsSlotInfo(TLSDataContainer* _container) : container(_container) {}
TLSDataContainer* container; // attached container (to dispose data of terminated threads)
};
std::vector<struct TlsSlotInfo> tlsSlots; // TLS keys state
std::vector<ThreadData*> threads; // Array for all allocated data. Thread data pointers are placed here to allow data cleanup
2013-12-11 22:49:13 +08:00
};
// Create global TLS storage object
static TlsStorage &getTlsStorage()
{
CV_SINGLETON_LAZY_INIT_REF(TlsStorage, new TlsStorage())
}
2013-12-11 22:49:13 +08:00
#ifndef _WIN32 // pthread key destructor
static void opencv_tls_destructor(void* pData)
{
if (!g_isTlsStorageInitialized)
return; // nothing to release, so prefer to avoid creation of new global structures
getTlsStorage().releaseThread(pData);
}
#else // _WIN32
#ifdef CV_USE_FLS
static void WINAPI opencv_fls_destructor(void* pData)
{
// Empiric detection of ExitProcess call
DWORD code = STILL_ACTIVE/*259*/;
BOOL res = GetExitCodeProcess(GetCurrentProcess(), &code);
if (res && code != STILL_ACTIVE)
{
// Looks like we are in ExitProcess() call
// This is FLS specific only because their callback is called before DllMain.
// TLS doesn't have similar problem, DllMain() is called first which mark __termination properly.
// Note: this workaround conflicts with ExitProcess() steps order described in documentation, however it works:
// 3. ... called with DLL_PROCESS_DETACH
// 7. The termination status of the process changes from STILL_ACTIVE to the exit value of the process.
// (ref: https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-exitprocess)
cv::__termination = true;
}
if (!g_isTlsStorageInitialized)
return; // nothing to release, so prefer to avoid creation of new global structures
getTlsStorage().releaseThread(pData);
}
#endif // CV_USE_FLS
#endif // _WIN32
static TlsStorage* const g_force_initialization_of_TlsStorage
#if defined __GNUC__
__attribute__((unused))
#endif
= &getTlsStorage();
#else // OPENCV_DISABLE_THREAD_SUPPORT
// no threading (OPENCV_DISABLE_THREAD_SUPPORT=ON)
class TlsStorage
{
public:
TlsStorage()
{
slots.reserve(32);
}
~TlsStorage()
{
for (size_t slotIdx = 0; slotIdx < slots.size(); slotIdx++)
{
SlotInfo& s = slots[slotIdx];
TLSDataContainer* container = s.container;
if (container && s.data)
{
container->deleteDataInstance(s.data); // Can't use from SlotInfo destructor
s.data = nullptr;
}
}
}
// Reserve TLS storage index
size_t reserveSlot(TLSDataContainer* container)
{
size_t slotsSize = slots.size();
for (size_t slot = 0; slot < slotsSize; slot++)
{
SlotInfo& s = slots[slot];
if (s.container == NULL)
{
CV_Assert(!s.data);
s.container = container;
return slot;
}
}
// create new slot
slots.push_back(SlotInfo(container));
return slotsSize;
}
// Release TLS storage index and pass associated data to caller
void releaseSlot(size_t slotIdx, std::vector<void*> &dataVec, bool keepSlot = false)
{
CV_Assert(slotIdx < slots.size());
SlotInfo& s = slots[slotIdx];
void* data = s.data;
if (data)
{
dataVec.push_back(data);
s.data = nullptr;
}
if (!keepSlot)
{
s.container = NULL; // mark slot as free (see reserveSlot() implementation)
}
}
// Get data by TLS storage index
void* getData(size_t slotIdx) const
{
CV_Assert(slotIdx < slots.size());
const SlotInfo& s = slots[slotIdx];
return s.data;
}
// Gather data from threads by TLS storage index
void gather(size_t slotIdx, std::vector<void*> &dataVec)
{
CV_Assert(slotIdx < slots.size());
SlotInfo& s = slots[slotIdx];
void* data = s.data;
if (data)
dataVec.push_back(data);
return;
}
// Set data to storage index
void setData(size_t slotIdx, void* pData)
{
CV_Assert(slotIdx < slots.size());
SlotInfo& s = slots[slotIdx];
s.data = pData;
}
private:
struct SlotInfo
{
SlotInfo(TLSDataContainer* _container) : container(_container), data(nullptr) {}
TLSDataContainer* container; // attached container (to dispose data)
void* data;
};
std::vector<struct SlotInfo> slots;
};
static TlsStorage& getTlsStorage()
{
static TlsStorage g_storage; // no threading
return g_storage;
}
#endif // OPENCV_DISABLE_THREAD_SUPPORT
} // namespace details
using namespace details;
void releaseTlsStorageThread()
{
#ifndef OPENCV_DISABLE_THREAD_SUPPORT
if (!g_isTlsStorageInitialized)
return; // nothing to release, so prefer to avoid creation of new global structures
getTlsStorage().releaseThread();
#endif
}
2013-12-11 22:49:13 +08:00
TLSDataContainer::TLSDataContainer()
{
key_ = (int)getTlsStorage().reserveSlot(this); // Reserve key from TLS storage
}
2013-12-11 22:49:13 +08:00
TLSDataContainer::~TLSDataContainer()
{
CV_Assert(key_ == -1); // Key must be released in child object
2013-12-11 22:49:13 +08:00
}
void TLSDataContainer::gatherData(std::vector<void*> &data) const
{
getTlsStorage().gather(key_, data);
}
void TLSDataContainer::detachData(std::vector<void*> &data)
{
getTlsStorage().releaseSlot(key_, data, true);
}
void TLSDataContainer::release()
2013-12-11 22:49:13 +08:00
{
if (key_ == -1)
return; // already released
std::vector<void*> data; data.reserve(32);
getTlsStorage().releaseSlot(key_, data, false); // Release key and get stored data for proper destruction
2017-02-16 01:20:38 +08:00
key_ = -1;
for(size_t i = 0; i < data.size(); i++) // Delete all associated data
deleteDataInstance(data[i]);
}
void TLSDataContainer::cleanup()
{
std::vector<void*> data; data.reserve(32);
2017-02-16 01:20:38 +08:00
getTlsStorage().releaseSlot(key_, data, true); // Extract stored data with removal from TLS tables
for(size_t i = 0; i < data.size(); i++) // Delete all associated data
deleteDataInstance(data[i]);
2013-12-11 22:49:13 +08:00
}
void* TLSDataContainer::getData() const
2013-12-11 22:49:13 +08:00
{
2017-05-25 23:59:01 +08:00
CV_Assert(key_ != -1 && "Can't fetch data from terminated TLS container.");
void* pData = getTlsStorage().getData(key_); // Check if data was already allocated
if(!pData)
2013-12-11 22:49:13 +08:00
{
// Create new data instance and save it to TLS storage
pData = createDataInstance();
try
{
getTlsStorage().setData(key_, pData);
}
catch (...)
{
deleteDataInstance(pData);
throw;
}
2013-12-11 22:49:13 +08:00
}
return pData;
2013-12-11 22:49:13 +08:00
}
static TLSData<CoreTLSData>& getCoreTlsDataTLS()
2015-02-04 18:03:27 +08:00
{
CV_SINGLETON_LAZY_INIT_REF(TLSData<CoreTLSData>, new TLSData<CoreTLSData>())
2015-02-04 18:03:27 +08:00
}
CoreTLSData& getCoreTlsData()
{
return getCoreTlsDataTLS().getRef();
}
2017-07-25 18:23:44 +08:00
#if defined CVAPI_EXPORTS && defined _WIN32 && !defined WINCE
#ifdef WINRT
#pragma warning(disable:4447) // Disable warning 'main' signature found without threading model
#endif
extern "C"
BOOL WINAPI DllMain(HINSTANCE, DWORD fdwReason, LPVOID lpReserved);
extern "C"
BOOL WINAPI DllMain(HINSTANCE, DWORD fdwReason, LPVOID lpReserved)
{
if (fdwReason == DLL_THREAD_DETACH || fdwReason == DLL_PROCESS_DETACH)
{
if (lpReserved != NULL) // called after ExitProcess() call
{
cv::__termination = true;
}
else
{
// Not allowed to free resources if lpReserved is non-null
// http://msdn.microsoft.com/en-us/library/windows/desktop/ms682583.aspx
releaseTlsStorageThread();
}
}
return TRUE;
}
#endif
2015-02-04 18:03:27 +08:00
2017-05-25 23:59:01 +08:00
namespace {
#ifdef OPENCV_WITH_ITT
bool overrideThreadName()
{
static bool param = utils::getConfigurationParameterBool("OPENCV_TRACE_ITT_SET_THREAD_NAME", false);
return param;
}
#endif
2017-05-25 23:59:01 +08:00
static int g_threadNum = 0;
class ThreadID {
public:
const int id;
ThreadID() :
id(CV_XADD(&g_threadNum, 1))
{
#ifdef OPENCV_WITH_ITT
if (overrideThreadName())
__itt_thread_set_name(cv::format("OpenCVThread-%03d", id).c_str());
2017-05-25 23:59:01 +08:00
#endif
}
};
static TLSData<ThreadID>& getThreadIDTLS()
{
CV_SINGLETON_LAZY_INIT_REF(TLSData<ThreadID>, new TLSData<ThreadID>());
}
} // namespace
int utils::getThreadID() { return getThreadIDTLS().get()->id; }
class ParseError
2017-05-25 23:59:01 +08:00
{
std::string bad_value;
public:
ParseError(const std::string &bad_value_) :bad_value(bad_value_) {}
std::string toString(const std::string &param) const
2017-05-25 23:59:01 +08:00
{
std::ostringstream out;
out << "Invalid value for parameter " << param << ": " << bad_value;
return out.str();
2017-05-25 23:59:01 +08:00
}
};
template <typename T>
T parseOption(const std::string &);
template<>
inline bool parseOption(const std::string & value)
{
2017-05-25 23:59:01 +08:00
if (value == "1" || value == "True" || value == "true" || value == "TRUE")
{
return true;
}
if (value == "0" || value == "False" || value == "false" || value == "FALSE")
{
return false;
}
throw ParseError(value);
2017-05-25 23:59:01 +08:00
}
template<>
inline size_t parseOption(const std::string &value)
2017-05-25 23:59:01 +08:00
{
size_t pos = 0;
for (; pos < value.size(); pos++)
{
if (!isdigit(value[pos]))
break;
}
cv::String valueStr = value.substr(0, pos);
cv::String suffixStr = value.substr(pos, value.length() - pos);
size_t v = (size_t)std::stoull(valueStr);
2017-05-25 23:59:01 +08:00
if (suffixStr.length() == 0)
return v;
else if (suffixStr == "MB" || suffixStr == "Mb" || suffixStr == "mb")
return v * 1024 * 1024;
else if (suffixStr == "KB" || suffixStr == "Kb" || suffixStr == "kb")
return v * 1024;
throw ParseError(value);
2017-05-25 23:59:01 +08:00
}
template<>
inline cv::String parseOption(const std::string &value)
{
return value;
}
template<>
inline utils::Paths parseOption(const std::string &value)
{
utils::Paths result;
#ifdef _WIN32
const char sep = ';';
#else
const char sep = ':';
#endif
size_t start_pos = 0;
while (start_pos != std::string::npos)
{
const size_t pos = value.find(sep, start_pos);
const std::string one_piece(value, start_pos, pos == std::string::npos ? pos : pos - start_pos);
if (!one_piece.empty())
result.push_back(one_piece);
start_pos = pos == std::string::npos ? pos : pos + 1;
}
return result;
}
static inline const char * envRead(const char * name)
2017-05-25 23:59:01 +08:00
{
#ifdef NO_GETENV
CV_UNUSED(name);
return NULL;
2017-05-25 23:59:01 +08:00
#else
return getenv(name);
2017-05-25 23:59:01 +08:00
#endif
}
template<typename T>
inline T read(const std::string & k, const T & defaultValue)
{
try
2017-05-25 23:59:01 +08:00
{
const char * res = envRead(k.c_str());
if (res)
return parseOption<T>(std::string(res));
2017-05-25 23:59:01 +08:00
}
catch (const ParseError &err)
{
CV_Error(cv::Error::StsBadArg, err.toString(k));
}
return defaultValue;
}
bool utils::getConfigurationParameterBool(const char* name, bool defaultValue)
{
return read<bool>(name, defaultValue);
}
size_t utils::getConfigurationParameterSizeT(const char* name, size_t defaultValue)
{
return read<size_t>(name, defaultValue);
}
cv::String utils::getConfigurationParameterString(const char* name, const char* defaultValue)
{
return read<cv::String>(name, defaultValue ? cv::String(defaultValue) : cv::String());
}
utils::Paths utils::getConfigurationParameterPaths(const char* name, const utils::Paths &defaultValue)
{
return read<utils::Paths>(name, defaultValue);
2017-05-25 23:59:01 +08:00
}
#ifdef CV_COLLECT_IMPL_DATA
ImplCollector& getImplData()
{
CV_SINGLETON_LAZY_INIT_REF(ImplCollector, new ImplCollector())
}
void setImpl(int flags)
{
cv::AutoLock lock(getImplData().mutex);
getImplData().implFlags = flags;
getImplData().implCode.clear();
getImplData().implFun.clear();
}
void addImpl(int flag, const char* func)
{
cv::AutoLock lock(getImplData().mutex);
getImplData().implFlags |= flag;
if(func) // use lazy collection if name was not specified
{
size_t index = getImplData().implCode.size();
if(!index || (getImplData().implCode[index-1] != flag || getImplData().implFun[index-1].compare(func))) // avoid duplicates
{
getImplData().implCode.push_back(flag);
getImplData().implFun.push_back(func);
}
}
}
int getImpl(std::vector<int> &impl, std::vector<String> &funName)
{
cv::AutoLock lock(getImplData().mutex);
impl = getImplData().implCode;
funName = getImplData().implFun;
return getImplData().implFlags; // return actual flags for lazy collection
}
bool useCollection()
{
return getImplData().useCollection;
}
void setUseCollection(bool flag)
{
cv::AutoLock lock(getImplData().mutex);
getImplData().useCollection = flag;
}
#endif
namespace instr
{
bool useInstrumentation()
{
#ifdef ENABLE_INSTRUMENTATION
return getInstrumentStruct().useInstr;
#else
return false;
#endif
}
void setUseInstrumentation(bool flag)
{
#ifdef ENABLE_INSTRUMENTATION
getInstrumentStruct().useInstr = flag;
#else
CV_UNUSED(flag);
#endif
}
InstrNode* getTrace()
{
#ifdef ENABLE_INSTRUMENTATION
return &getInstrumentStruct().rootNode;
#else
return NULL;
#endif
}
void resetTrace()
{
#ifdef ENABLE_INSTRUMENTATION
getInstrumentStruct().rootNode.removeChilds();
getInstrumentTLSStruct().pCurrentNode = &getInstrumentStruct().rootNode;
#endif
}
void setFlags(FLAGS modeFlags)
{
#ifdef ENABLE_INSTRUMENTATION
getInstrumentStruct().flags = modeFlags;
#else
CV_UNUSED(modeFlags);
#endif
}
FLAGS getFlags()
{
#ifdef ENABLE_INSTRUMENTATION
return (FLAGS)getInstrumentStruct().flags;
#else
return (FLAGS)0;
#endif
}
NodeData::NodeData(const char* funName, const char* fileName, int lineNum, void* retAddress, bool alwaysExpand, cv::instr::TYPE instrType, cv::instr::IMPL implType)
{
m_funName = funName ? cv::String(funName) : cv::String(); // std::string doesn't accept NULL
m_instrType = instrType;
m_implType = implType;
m_fileName = fileName;
m_lineNum = lineNum;
m_retAddress = retAddress;
m_alwaysExpand = alwaysExpand;
m_threads = 1;
m_counter = 0;
m_ticksTotal = 0;
m_funError = false;
}
NodeData::NodeData(NodeData &ref)
{
*this = ref;
}
NodeData& NodeData::operator=(const NodeData &right)
{
this->m_funName = right.m_funName;
this->m_instrType = right.m_instrType;
this->m_implType = right.m_implType;
this->m_fileName = right.m_fileName;
this->m_lineNum = right.m_lineNum;
this->m_retAddress = right.m_retAddress;
this->m_alwaysExpand = right.m_alwaysExpand;
this->m_threads = right.m_threads;
this->m_counter = right.m_counter;
this->m_ticksTotal = right.m_ticksTotal;
this->m_funError = right.m_funError;
return *this;
}
NodeData::~NodeData()
{
}
bool operator==(const NodeData& left, const NodeData& right)
{
if(left.m_lineNum == right.m_lineNum && left.m_funName == right.m_funName && left.m_fileName == right.m_fileName)
{
if(left.m_retAddress == right.m_retAddress || !(cv::instr::getFlags()&cv::instr::FLAGS_EXPAND_SAME_NAMES || left.m_alwaysExpand))
return true;
}
return false;
}
#ifdef ENABLE_INSTRUMENTATION
InstrStruct& getInstrumentStruct()
{
static InstrStruct instr;
return instr;
}
InstrTLSStruct& getInstrumentTLSStruct()
{
return *getInstrumentStruct().tlsStruct.get();
}
InstrNode* getCurrentNode()
{
return getInstrumentTLSStruct().pCurrentNode;
}
IntrumentationRegion::IntrumentationRegion(const char* funName, const char* fileName, int lineNum, void *retAddress, bool alwaysExpand, TYPE instrType, IMPL implType)
{
m_disabled = false;
m_regionTicks = 0;
InstrStruct *pStruct = &getInstrumentStruct();
if(pStruct->useInstr)
{
InstrTLSStruct *pTLS = &getInstrumentTLSStruct();
// Disable in case of failure
if(!pTLS->pCurrentNode)
{
m_disabled = true;
return;
}
int depth = pTLS->pCurrentNode->getDepth();
if(pStruct->maxDepth && pStruct->maxDepth <= depth)
{
m_disabled = true;
return;
}
NodeData payload(funName, fileName, lineNum, retAddress, alwaysExpand, instrType, implType);
Node<NodeData>* pChild = NULL;
if(pStruct->flags&FLAGS_MAPPING)
{
// Critical section
cv::AutoLock guard(pStruct->mutexCreate); // Guard from concurrent child creation
pChild = pTLS->pCurrentNode->findChild(payload);
if(!pChild)
{
pChild = new Node<NodeData>(payload);
pTLS->pCurrentNode->addChild(pChild);
}
}
else
{
pChild = pTLS->pCurrentNode->findChild(payload);
if(!pChild)
{
m_disabled = true;
return;
}
}
pTLS->pCurrentNode = pChild;
m_regionTicks = getTickCount();
}
}
IntrumentationRegion::~IntrumentationRegion()
{
InstrStruct *pStruct = &getInstrumentStruct();
if(pStruct->useInstr)
{
if(!m_disabled)
{
InstrTLSStruct *pTLS = &getInstrumentTLSStruct();
if (pTLS->pCurrentNode->m_payload.m_implType == cv::instr::IMPL_OPENCL &&
(pTLS->pCurrentNode->m_payload.m_instrType == cv::instr::TYPE_FUN ||
pTLS->pCurrentNode->m_payload.m_instrType == cv::instr::TYPE_WRAPPER))
{
cv::ocl::finish(); // TODO Support "async" OpenCL instrumentation
}
uint64 ticks = (getTickCount() - m_regionTicks);
{
cv::AutoLock guard(pStruct->mutexCount); // Concurrent ticks accumulation
pTLS->pCurrentNode->m_payload.m_counter++;
pTLS->pCurrentNode->m_payload.m_ticksTotal += ticks;
pTLS->pCurrentNode->m_payload.m_tls.get()->m_ticksTotal += ticks;
}
pTLS->pCurrentNode = pTLS->pCurrentNode->m_pParent;
}
}
}
#endif
}
2014-04-17 19:21:30 +08:00
namespace ipp
{
#ifdef HAVE_IPP
2016-08-12 14:50:42 +08:00
struct IPPInitSingleton
{
public:
2016-08-12 14:50:42 +08:00
IPPInitSingleton()
{
useIPP = true;
useIPP_NE = false;
ippStatus = 0;
funcname = NULL;
filename = NULL;
linen = 0;
cpuFeatures = 0;
ippFeatures = 0;
ippTopFeatures = 0;
pIppLibInfo = NULL;
ippStatus = ippGetCpuFeatures(&cpuFeatures, NULL);
if(ippStatus < 0)
{
CV_LOG_ERROR(NULL, "ERROR: IPP cannot detect CPU features, IPP was disabled");
useIPP = false;
return;
}
ippFeatures = cpuFeatures;
const char* pIppEnv = getenv("OPENCV_IPP");
2017-05-19 15:13:31 +08:00
cv::String env;
if(pIppEnv != NULL)
env = pIppEnv;
if(env.size())
{
#if IPP_VERSION_X100 >= 201900
const Ipp64u minorFeatures = ippCPUID_MOVBE|ippCPUID_AES|ippCPUID_CLMUL|ippCPUID_ABR|ippCPUID_RDRAND|ippCPUID_F16C|
ippCPUID_ADCOX|ippCPUID_RDSEED|ippCPUID_PREFETCHW|ippCPUID_SHA|ippCPUID_MPX|ippCPUID_AVX512CD|ippCPUID_AVX512ER|
ippCPUID_AVX512PF|ippCPUID_AVX512BW|ippCPUID_AVX512DQ|ippCPUID_AVX512VL|ippCPUID_AVX512VBMI|ippCPUID_AVX512_4FMADDPS|
ippCPUID_AVX512_4VNNIW|ippCPUID_AVX512IFMA;
#elif IPP_VERSION_X100 >= 201703
const Ipp64u minorFeatures = ippCPUID_MOVBE|ippCPUID_AES|ippCPUID_CLMUL|ippCPUID_ABR|ippCPUID_RDRAND|ippCPUID_F16C|
ippCPUID_ADCOX|ippCPUID_RDSEED|ippCPUID_PREFETCHW|ippCPUID_SHA|ippCPUID_MPX|ippCPUID_AVX512CD|ippCPUID_AVX512ER|
ippCPUID_AVX512PF|ippCPUID_AVX512BW|ippCPUID_AVX512DQ|ippCPUID_AVX512VL|ippCPUID_AVX512VBMI;
#elif IPP_VERSION_X100 >= 201700
const Ipp64u minorFeatures = ippCPUID_MOVBE|ippCPUID_AES|ippCPUID_CLMUL|ippCPUID_ABR|ippCPUID_RDRAND|ippCPUID_F16C|
ippCPUID_ADCOX|ippCPUID_RDSEED|ippCPUID_PREFETCHW|ippCPUID_SHA|ippCPUID_AVX512CD|ippCPUID_AVX512ER|
ippCPUID_AVX512PF|ippCPUID_AVX512BW|ippCPUID_AVX512DQ|ippCPUID_AVX512VL|ippCPUID_AVX512VBMI;
#else
const Ipp64u minorFeatures = 0;
#endif
2018-08-23 23:17:04 +08:00
env = toLowerCase(env);
if(env.substr(0, 2) == "ne")
{
useIPP_NE = true;
env = env.substr(3, env.size());
}
if(env == "disabled")
{
CV_LOG_WARNING(NULL, "WARNING: IPP was disabled by OPENCV_IPP environment variable");
useIPP = false;
}
else if(env == "sse42")
ippFeatures = minorFeatures|ippCPUID_SSE2|ippCPUID_SSE3|ippCPUID_SSSE3|ippCPUID_SSE41|ippCPUID_SSE42;
else if(env == "avx2")
ippFeatures = minorFeatures|ippCPUID_SSE2|ippCPUID_SSE3|ippCPUID_SSSE3|ippCPUID_SSE41|ippCPUID_SSE42|ippCPUID_AVX|ippCPUID_AVX2;
#if IPP_VERSION_X100 >= 201700
#if defined (_M_AMD64) || defined (__x86_64__)
else if(env == "avx512")
ippFeatures = minorFeatures|ippCPUID_SSE2|ippCPUID_SSE3|ippCPUID_SSSE3|ippCPUID_SSE41|ippCPUID_SSE42|ippCPUID_AVX|ippCPUID_AVX2|ippCPUID_AVX512F;
#endif
#endif
else
CV_LOG_ERROR(NULL, "ERROR: Improper value of OPENCV_IPP: " << env.c_str() << ". Correct values are: disabled, sse42, avx2, avx512 (Intel64 only)");
// Trim unsupported features
ippFeatures &= cpuFeatures;
}
// Disable AVX1 since we don't track regressions for it. SSE42 will be used instead
if(cpuFeatures&ippCPUID_AVX && !(cpuFeatures&ippCPUID_AVX2))
ippFeatures &= ~((Ipp64u)ippCPUID_AVX);
// IPP integrations in OpenCV support only SSE4.2, AVX2 and AVX-512 optimizations.
if(!(
#if IPP_VERSION_X100 >= 201700
cpuFeatures&ippCPUID_AVX512F ||
#endif
cpuFeatures&ippCPUID_AVX2 ||
cpuFeatures&ippCPUID_SSE42
))
{
useIPP = false;
return;
}
if(ippFeatures == cpuFeatures)
IPP_INITIALIZER(0)
else
IPP_INITIALIZER(ippFeatures)
ippFeatures = ippGetEnabledCpuFeatures();
// Detect top level optimizations to make comparison easier for optimizations dependent conditions
#if IPP_VERSION_X100 >= 201700
if(ippFeatures&ippCPUID_AVX512F)
{
if((ippFeatures&ippCPUID_AVX512_SKX) == ippCPUID_AVX512_SKX)
ippTopFeatures = ippCPUID_AVX512_SKX;
else if((ippFeatures&ippCPUID_AVX512_KNL) == ippCPUID_AVX512_KNL)
ippTopFeatures = ippCPUID_AVX512_KNL;
else
ippTopFeatures = ippCPUID_AVX512F; // Unknown AVX512 configuration
}
else
#endif
if(ippFeatures&ippCPUID_AVX2)
ippTopFeatures = ippCPUID_AVX2;
else if(ippFeatures&ippCPUID_SSE42)
ippTopFeatures = ippCPUID_SSE42;
pIppLibInfo = ippiGetLibVersion();
// workaround: https://github.com/opencv/opencv/issues/12959
std::string ippName(pIppLibInfo->Name ? pIppLibInfo->Name : "");
if (ippName.find("SSE4.2") != std::string::npos)
{
ippTopFeatures = ippCPUID_SSE42;
}
}
public:
bool useIPP;
bool useIPP_NE;
int ippStatus; // 0 - all is ok, -1 - IPP functions failed
const char *funcname;
const char *filename;
int linen;
Ipp64u ippFeatures;
Ipp64u cpuFeatures;
Ipp64u ippTopFeatures;
const IppLibraryVersion *pIppLibInfo;
};
2016-08-12 14:50:42 +08:00
static IPPInitSingleton& getIPPSingleton()
{
2016-08-12 14:50:42 +08:00
CV_SINGLETON_LAZY_INIT_REF(IPPInitSingleton, new IPPInitSingleton())
}
#endif
unsigned long long getIppFeatures()
{
#ifdef HAVE_IPP
2016-08-12 14:50:42 +08:00
return getIPPSingleton().ippFeatures;
#else
return 0;
#endif
}
2014-04-16 22:50:23 +08:00
#ifdef HAVE_IPP
unsigned long long getIppTopFeatures()
{
return getIPPSingleton().ippTopFeatures;
}
#endif
2014-04-16 22:50:23 +08:00
void setIppStatus(int status, const char * const _funcname, const char * const _filename, int _line)
2014-04-16 19:34:18 +08:00
{
#ifdef HAVE_IPP
2016-08-12 14:50:42 +08:00
getIPPSingleton().ippStatus = status;
getIPPSingleton().funcname = _funcname;
getIPPSingleton().filename = _filename;
getIPPSingleton().linen = _line;
#else
CV_UNUSED(status); CV_UNUSED(_funcname); CV_UNUSED(_filename); CV_UNUSED(_line);
#endif
2014-04-16 19:34:18 +08:00
}
int getIppStatus()
{
#ifdef HAVE_IPP
2016-08-12 14:50:42 +08:00
return getIPPSingleton().ippStatus;
#else
return 0;
#endif
2014-04-16 22:50:23 +08:00
}
String getIppErrorLocation()
{
#ifdef HAVE_IPP
2016-08-12 14:50:42 +08:00
return format("%s:%d %s", getIPPSingleton().filename ? getIPPSingleton().filename : "", getIPPSingleton().linen, getIPPSingleton().funcname ? getIPPSingleton().funcname : "");
#else
return String();
#endif
2014-04-16 19:34:18 +08:00
}
String getIppVersion()
{
#ifdef HAVE_IPP
const IppLibraryVersion *pInfo = getIPPSingleton().pIppLibInfo;
if(pInfo)
return format("%s %s %s", pInfo->Name, pInfo->Version, pInfo->BuildDate);
else
return String("error");
#else
return String("disabled");
#endif
}
bool useIPP()
{
#ifdef HAVE_IPP
CoreTLSData& data = getCoreTlsData();
if (data.useIPP < 0)
{
data.useIPP = getIPPSingleton().useIPP;
}
return (data.useIPP > 0);
#else
return false;
#endif
}
void setUseIPP(bool flag)
{
CoreTLSData& data = getCoreTlsData();
#ifdef HAVE_IPP
data.useIPP = (getIPPSingleton().useIPP)?flag:false;
#else
2018-09-07 19:33:52 +08:00
CV_UNUSED(flag);
data.useIPP = false;
#endif
}
bool useIPP_NotExact()
{
#ifdef HAVE_IPP
CoreTLSData& data = getCoreTlsData();
if (data.useIPP_NE < 0)
{
data.useIPP_NE = getIPPSingleton().useIPP_NE;
}
return (data.useIPP_NE > 0);
#else
return false;
#endif
}
void setUseIPP_NotExact(bool flag)
{
CoreTLSData& data = getCoreTlsData();
#ifdef HAVE_IPP
data.useIPP_NE = flag;
#else
2018-09-07 19:33:52 +08:00
CV_UNUSED(flag);
data.useIPP_NE = false;
#endif
}
2014-04-17 19:21:30 +08:00
} // namespace ipp
2022-01-11 11:06:43 +08:00
namespace details {
#if OPENCV_IMPL_FP_HINTS_X86
#ifndef _MM_DENORMALS_ZERO_ON // requires pmmintrin.h (SSE3)
#define _MM_DENORMALS_ZERO_ON 0x0040
#endif
#ifndef _MM_DENORMALS_ZERO_MASK // requires pmmintrin.h (SSE3)
#define _MM_DENORMALS_ZERO_MASK 0x0040
#endif
#endif
void setFPDenormalsIgnoreHint(bool ignore, CV_OUT FPDenormalsModeState& state)
{
#if OPENCV_IMPL_FP_HINTS_X86
unsigned mask = _MM_FLUSH_ZERO_MASK;
unsigned value = ignore ? _MM_FLUSH_ZERO_ON : 0;
if (featuresEnabled.have[CPU_SSE3])
{
mask |= _MM_DENORMALS_ZERO_MASK;
value |= ignore ? _MM_DENORMALS_ZERO_ON : 0;
}
const unsigned old_flags = _mm_getcsr();
const unsigned old_value = old_flags & mask;
unsigned flags = (old_flags & ~mask) | value;
CV_LOG_DEBUG(NULL, "core: update FP mxcsr flags = " << cv::format("0x%08x", flags));
// save state
state.reserved[0] = (uint32_t)mask;
state.reserved[1] = (uint32_t)old_value;
_mm_setcsr(flags);
#else
CV_UNUSED(ignore); CV_UNUSED(state);
#endif
}
int saveFPDenormalsState(CV_OUT FPDenormalsModeState& state)
{
#if OPENCV_IMPL_FP_HINTS_X86
unsigned mask = _MM_FLUSH_ZERO_MASK;
if (featuresEnabled.have[CPU_SSE3])
{
mask |= _MM_DENORMALS_ZERO_MASK;
}
const unsigned old_flags = _mm_getcsr();
const unsigned old_value = old_flags & mask;
// save state
state.reserved[0] = (uint32_t)mask;
state.reserved[1] = (uint32_t)old_value;
return 2;
#else
CV_UNUSED(state);
return 0;
#endif
}
bool restoreFPDenormalsState(const FPDenormalsModeState& state)
{
#if OPENCV_IMPL_FP_HINTS_X86
const unsigned mask = (unsigned)state.reserved[0];
CV_DbgAssert(mask != 0); // invalid state (ensure that state is properly saved earlier)
const unsigned value = (unsigned)state.reserved[1];
CV_DbgCheck((int)value, value == (value & mask), "invalid SSE FP state");
const unsigned old_flags = _mm_getcsr();
unsigned flags = (old_flags & ~mask) | value;
CV_LOG_DEBUG(NULL, "core: restore FP mxcsr flags = " << cv::format("0x%08x", flags));
_mm_setcsr(flags);
return true;
#else
CV_UNUSED(state);
return false;
#endif
}
} // namespace details
AlgorithmHint getDefaultAlgorithmHint()
{
#ifdef OPENCV_ALGO_HINT_DEFAULT
return OPENCV_ALGO_HINT_DEFAULT;
#else
return ALGO_HINT_ACCURATE;
#endif
};
2022-01-11 11:06:43 +08:00
} // namespace cv
/* End of file. */