2011-02-10 04:55:11 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
2024-07-04 21:29:08 +08:00
|
|
|
#include "opencv2/ts/ocl_test.hpp"
|
|
|
|
#include "opencv2/ts/ts_gtest.h"
|
2011-02-10 04:55:11 +08:00
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
namespace opencv_test { namespace {
|
2011-02-10 04:55:11 +08:00
|
|
|
|
|
|
|
class CV_ImgWarpBaseTest : public cvtest::ArrayTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_ImgWarpBaseTest( bool warp_matrix );
|
|
|
|
|
|
|
|
protected:
|
2018-11-02 05:27:06 +08:00
|
|
|
int read_params( const cv::FileStorage& fs );
|
2011-02-10 04:55:11 +08:00
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
|
|
|
|
void fill_array( int test_case_idx, int i, int j, Mat& arr );
|
|
|
|
|
|
|
|
int interpolation;
|
|
|
|
int max_interpolation;
|
|
|
|
double spatial_scale_zoom, spatial_scale_decimate;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_ImgWarpBaseTest::CV_ImgWarpBaseTest( bool warp_matrix )
|
|
|
|
{
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
if( warp_matrix )
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[INPUT_OUTPUT].push_back(NULL);
|
|
|
|
test_array[REF_INPUT_OUTPUT].push_back(NULL);
|
|
|
|
max_interpolation = 5;
|
|
|
|
interpolation = 0;
|
|
|
|
element_wise_relative_error = false;
|
|
|
|
spatial_scale_zoom = 0.01;
|
|
|
|
spatial_scale_decimate = 0.005;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2018-11-02 05:27:06 +08:00
|
|
|
int CV_ImgWarpBaseTest::read_params( const cv::FileStorage& fs )
|
2011-02-10 04:55:11 +08:00
|
|
|
{
|
|
|
|
int code = cvtest::ArrayTest::read_params( fs );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ImgWarpBaseTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
|
|
|
|
{
|
|
|
|
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
|
|
|
|
if( CV_MAT_DEPTH(type) == CV_32F )
|
|
|
|
{
|
|
|
|
low = Scalar::all(-10.);
|
|
|
|
high = Scalar::all(10);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ImgWarpBaseTest::get_test_array_types_and_sizes( int test_case_idx,
|
|
|
|
vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int depth = cvtest::randInt(rng) % 3;
|
|
|
|
int cn = cvtest::randInt(rng) % 3 + 1;
|
|
|
|
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : CV_32F;
|
|
|
|
|
|
|
|
types[INPUT][0] = types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(depth, cn);
|
|
|
|
if( test_array[INPUT].size() > 1 )
|
|
|
|
types[INPUT][1] = cvtest::randInt(rng) & 1 ? CV_32FC1 : CV_64FC1;
|
|
|
|
|
|
|
|
interpolation = cvtest::randInt(rng) % max_interpolation;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ImgWarpBaseTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
|
|
|
|
{
|
|
|
|
if( i != INPUT || j != 0 )
|
|
|
|
cvtest::ArrayTest::fill_array( test_case_idx, i, j, arr );
|
|
|
|
}
|
|
|
|
|
|
|
|
int CV_ImgWarpBaseTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
|
|
|
|
Mat& img = test_mat[INPUT][0];
|
|
|
|
int i, j, cols = img.cols;
|
|
|
|
int type = img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
|
|
double scale = depth == CV_16U ? 1000. : 255.*0.5;
|
|
|
|
double space_scale = spatial_scale_decimate;
|
|
|
|
vector<float> buffer(img.cols*cn);
|
|
|
|
|
|
|
|
if( code <= 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
if( test_mat[INPUT_OUTPUT][0].cols >= img.cols &&
|
|
|
|
test_mat[INPUT_OUTPUT][0].rows >= img.rows )
|
|
|
|
space_scale = spatial_scale_zoom;
|
2012-06-09 23:00:04 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
for( i = 0; i < img.rows; i++ )
|
|
|
|
{
|
|
|
|
uchar* ptr = img.ptr(i);
|
|
|
|
switch( cn )
|
|
|
|
{
|
|
|
|
case 1:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
buffer[j] = (float)((sin((i+1)*space_scale)*sin((j+1)*space_scale)+1.)*scale);
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
{
|
|
|
|
buffer[j*2] = (float)((sin((i+1)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*2+1] = (float)((sin((i+j)*space_scale)+1.)*scale);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
{
|
|
|
|
buffer[j*3] = (float)((sin((i+1)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*3+1] = (float)((sin(j*space_scale)+1.)*scale);
|
|
|
|
buffer[j*3+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
for( j = 0; j < cols; j++ )
|
|
|
|
{
|
|
|
|
buffer[j*4] = (float)((sin((i+1)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*4+1] = (float)((sin(j*space_scale)+1.)*scale);
|
|
|
|
buffer[j*4+2] = (float)((sin((i+j)*space_scale)+1.)*scale);
|
|
|
|
buffer[j*4+3] = (float)((sin((i-j)*space_scale)+1.)*scale);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
2021-11-28 02:34:52 +08:00
|
|
|
CV_Assert(0);
|
2011-02-10 04:55:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*switch( depth )
|
|
|
|
{
|
|
|
|
case CV_8U:
|
|
|
|
for( j = 0; j < cols*cn; j++ )
|
|
|
|
ptr[j] = (uchar)cvRound(buffer[j]);
|
|
|
|
break;
|
|
|
|
case CV_16U:
|
|
|
|
for( j = 0; j < cols*cn; j++ )
|
|
|
|
((ushort*)ptr)[j] = (ushort)cvRound(buffer[j]);
|
|
|
|
break;
|
|
|
|
case CV_32F:
|
|
|
|
for( j = 0; j < cols*cn; j++ )
|
|
|
|
((float*)ptr)[j] = (float)buffer[j];
|
|
|
|
break;
|
|
|
|
default:
|
2021-12-03 20:32:49 +08:00
|
|
|
CV_Assert(0);
|
2011-02-10 04:55:11 +08:00
|
|
|
}*/
|
|
|
|
cv::Mat src(1, cols*cn, CV_32F, &buffer[0]);
|
|
|
|
cv::Mat dst(1, cols*cn, depth, ptr);
|
2012-06-09 23:00:04 +08:00
|
|
|
src.convertTo(dst, dst.type());
|
2011-02-10 04:55:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////
|
|
|
|
|
|
|
|
static void test_remap( const Mat& src, Mat& dst, const Mat& mapx, const Mat& mapy,
|
2022-12-15 02:57:08 +08:00
|
|
|
Mat* mask=0, int interpolation=cv::INTER_LINEAR )
|
2011-02-10 04:55:11 +08:00
|
|
|
{
|
|
|
|
int x, y, k;
|
|
|
|
int drows = dst.rows, dcols = dst.cols;
|
|
|
|
int srows = src.rows, scols = src.cols;
|
2014-08-13 19:08:27 +08:00
|
|
|
const uchar* sptr0 = src.ptr();
|
2011-02-10 04:55:11 +08:00
|
|
|
int depth = src.depth(), cn = src.channels();
|
|
|
|
int elem_size = (int)src.elemSize();
|
2011-07-19 20:27:07 +08:00
|
|
|
int step = (int)(src.step / CV_ELEM_SIZE(depth));
|
2011-02-10 04:55:11 +08:00
|
|
|
int delta;
|
|
|
|
|
2022-12-15 02:57:08 +08:00
|
|
|
if( interpolation != cv::INTER_CUBIC )
|
2011-02-10 04:55:11 +08:00
|
|
|
{
|
|
|
|
delta = 0;
|
|
|
|
scols -= 1; srows -= 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
delta = 1;
|
|
|
|
scols = MAX(scols - 3, 0);
|
|
|
|
srows = MAX(srows - 3, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int scols1 = MAX(scols - 2, 0);
|
|
|
|
int srows1 = MAX(srows - 2, 0);
|
|
|
|
|
|
|
|
if( mask )
|
|
|
|
*mask = Scalar::all(0);
|
|
|
|
|
|
|
|
for( y = 0; y < drows; y++ )
|
|
|
|
{
|
|
|
|
uchar* dptr = dst.ptr(y);
|
|
|
|
const float* mx = mapx.ptr<float>(y);
|
|
|
|
const float* my = mapy.ptr<float>(y);
|
|
|
|
uchar* m = mask ? mask->ptr(y) : 0;
|
|
|
|
|
|
|
|
for( x = 0; x < dcols; x++, dptr += elem_size )
|
|
|
|
{
|
|
|
|
float xs = mx[x];
|
|
|
|
float ys = my[x];
|
|
|
|
int ixs = cvFloor(xs);
|
|
|
|
int iys = cvFloor(ys);
|
|
|
|
|
|
|
|
if( (unsigned)(ixs - delta - 1) >= (unsigned)scols1 ||
|
|
|
|
(unsigned)(iys - delta - 1) >= (unsigned)srows1 )
|
|
|
|
{
|
|
|
|
if( m )
|
|
|
|
m[x] = 1;
|
|
|
|
if( (unsigned)(ixs - delta) >= (unsigned)scols ||
|
|
|
|
(unsigned)(iys - delta) >= (unsigned)srows )
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
xs -= ixs;
|
|
|
|
ys -= iys;
|
2012-06-09 23:00:04 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
switch( depth )
|
|
|
|
{
|
|
|
|
case CV_8U:
|
|
|
|
{
|
|
|
|
const uchar* sptr = sptr0 + iys*step + ixs*cn;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
float v00 = sptr[k];
|
|
|
|
float v01 = sptr[cn + k];
|
|
|
|
float v10 = sptr[step + k];
|
|
|
|
float v11 = sptr[step + cn + k];
|
|
|
|
|
|
|
|
v00 = v00 + xs*(v01 - v00);
|
|
|
|
v10 = v10 + xs*(v11 - v10);
|
|
|
|
v00 = v00 + ys*(v10 - v00);
|
|
|
|
dptr[k] = (uchar)cvRound(v00);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case CV_16U:
|
|
|
|
{
|
|
|
|
const ushort* sptr = (const ushort*)sptr0 + iys*step + ixs*cn;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
float v00 = sptr[k];
|
|
|
|
float v01 = sptr[cn + k];
|
|
|
|
float v10 = sptr[step + k];
|
|
|
|
float v11 = sptr[step + cn + k];
|
|
|
|
|
|
|
|
v00 = v00 + xs*(v01 - v00);
|
|
|
|
v10 = v10 + xs*(v11 - v10);
|
|
|
|
v00 = v00 + ys*(v10 - v00);
|
|
|
|
((ushort*)dptr)[k] = (ushort)cvRound(v00);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case CV_32F:
|
|
|
|
{
|
|
|
|
const float* sptr = (const float*)sptr0 + iys*step + ixs*cn;
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
|
|
{
|
|
|
|
float v00 = sptr[k];
|
|
|
|
float v01 = sptr[cn + k];
|
|
|
|
float v10 = sptr[step + k];
|
|
|
|
float v11 = sptr[step + cn + k];
|
|
|
|
|
|
|
|
v00 = v00 + xs*(v01 - v00);
|
|
|
|
v10 = v10 + xs*(v11 - v10);
|
|
|
|
v00 = v00 + ys*(v10 - v00);
|
|
|
|
((float*)dptr)[k] = (float)v00;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
2021-11-28 02:34:52 +08:00
|
|
|
CV_Assert(0);
|
2011-02-10 04:55:11 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/////////////////////////
|
|
|
|
|
|
|
|
class CV_RemapTest : public CV_ImgWarpBaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_RemapTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
void run_func();
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void prepare_to_validation( int /*test_case_idx*/ );
|
|
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
|
|
void fill_array( int test_case_idx, int i, int j, Mat& arr );
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_RemapTest::CV_RemapTest() : CV_ImgWarpBaseTest( false )
|
|
|
|
{
|
|
|
|
//spatial_scale_zoom = spatial_scale_decimate;
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
test_array[INPUT].push_back(NULL);
|
|
|
|
|
|
|
|
spatial_scale_decimate = spatial_scale_zoom;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_RemapTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
types[INPUT][1] = types[INPUT][2] = CV_32FC1;
|
2022-12-15 02:57:08 +08:00
|
|
|
interpolation = cv::INTER_LINEAR;
|
2011-02-10 04:55:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_RemapTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
|
|
|
|
{
|
|
|
|
if( i != INPUT )
|
|
|
|
CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_RemapTest::run_func()
|
|
|
|
{
|
2024-07-04 21:29:08 +08:00
|
|
|
cv::remap(test_mat[INPUT][0], test_mat[INPUT_OUTPUT][0],
|
|
|
|
test_mat[INPUT][1], test_mat[INPUT][2], interpolation );
|
2011-02-10 04:55:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double CV_RemapTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
|
|
{
|
|
|
|
int depth = test_mat[INPUT][0].depth();
|
|
|
|
return depth == CV_8U ? 16 : depth == CV_16U ? 1024 : 5e-2;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_RemapTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int code = CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
|
|
|
|
const Mat& src = test_mat[INPUT][0];
|
|
|
|
double a[9] = {0,0,0,0,0,0,0,0,1}, k[4];
|
|
|
|
Mat _a( 3, 3, CV_64F, a );
|
|
|
|
Mat _k( 4, 1, CV_64F, k );
|
|
|
|
double sz = MAX(src.rows, src.cols);
|
|
|
|
|
|
|
|
if( code <= 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
double aspect_ratio = cvtest::randReal(rng)*0.6 + 0.7;
|
|
|
|
a[2] = (src.cols - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[5] = (src.rows - 1)*0.5 + cvtest::randReal(rng)*10 - 5;
|
|
|
|
a[0] = sz/(0.9 - cvtest::randReal(rng)*0.6);
|
|
|
|
a[4] = aspect_ratio*a[0];
|
|
|
|
k[0] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
k[1] = cvtest::randReal(rng)*0.06 - 0.03;
|
|
|
|
if( k[0]*k[1] > 0 )
|
|
|
|
k[1] = -k[1];
|
|
|
|
k[2] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
k[3] = cvtest::randReal(rng)*0.004 - 0.002;
|
|
|
|
|
2018-11-09 21:12:22 +08:00
|
|
|
cvtest::initUndistortMap( _a, _k, Mat(), Mat(), test_mat[INPUT][1].size(), test_mat[INPUT][1], test_mat[INPUT][2], CV_32F );
|
2011-02-10 04:55:11 +08:00
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_RemapTest::prepare_to_validation( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
Mat& dst = test_mat[REF_INPUT_OUTPUT][0];
|
|
|
|
Mat& dst0 = test_mat[INPUT_OUTPUT][0];
|
|
|
|
Mat mask( dst.size(), CV_8U );
|
|
|
|
test_remap(test_mat[INPUT][0], dst, test_mat[INPUT][1],
|
|
|
|
test_mat[INPUT][2], &mask, interpolation );
|
|
|
|
dst.setTo(Scalar::all(0), mask);
|
|
|
|
dst0.setTo(Scalar::all(0), mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////// GetRectSubPix /////////////////////////////////
|
|
|
|
|
|
|
|
static void
|
|
|
|
test_getQuadrangeSubPix( const Mat& src, Mat& dst, double* a )
|
|
|
|
{
|
2011-07-19 20:27:07 +08:00
|
|
|
int sstep = (int)(src.step / sizeof(float));
|
2011-02-10 04:55:11 +08:00
|
|
|
int scols = src.cols, srows = src.rows;
|
2012-06-09 23:00:04 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
CV_Assert( src.depth() == CV_32F && src.type() == dst.type() );
|
|
|
|
|
|
|
|
int cn = dst.channels();
|
|
|
|
|
|
|
|
for( int y = 0; y < dst.rows; y++ )
|
|
|
|
for( int x = 0; x < dst.cols; x++ )
|
|
|
|
{
|
|
|
|
float* d = dst.ptr<float>(y) + x*cn;
|
|
|
|
float sx = (float)(a[0]*x + a[1]*y + a[2]);
|
|
|
|
float sy = (float)(a[3]*x + a[4]*y + a[5]);
|
|
|
|
int ix = cvFloor(sx), iy = cvFloor(sy);
|
|
|
|
int dx = cn, dy = sstep;
|
|
|
|
const float* s;
|
|
|
|
sx -= ix; sy -= iy;
|
|
|
|
|
|
|
|
if( (unsigned)ix >= (unsigned)(scols-1) )
|
|
|
|
ix = ix < 0 ? 0 : scols - 1, sx = 0, dx = 0;
|
|
|
|
if( (unsigned)iy >= (unsigned)(srows-1) )
|
|
|
|
iy = iy < 0 ? 0 : srows - 1, sy = 0, dy = 0;
|
|
|
|
|
|
|
|
s = src.ptr<float>(iy) + ix*cn;
|
|
|
|
for( int k = 0; k < cn; k++, s++ )
|
|
|
|
{
|
|
|
|
float t0 = s[0] + sx*(s[dx] - s[0]);
|
|
|
|
float t1 = s[dy] + sx*(s[dy + dx] - s[dy]);
|
|
|
|
d[k] = t0 + sy*(t1 - t0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class CV_GetRectSubPixTest : public CV_ImgWarpBaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_GetRectSubPixTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
|
|
|
|
void run_func();
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void prepare_to_validation( int /*test_case_idx*/ );
|
|
|
|
double get_success_error_level( int test_case_idx, int i, int j );
|
|
|
|
void fill_array( int test_case_idx, int i, int j, Mat& arr );
|
|
|
|
|
2024-07-04 21:29:08 +08:00
|
|
|
Point2f center;
|
2011-02-10 04:55:11 +08:00
|
|
|
bool test_cpp;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_GetRectSubPixTest::CV_GetRectSubPixTest() : CV_ImgWarpBaseTest( false )
|
|
|
|
{
|
|
|
|
//spatial_scale_zoom = spatial_scale_decimate;
|
|
|
|
spatial_scale_decimate = spatial_scale_zoom;
|
|
|
|
test_cpp = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_GetRectSubPixTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
CV_ImgWarpBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
int src_depth = cvtest::randInt(rng) % 2, dst_depth;
|
|
|
|
int cn = cvtest::randInt(rng) % 2 ? 3 : 1;
|
2018-09-06 19:34:16 +08:00
|
|
|
Size src_size, dst_size;
|
2012-06-09 23:00:04 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
dst_depth = src_depth = src_depth == 0 ? CV_8U : CV_32F;
|
|
|
|
if( src_depth < CV_32F && cvtest::randInt(rng) % 2 )
|
|
|
|
dst_depth = CV_32F;
|
2012-06-09 23:00:04 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
types[INPUT][0] = CV_MAKETYPE(src_depth,cn);
|
|
|
|
types[INPUT_OUTPUT][0] = types[REF_INPUT_OUTPUT][0] = CV_MAKETYPE(dst_depth,cn);
|
|
|
|
|
|
|
|
src_size = sizes[INPUT][0];
|
|
|
|
dst_size.width = cvRound(sqrt(cvtest::randReal(rng)*src_size.width) + 1);
|
|
|
|
dst_size.height = cvRound(sqrt(cvtest::randReal(rng)*src_size.height) + 1);
|
|
|
|
dst_size.width = MIN(dst_size.width,src_size.width);
|
|
|
|
dst_size.height = MIN(dst_size.width,src_size.height);
|
|
|
|
sizes[INPUT_OUTPUT][0] = sizes[REF_INPUT_OUTPUT][0] = dst_size;
|
2012-06-09 23:00:04 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
center.x = (float)(cvtest::randReal(rng)*src_size.width);
|
|
|
|
center.y = (float)(cvtest::randReal(rng)*src_size.height);
|
2022-12-15 02:57:08 +08:00
|
|
|
interpolation = cv::INTER_LINEAR;
|
2012-06-09 23:00:04 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
test_cpp = (cvtest::randInt(rng) & 256) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_GetRectSubPixTest::fill_array( int test_case_idx, int i, int j, Mat& arr )
|
|
|
|
{
|
|
|
|
if( i != INPUT )
|
|
|
|
CV_ImgWarpBaseTest::fill_array( test_case_idx, i, j, arr );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_GetRectSubPixTest::run_func()
|
|
|
|
{
|
2024-07-04 21:29:08 +08:00
|
|
|
cv::Mat _out = test_mat[INPUT_OUTPUT][0];
|
|
|
|
cv::getRectSubPix(test_mat[INPUT][0], _out.size(), center, _out, _out.type());
|
2011-02-10 04:55:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double CV_GetRectSubPixTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
|
|
|
{
|
|
|
|
int in_depth = test_mat[INPUT][0].depth();
|
|
|
|
int out_depth = test_mat[INPUT_OUTPUT][0].depth();
|
|
|
|
|
|
|
|
return in_depth >= CV_32F ? 1e-3 : out_depth >= CV_32F ? 1e-2 : 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_GetRectSubPixTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
return CV_ImgWarpBaseTest::prepare_test_case( test_case_idx );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_GetRectSubPixTest::prepare_to_validation( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
Mat& src0 = test_mat[INPUT][0];
|
|
|
|
Mat& dst0 = test_mat[REF_INPUT_OUTPUT][0];
|
|
|
|
Mat src = src0, dst = dst0;
|
|
|
|
int ftype = CV_MAKETYPE(CV_32F,src0.channels());
|
|
|
|
double a[] = { 1, 0, center.x - dst.cols*0.5 + 0.5,
|
|
|
|
0, 1, center.y - dst.rows*0.5 + 0.5 };
|
|
|
|
if( src.depth() != CV_32F )
|
|
|
|
src0.convertTo(src, CV_32F);
|
|
|
|
|
|
|
|
if( dst.depth() != CV_32F )
|
|
|
|
dst.create(dst0.size(), ftype);
|
|
|
|
|
|
|
|
test_getQuadrangeSubPix( src, dst, a );
|
|
|
|
|
|
|
|
if( dst.data != dst0.data )
|
|
|
|
dst.convertTo(dst0, dst0.depth());
|
|
|
|
}
|
|
|
|
|
2015-07-31 20:01:33 +08:00
|
|
|
////////////////////////////// resizeArea /////////////////////////////////
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
static void check_resize_area(const Mat& expected, const Mat& actual, double tolerance = 1.0)
|
|
|
|
{
|
|
|
|
ASSERT_EQ(actual.type(), expected.type());
|
|
|
|
ASSERT_EQ(actual.size(), expected.size());
|
|
|
|
|
|
|
|
Mat diff;
|
|
|
|
absdiff(actual, expected, diff);
|
|
|
|
|
|
|
|
Mat one_channel_diff = diff; //.reshape(1);
|
|
|
|
|
|
|
|
Size dsize = actual.size();
|
|
|
|
bool next = true;
|
|
|
|
for (int dy = 0; dy < dsize.height && next; ++dy)
|
|
|
|
{
|
|
|
|
const T* eD = expected.ptr<T>(dy);
|
|
|
|
const T* aD = actual.ptr<T>(dy);
|
|
|
|
|
|
|
|
for (int dx = 0; dx < dsize.width && next; ++dx)
|
|
|
|
if (fabs(static_cast<double>(aD[dx] - eD[dx])) > tolerance)
|
|
|
|
{
|
2017-11-05 21:48:40 +08:00
|
|
|
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Inf norm: %f\n", static_cast<float>(cvtest::norm(actual, expected, NORM_INF)));
|
2015-07-31 20:01:33 +08:00
|
|
|
cvtest::TS::ptr()->printf(cvtest::TS::SUMMARY, "Error in : (%d, %d)\n", dx, dy);
|
|
|
|
|
|
|
|
const int radius = 3;
|
|
|
|
int rmin = MAX(dy - radius, 0), rmax = MIN(dy + radius, dsize.height);
|
|
|
|
int cmin = MAX(dx - radius, 0), cmax = MIN(dx + radius, dsize.width);
|
|
|
|
|
|
|
|
std::cout << "Abs diff:" << std::endl << diff << std::endl;
|
|
|
|
std::cout << "actual result:\n" << actual(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
|
|
|
std::cout << "expected result:\n" << expected(Range(rmin, rmax), Range(cmin, cmax)) << std::endl;
|
|
|
|
|
|
|
|
next = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
ASSERT_EQ(0, cvtest::norm(one_channel_diff, cv::NORM_INF));
|
2015-07-31 20:01:33 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
2012-03-29 09:16:33 +08:00
|
|
|
TEST(Imgproc_fitLine_vector_3d, regression)
|
|
|
|
{
|
|
|
|
std::vector<Point3f> points_vector;
|
|
|
|
|
|
|
|
Point3f p21(4,4,4);
|
|
|
|
Point3f p22(8,8,8);
|
|
|
|
|
|
|
|
points_vector.push_back(p21);
|
|
|
|
points_vector.push_back(p22);
|
|
|
|
|
|
|
|
std::vector<float> line;
|
|
|
|
|
2021-11-20 05:00:57 +08:00
|
|
|
cv::fitLine(points_vector, line, DIST_L2, 0 ,0 ,0);
|
2012-03-29 09:16:33 +08:00
|
|
|
|
|
|
|
ASSERT_EQ(line.size(), (size_t)6);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgproc_fitLine_vector_2d, regression)
|
|
|
|
{
|
|
|
|
std::vector<Point2f> points_vector;
|
|
|
|
|
|
|
|
Point2f p21(4,4);
|
|
|
|
Point2f p22(8,8);
|
|
|
|
Point2f p23(16,16);
|
|
|
|
|
|
|
|
points_vector.push_back(p21);
|
|
|
|
points_vector.push_back(p22);
|
2012-06-09 23:00:04 +08:00
|
|
|
points_vector.push_back(p23);
|
2012-03-29 09:16:33 +08:00
|
|
|
|
|
|
|
std::vector<float> line;
|
|
|
|
|
2021-11-20 05:00:57 +08:00
|
|
|
cv::fitLine(points_vector, line, DIST_L2, 0 ,0 ,0);
|
2012-03-29 09:16:33 +08:00
|
|
|
|
|
|
|
ASSERT_EQ(line.size(), (size_t)4);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgproc_fitLine_Mat_2dC2, regression)
|
|
|
|
{
|
2013-09-06 19:53:42 +08:00
|
|
|
cv::Mat mat1 = Mat::zeros(3, 1, CV_32SC2);
|
2012-03-29 09:16:33 +08:00
|
|
|
std::vector<float> line1;
|
|
|
|
|
2021-11-20 05:00:57 +08:00
|
|
|
cv::fitLine(mat1, line1, DIST_L2, 0 ,0 ,0);
|
2012-03-29 09:16:33 +08:00
|
|
|
|
|
|
|
ASSERT_EQ(line1.size(), (size_t)4);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgproc_fitLine_Mat_2dC1, regression)
|
|
|
|
{
|
|
|
|
cv::Matx<int, 3, 2> mat2;
|
|
|
|
std::vector<float> line2;
|
|
|
|
|
2021-11-20 05:00:57 +08:00
|
|
|
cv::fitLine(mat2, line2, DIST_L2, 0 ,0 ,0);
|
2012-03-29 09:16:33 +08:00
|
|
|
|
|
|
|
ASSERT_EQ(line2.size(), (size_t)4);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgproc_fitLine_Mat_3dC3, regression)
|
|
|
|
{
|
2013-09-06 19:53:42 +08:00
|
|
|
cv::Mat mat1 = Mat::zeros(2, 1, CV_32SC3);
|
2012-03-29 09:16:33 +08:00
|
|
|
std::vector<float> line1;
|
|
|
|
|
2021-11-20 05:00:57 +08:00
|
|
|
cv::fitLine(mat1, line1, DIST_L2, 0 ,0 ,0);
|
2012-03-29 09:16:33 +08:00
|
|
|
|
|
|
|
ASSERT_EQ(line1.size(), (size_t)6);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgproc_fitLine_Mat_3dC1, regression)
|
|
|
|
{
|
2013-09-06 19:53:42 +08:00
|
|
|
cv::Mat mat2 = Mat::zeros(2, 3, CV_32SC1);
|
2012-03-29 09:16:33 +08:00
|
|
|
std::vector<float> line2;
|
|
|
|
|
2021-11-20 05:00:57 +08:00
|
|
|
cv::fitLine(mat2, line2, DIST_L2, 0 ,0 ,0);
|
2012-03-29 09:16:33 +08:00
|
|
|
|
|
|
|
ASSERT_EQ(line2.size(), (size_t)6);
|
|
|
|
}
|
|
|
|
|
2012-06-06 20:12:21 +08:00
|
|
|
TEST(Imgproc_resize_area, regression)
|
|
|
|
{
|
|
|
|
static ushort input_data[16 * 16] = {
|
|
|
|
90, 94, 80, 3, 231, 2, 186, 245, 188, 165, 10, 19, 201, 169, 8, 228,
|
|
|
|
86, 5, 203, 120, 136, 185, 24, 94, 81, 150, 163, 137, 88, 105, 132, 132,
|
|
|
|
236, 48, 250, 218, 19, 52, 54, 221, 159, 112, 45, 11, 152, 153, 112, 134,
|
|
|
|
78, 133, 136, 83, 65, 76, 82, 250, 9, 235, 148, 26, 236, 179, 200, 50,
|
|
|
|
99, 51, 103, 142, 201, 65, 176, 33, 49, 226, 177, 109, 46, 21, 67, 130,
|
|
|
|
54, 125, 107, 154, 145, 51, 199, 189, 161, 142, 231, 240, 139, 162, 240, 22,
|
|
|
|
231, 86, 79, 106, 92, 47, 146, 156, 36, 207, 71, 33, 2, 244, 221, 71,
|
|
|
|
44, 127, 71, 177, 75, 126, 68, 119, 200, 129, 191, 251, 6, 236, 247, 6,
|
|
|
|
133, 175, 56, 239, 147, 221, 243, 154, 242, 82, 106, 99, 77, 158, 60, 229,
|
|
|
|
2, 42, 24, 174, 27, 198, 14, 204, 246, 251, 141, 31, 114, 163, 29, 147,
|
|
|
|
121, 53, 74, 31, 147, 189, 42, 98, 202, 17, 228, 123, 209, 40, 77, 49,
|
|
|
|
112, 203, 30, 12, 205, 25, 19, 106, 145, 185, 163, 201, 237, 223, 247, 38,
|
|
|
|
33, 105, 243, 117, 92, 179, 204, 248, 160, 90, 73, 126, 2, 41, 213, 204,
|
|
|
|
6, 124, 195, 201, 230, 187, 210, 167, 48, 79, 123, 159, 145, 218, 105, 209,
|
|
|
|
240, 152, 136, 235, 235, 164, 157, 9, 152, 38, 27, 209, 120, 77, 238, 196,
|
|
|
|
240, 233, 10, 241, 90, 67, 12, 79, 0, 43, 58, 27, 83, 199, 190, 182};
|
|
|
|
|
|
|
|
static ushort expected_data[5 * 5] = {
|
|
|
|
120, 100, 151, 101, 130,
|
|
|
|
106, 115, 141, 130, 127,
|
|
|
|
91, 136, 170, 114, 140,
|
|
|
|
104, 122, 131, 147, 133,
|
|
|
|
161, 163, 70, 107, 182
|
|
|
|
};
|
|
|
|
|
|
|
|
cv::Mat src(16, 16, CV_16UC1, input_data);
|
2012-09-21 21:25:42 +08:00
|
|
|
cv::Mat expected(5, 5, CV_16UC1, expected_data);
|
2012-09-17 21:08:06 +08:00
|
|
|
cv::Mat actual(expected.size(), expected.type());
|
2012-06-06 20:12:21 +08:00
|
|
|
|
2012-09-17 21:38:23 +08:00
|
|
|
cv::resize(src, actual, cv::Size(), 0.3, 0.3, INTER_AREA);
|
2012-06-06 20:12:21 +08:00
|
|
|
|
2015-07-31 20:01:33 +08:00
|
|
|
check_resize_area<ushort>(expected, actual, 1.0);
|
2012-06-06 20:12:21 +08:00
|
|
|
}
|
|
|
|
|
2015-07-30 23:42:29 +08:00
|
|
|
TEST(Imgproc_resize_area, regression_half_round)
|
|
|
|
{
|
|
|
|
static uchar input_data[32 * 32];
|
|
|
|
for(int i = 0; i < 32 * 32; ++i)
|
2015-07-31 20:01:33 +08:00
|
|
|
input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32));
|
2015-07-30 23:42:29 +08:00
|
|
|
|
|
|
|
static uchar expected_data[16 * 16];
|
|
|
|
for(int i = 0; i < 16 * 16; ++i)
|
2015-07-31 20:01:33 +08:00
|
|
|
expected_data[i] = (uchar)(254 + i / (16 * 8));
|
2015-07-30 23:42:29 +08:00
|
|
|
|
|
|
|
cv::Mat src(32, 32, CV_8UC1, input_data);
|
|
|
|
cv::Mat expected(16, 16, CV_8UC1, expected_data);
|
|
|
|
cv::Mat actual(expected.size(), expected.type());
|
|
|
|
|
|
|
|
cv::resize(src, actual, cv::Size(), 0.5, 0.5, INTER_AREA);
|
|
|
|
|
2015-07-31 20:01:33 +08:00
|
|
|
check_resize_area<uchar>(expected, actual, 0.5);
|
2015-07-30 23:42:29 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgproc_resize_area, regression_quarter_round)
|
|
|
|
{
|
|
|
|
static uchar input_data[32 * 32];
|
|
|
|
for(int i = 0; i < 32 * 32; ++i)
|
2015-07-31 20:01:33 +08:00
|
|
|
input_data[i] = (uchar)(i % 2 + 253 + i / (16 * 32));
|
2015-07-30 23:42:29 +08:00
|
|
|
|
|
|
|
static uchar expected_data[8 * 8];
|
|
|
|
for(int i = 0; i < 8 * 8; ++i)
|
|
|
|
expected_data[i] = 254;
|
|
|
|
|
|
|
|
cv::Mat src(32, 32, CV_8UC1, input_data);
|
|
|
|
cv::Mat expected(8, 8, CV_8UC1, expected_data);
|
|
|
|
cv::Mat actual(expected.size(), expected.type());
|
|
|
|
|
|
|
|
cv::resize(src, actual, cv::Size(), 0.25, 0.25, INTER_AREA);
|
|
|
|
|
2015-07-31 20:01:33 +08:00
|
|
|
check_resize_area<uchar>(expected, actual, 0.5);
|
2015-07-30 23:42:29 +08:00
|
|
|
}
|
|
|
|
|
Merge pull request #24621 from chacha21:remap_relative
First proposal of cv::remap with relative displacement field (#24603) #24621
Implements #24603
Currently, `remap()` is applied as `dst(x, y) <- src(mapX(x, y), mapY(x, y))` It means that the maps must be filled with absolute coordinates.
However, if one wants to remap something according to a displacement field ("warp"), the operation should be `dst(x, y) <- src(x+displacementX(x, y), y+displacementY(x, y))`
It is trivial to build a mapping from a displacement field, but it is an undesirable overhead for CPU and memory.
This PR implements the feature as an experimental option, through the optional flag WARP_RELATIVE_MAP than can be ORed to the interpolation mode.
Since the xy maps might be const, there is no attempt to add the coordinate offset to those maps, and everything is postponed on-the-fly to the very last coordinate computation before fetching `src`. Interestingly, this let `cv::convertMaps()` unchanged since the fractional part of interpolation does not care of the integer coordinate offset.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-02-28 22:20:33 +08:00
|
|
|
typedef tuple<int, int, int, int, bool> RemapRelativeParam;
|
|
|
|
typedef testing::TestWithParam<RemapRelativeParam> Imgproc_RemapRelative;
|
|
|
|
|
|
|
|
TEST_P(Imgproc_RemapRelative, validity)
|
|
|
|
{
|
|
|
|
int srcType = CV_MAKE_TYPE(get<0>(GetParam()), get<1>(GetParam()));
|
|
|
|
int interpolation = get<2>(GetParam());
|
|
|
|
int borderType = get<3>(GetParam());
|
|
|
|
bool useFixedPoint = get<4>(GetParam());
|
|
|
|
|
|
|
|
const int nChannels = CV_MAT_CN(srcType);
|
|
|
|
const cv::Size size(127, 61);
|
|
|
|
cv::Mat data64FC1(1, size.area()*nChannels, CV_64FC1);
|
|
|
|
data64FC1.forEach<double>([&](double& pixel, const int* position) {pixel = static_cast<double>(position[1]);});
|
|
|
|
|
|
|
|
cv::Mat src;
|
|
|
|
data64FC1.reshape(nChannels, size.height).convertTo(src, srcType);
|
|
|
|
|
|
|
|
cv::Mat mapRelativeX32F(size, CV_32FC1);
|
|
|
|
mapRelativeX32F.setTo(cv::Scalar::all(-0.33));
|
|
|
|
|
|
|
|
cv::Mat mapRelativeY32F(size, CV_32FC1);
|
|
|
|
mapRelativeY32F.setTo(cv::Scalar::all(-0.33));
|
|
|
|
|
|
|
|
cv::Mat mapAbsoluteX32F = mapRelativeX32F.clone();
|
|
|
|
mapAbsoluteX32F.forEach<float>([&](float& pixel, const int* position) {
|
|
|
|
pixel += static_cast<float>(position[1]);
|
|
|
|
});
|
|
|
|
|
|
|
|
cv::Mat mapAbsoluteY32F = mapRelativeY32F.clone();
|
|
|
|
mapAbsoluteY32F.forEach<float>([&](float& pixel, const int* position) {
|
|
|
|
pixel += static_cast<float>(position[0]);
|
|
|
|
});
|
|
|
|
|
|
|
|
cv::Mat mapAbsoluteX16S;
|
|
|
|
cv::Mat mapAbsoluteY16S;
|
|
|
|
cv::Mat mapRelativeX16S;
|
|
|
|
cv::Mat mapRelativeY16S;
|
|
|
|
if (useFixedPoint)
|
|
|
|
{
|
|
|
|
const bool nninterpolation = (interpolation == cv::INTER_NEAREST) || (interpolation == cv::INTER_NEAREST_EXACT);
|
|
|
|
cv::convertMaps(mapAbsoluteX32F, mapAbsoluteY32F, mapAbsoluteX16S, mapAbsoluteY16S, CV_16SC2, nninterpolation);
|
|
|
|
cv::convertMaps(mapRelativeX32F, mapRelativeY32F, mapRelativeX16S, mapRelativeY16S, CV_16SC2, nninterpolation);
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Mat dstAbsolute;
|
|
|
|
cv::Mat dstRelative;
|
|
|
|
if (useFixedPoint)
|
|
|
|
{
|
|
|
|
cv::remap(src, dstAbsolute, mapAbsoluteX16S, mapAbsoluteY16S, interpolation, borderType);
|
|
|
|
cv::remap(src, dstRelative, mapRelativeX16S, mapRelativeY16S, interpolation | WARP_RELATIVE_MAP, borderType);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::remap(src, dstAbsolute, mapAbsoluteX32F, mapAbsoluteY32F, interpolation, borderType);
|
|
|
|
cv::remap(src, dstRelative, mapRelativeX32F, mapRelativeY32F, interpolation | WARP_RELATIVE_MAP, borderType);
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(cvtest::norm(dstAbsolute, dstRelative, NORM_INF), 0);
|
|
|
|
};
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgProc, Imgproc_RemapRelative, testing::Combine(
|
|
|
|
testing::Values(CV_8U, CV_16U, CV_32F, CV_64F),
|
|
|
|
testing::Values(1, 3, 4),
|
|
|
|
testing::Values((int)INTER_NEAREST, (int)INTER_LINEAR, (int)INTER_CUBIC, (int)INTER_LANCZOS4),
|
|
|
|
testing::Values((int)BORDER_CONSTANT, (int)BORDER_REPLICATE, (int)BORDER_WRAP, (int)BORDER_REFLECT, (int)BORDER_REFLECT_101),
|
|
|
|
testing::Values(false, true)));
|
2012-06-06 20:12:21 +08:00
|
|
|
|
2011-02-10 04:55:11 +08:00
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST(Imgproc_Remap, accuracy) { CV_RemapTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_GetRectSubPix, accuracy) { CV_GetRectSubPixTest test; test.safe_run(); }
|
|
|
|
|
2014-09-25 04:17:23 +08:00
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
template <typename T, typename WT>
|
2014-10-13 01:45:46 +08:00
|
|
|
struct IntCast
|
|
|
|
{
|
|
|
|
T operator() (WT val) const
|
|
|
|
{
|
|
|
|
return cv::saturate_cast<T>(val >> 2);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T, typename WT>
|
|
|
|
struct FltCast
|
|
|
|
{
|
|
|
|
T operator() (WT val) const
|
|
|
|
{
|
|
|
|
return cv::saturate_cast<T>(val * 0.25);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename T, typename WT, int one, typename CastOp>
|
2014-09-25 04:17:23 +08:00
|
|
|
void resizeArea(const cv::Mat & src, cv::Mat & dst)
|
|
|
|
{
|
|
|
|
int cn = src.channels();
|
2014-10-13 01:45:46 +08:00
|
|
|
CastOp castOp;
|
2014-09-25 04:17:23 +08:00
|
|
|
|
|
|
|
for (int y = 0; y < dst.rows; ++y)
|
|
|
|
{
|
|
|
|
const T * sptr0 = src.ptr<T>(y << 1);
|
|
|
|
const T * sptr1 = src.ptr<T>((y << 1) + 1);
|
|
|
|
T * dptr = dst.ptr<T>(y);
|
|
|
|
|
|
|
|
for (int x = 0; x < dst.cols * cn; x += cn)
|
|
|
|
{
|
|
|
|
int x1 = x << 1;
|
|
|
|
|
|
|
|
for (int c = 0; c < cn; ++c)
|
|
|
|
{
|
|
|
|
WT sum = WT(sptr0[x1 + c]) + WT(sptr0[x1 + c + cn]);
|
2014-10-13 01:45:46 +08:00
|
|
|
sum += WT(sptr1[x1 + c]) + WT(sptr1[x1 + c + cn]) + (WT)(one);
|
2014-09-25 04:17:23 +08:00
|
|
|
|
2014-10-13 01:45:46 +08:00
|
|
|
dptr[x + c] = castOp(sum);
|
2014-09-25 04:17:23 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Resize, Area_half)
|
|
|
|
{
|
2014-10-13 01:45:46 +08:00
|
|
|
const int size = 1000;
|
2015-01-12 15:59:29 +08:00
|
|
|
int types[] = { CV_8UC1, CV_8UC4,
|
|
|
|
CV_16UC1, CV_16UC4,
|
|
|
|
CV_16SC1, CV_16SC3, CV_16SC4,
|
|
|
|
CV_32FC1, CV_32FC4 };
|
2014-09-25 04:17:23 +08:00
|
|
|
|
2014-09-25 21:55:52 +08:00
|
|
|
cv::RNG rng(17);
|
|
|
|
|
|
|
|
for (int i = 0, _size = sizeof(types) / sizeof(types[0]); i < _size; ++i)
|
2014-09-25 04:17:23 +08:00
|
|
|
{
|
2014-10-13 01:45:46 +08:00
|
|
|
int type = types[i], depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
2014-10-13 04:37:59 +08:00
|
|
|
const float eps = depth <= CV_32S ? 0 : 7e-5f;
|
2014-09-25 21:55:52 +08:00
|
|
|
|
|
|
|
SCOPED_TRACE(depth);
|
2014-10-13 01:45:46 +08:00
|
|
|
SCOPED_TRACE(cn);
|
2014-09-25 21:55:52 +08:00
|
|
|
|
|
|
|
cv::Mat src(size, size, type), dst_actual(size >> 1, size >> 1, type),
|
|
|
|
dst_reference(size >> 1, size >> 1, type);
|
|
|
|
|
2014-10-13 01:45:46 +08:00
|
|
|
rng.fill(src, cv::RNG::UNIFORM, -1000, 1000, true);
|
2014-09-25 04:17:23 +08:00
|
|
|
|
2014-09-25 21:55:52 +08:00
|
|
|
if (depth == CV_8U)
|
2014-10-13 01:45:46 +08:00
|
|
|
resizeArea<uchar, ushort, 2, IntCast<uchar, ushort> >(src, dst_reference);
|
2014-09-25 21:55:52 +08:00
|
|
|
else if (depth == CV_16U)
|
2014-10-13 01:45:46 +08:00
|
|
|
resizeArea<ushort, uint, 2, IntCast<ushort, uint> >(src, dst_reference);
|
|
|
|
else if (depth == CV_16S)
|
|
|
|
resizeArea<short, int, 2, IntCast<short, int> >(src, dst_reference);
|
|
|
|
else if (depth == CV_32F)
|
|
|
|
resizeArea<float, float, 0, FltCast<float, float> >(src, dst_reference);
|
2014-09-25 04:17:23 +08:00
|
|
|
else
|
|
|
|
CV_Assert(0);
|
|
|
|
|
|
|
|
cv::resize(src, dst_actual, dst_actual.size(), 0, 0, cv::INTER_AREA);
|
|
|
|
|
2014-10-13 01:45:46 +08:00
|
|
|
ASSERT_GE(eps, cvtest::norm(dst_reference, dst_actual, cv::NORM_INF));
|
2014-09-25 04:17:23 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-12-19 18:20:42 +08:00
|
|
|
TEST(Resize, lanczos4_regression_16192)
|
|
|
|
{
|
|
|
|
Size src_size(11, 17);
|
|
|
|
Size dst_size(11, 153);
|
|
|
|
Mat src(src_size, CV_8UC3, Scalar::all(128));
|
|
|
|
Mat dst(dst_size, CV_8UC3, Scalar::all(255));
|
|
|
|
|
|
|
|
cv::resize(src, dst, dst_size, 0, 0, INTER_LANCZOS4);
|
|
|
|
|
|
|
|
Mat expected(dst_size, CV_8UC3, Scalar::all(128));
|
|
|
|
EXPECT_EQ(cvtest::norm(dst, expected, NORM_INF), 0) << dst(Rect(0,0,8,8));
|
|
|
|
}
|
|
|
|
|
2020-03-29 10:08:27 +08:00
|
|
|
TEST(Resize, nearest_regression_15075)
|
2020-02-17 00:33:25 +08:00
|
|
|
{
|
|
|
|
const int C = 5;
|
|
|
|
const int i1 = 5, j1 = 5;
|
|
|
|
Size src_size(12, 12);
|
|
|
|
Size dst_size(11, 11);
|
|
|
|
|
|
|
|
cv::Mat src = cv::Mat::zeros(src_size, CV_8UC(C)), dst;
|
|
|
|
for (int j = 0; j < C; j++)
|
|
|
|
src.col(i1).row(j1).data[j] = 1;
|
|
|
|
|
|
|
|
cv::resize(src, dst, dst_size, 0, 0, INTER_NEAREST);
|
|
|
|
EXPECT_EQ(C, cvtest::norm(dst, NORM_L1)) << src.size;
|
|
|
|
}
|
|
|
|
|
2015-05-14 13:06:46 +08:00
|
|
|
TEST(Imgproc_Warp, multichannel)
|
|
|
|
{
|
2017-03-16 23:50:29 +08:00
|
|
|
static const int inter_types[] = {INTER_NEAREST, INTER_AREA, INTER_CUBIC,
|
|
|
|
INTER_LANCZOS4, INTER_LINEAR};
|
|
|
|
static const int inter_n = sizeof(inter_types) / sizeof(int);
|
|
|
|
|
|
|
|
static const int border_types[] = {BORDER_CONSTANT, BORDER_DEFAULT,
|
|
|
|
BORDER_REFLECT, BORDER_REPLICATE,
|
|
|
|
BORDER_WRAP, BORDER_WRAP};
|
|
|
|
static const int border_n = sizeof(border_types) / sizeof(int);
|
|
|
|
|
2015-05-14 13:06:46 +08:00
|
|
|
RNG& rng = theRNG();
|
2017-03-16 23:50:29 +08:00
|
|
|
for( int iter = 0; iter < 100; iter++ )
|
2015-05-14 13:06:46 +08:00
|
|
|
{
|
2017-03-16 23:50:29 +08:00
|
|
|
int inter = inter_types[rng.uniform(0, inter_n)];
|
|
|
|
int border = border_types[rng.uniform(0, border_n)];
|
2015-05-14 13:06:46 +08:00
|
|
|
int width = rng.uniform(3, 333);
|
|
|
|
int height = rng.uniform(3, 333);
|
2017-03-16 23:50:29 +08:00
|
|
|
int cn = rng.uniform(1, 15);
|
2017-03-25 04:32:44 +08:00
|
|
|
if(inter == INTER_CUBIC || inter == INTER_LANCZOS4)
|
|
|
|
cn = rng.uniform(1, 5);
|
2015-05-14 13:06:46 +08:00
|
|
|
Mat src(height, width, CV_8UC(cn)), dst;
|
|
|
|
//randu(src, 0, 256);
|
|
|
|
src.setTo(0.);
|
|
|
|
|
2017-03-16 23:50:29 +08:00
|
|
|
Mat rot = getRotationMatrix2D(Point2f(0.f, 0.f), 1.0, 1.0);
|
|
|
|
warpAffine(src, dst, rot, src.size(), inter, border);
|
2017-11-05 21:48:40 +08:00
|
|
|
ASSERT_EQ(0.0, cvtest::norm(dst, NORM_INF));
|
2015-05-14 13:06:46 +08:00
|
|
|
Mat rot2 = Mat::eye(3, 3, rot.type());
|
|
|
|
rot.copyTo(rot2.rowRange(0, 2));
|
2017-03-16 23:50:29 +08:00
|
|
|
warpPerspective(src, dst, rot2, src.size(), inter, border);
|
2017-11-05 21:48:40 +08:00
|
|
|
ASSERT_EQ(0.0, cvtest::norm(dst, NORM_INF));
|
2015-05-14 13:06:46 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-02-26 04:16:50 +08:00
|
|
|
|
|
|
|
TEST(Imgproc_Warp, regression_19566) // valgrind should detect problem if any
|
|
|
|
{
|
|
|
|
const Size imgSize(8192, 8);
|
|
|
|
|
|
|
|
Mat inMat = Mat::zeros(imgSize, CV_8UC4);
|
|
|
|
Mat outMat = Mat::zeros(imgSize, CV_8UC4);
|
|
|
|
|
|
|
|
warpAffine(
|
|
|
|
inMat,
|
|
|
|
outMat,
|
|
|
|
getRotationMatrix2D(Point2f(imgSize.width / 2.0f, imgSize.height / 2.0f), 45.0, 1.0),
|
|
|
|
imgSize,
|
|
|
|
INTER_LINEAR,
|
|
|
|
cv::BORDER_CONSTANT,
|
|
|
|
cv::Scalar(0.0, 0.0, 0.0, 255.0)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2015-05-14 15:42:55 +08:00
|
|
|
TEST(Imgproc_GetAffineTransform, singularity)
|
|
|
|
{
|
|
|
|
Point2f A_sample[3];
|
2015-05-14 21:42:51 +08:00
|
|
|
A_sample[0] = Point2f(8.f, 9.f);
|
|
|
|
A_sample[1] = Point2f(40.f, 41.f);
|
|
|
|
A_sample[2] = Point2f(47.f, 48.f);
|
2015-05-14 15:42:55 +08:00
|
|
|
Point2f B_sample[3];
|
2015-05-14 21:42:51 +08:00
|
|
|
B_sample[0] = Point2f(7.37465f, 11.8295f);
|
|
|
|
B_sample[1] = Point2f(15.0113f, 12.8994f);
|
|
|
|
B_sample[2] = Point2f(38.9943f, 9.56297f);
|
|
|
|
Mat trans = getAffineTransform(A_sample, B_sample);
|
2017-11-05 21:48:40 +08:00
|
|
|
ASSERT_EQ(0.0, cvtest::norm(trans, NORM_INF));
|
2015-05-14 15:42:55 +08:00
|
|
|
}
|
|
|
|
|
2015-05-14 23:21:26 +08:00
|
|
|
TEST(Imgproc_Remap, DISABLED_memleak)
|
|
|
|
{
|
|
|
|
Mat src;
|
|
|
|
const int N = 400;
|
|
|
|
src.create(N, N, CV_8U);
|
|
|
|
randu(src, 0, 256);
|
|
|
|
Mat map_x, map_y, dst;
|
|
|
|
dst.create( src.size(), src.type() );
|
|
|
|
map_x.create( src.size(), CV_32FC1 );
|
|
|
|
map_y.create( src.size(), CV_32FC1 );
|
|
|
|
randu(map_x, 0., N+0.);
|
|
|
|
randu(map_y, 0., N+0.);
|
|
|
|
|
|
|
|
for( int iter = 0; iter < 10000; iter++ )
|
|
|
|
{
|
|
|
|
if(iter % 100 == 0)
|
|
|
|
{
|
|
|
|
putchar('.');
|
|
|
|
fflush(stdout);
|
|
|
|
}
|
2021-11-20 05:00:57 +08:00
|
|
|
remap(src, dst, map_x, map_y, INTER_LINEAR);
|
2015-05-14 23:21:26 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-17 20:50:52 +08:00
|
|
|
//** @deprecated */
|
2016-03-03 23:04:33 +08:00
|
|
|
TEST(Imgproc_linearPolar, identity)
|
|
|
|
{
|
|
|
|
const int N = 33;
|
|
|
|
Mat in(N, N, CV_8UC3, Scalar(255, 0, 0));
|
|
|
|
in(cv::Rect(N/3, N/3, N/3, N/3)).setTo(Scalar::all(255));
|
|
|
|
cv::blur(in, in, Size(5, 5));
|
|
|
|
cv::blur(in, in, Size(5, 5));
|
|
|
|
|
|
|
|
Mat src = in.clone();
|
|
|
|
Mat dst;
|
|
|
|
|
|
|
|
Rect roi = Rect(0, 0, in.cols - ((N+19)/20), in.rows);
|
|
|
|
|
|
|
|
for (int i = 1; i <= 5; i++)
|
|
|
|
{
|
|
|
|
linearPolar(src, dst,
|
|
|
|
Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f,
|
2022-12-15 02:57:08 +08:00
|
|
|
cv::WARP_FILL_OUTLIERS | cv::INTER_LINEAR | cv::WARP_INVERSE_MAP);
|
2016-03-03 23:04:33 +08:00
|
|
|
|
|
|
|
linearPolar(dst, src,
|
|
|
|
Point2f((N-1) * 0.5f, (N-1) * 0.5f), N * 0.5f,
|
2022-12-15 02:57:08 +08:00
|
|
|
cv::WARP_FILL_OUTLIERS | cv::INTER_LINEAR);
|
2016-03-03 23:04:33 +08:00
|
|
|
|
|
|
|
double psnr = cvtest::PSNR(in(roi), src(roi));
|
|
|
|
EXPECT_LE(25, psnr) << "iteration=" << i;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255));
|
|
|
|
in.copyTo(all(Rect(0,0,N,N)));
|
|
|
|
src.copyTo(all(Rect(0,N+1,N,N)));
|
|
|
|
src.copyTo(all(Rect(N+1,0,N,N)));
|
|
|
|
dst.copyTo(all(Rect(N+1,N+1,N,N)));
|
|
|
|
imwrite("linearPolar.png", all);
|
|
|
|
imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all);
|
|
|
|
cv::waitKey();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2018-04-17 20:50:52 +08:00
|
|
|
//** @deprecated */
|
2016-03-03 23:04:33 +08:00
|
|
|
TEST(Imgproc_logPolar, identity)
|
|
|
|
{
|
|
|
|
const int N = 33;
|
|
|
|
Mat in(N, N, CV_8UC3, Scalar(255, 0, 0));
|
|
|
|
in(cv::Rect(N/3, N/3, N/3, N/3)).setTo(Scalar::all(255));
|
|
|
|
cv::blur(in, in, Size(5, 5));
|
|
|
|
cv::blur(in, in, Size(5, 5));
|
|
|
|
|
|
|
|
Mat src = in.clone();
|
|
|
|
Mat dst;
|
|
|
|
|
|
|
|
Rect roi = Rect(0, 0, in.cols - ((N+19)/20), in.rows);
|
|
|
|
|
|
|
|
double M = N/log(N * 0.5f);
|
|
|
|
for (int i = 1; i <= 5; i++)
|
|
|
|
{
|
|
|
|
logPolar(src, dst,
|
|
|
|
Point2f((N-1) * 0.5f, (N-1) * 0.5f), M,
|
2021-11-20 05:00:57 +08:00
|
|
|
WARP_FILL_OUTLIERS | INTER_LINEAR | WARP_INVERSE_MAP);
|
2016-03-03 23:04:33 +08:00
|
|
|
|
|
|
|
logPolar(dst, src,
|
|
|
|
Point2f((N-1) * 0.5f, (N-1) * 0.5f), M,
|
2021-11-20 05:00:57 +08:00
|
|
|
WARP_FILL_OUTLIERS | INTER_LINEAR);
|
2016-03-03 23:04:33 +08:00
|
|
|
|
|
|
|
double psnr = cvtest::PSNR(in(roi), src(roi));
|
|
|
|
EXPECT_LE(25, psnr) << "iteration=" << i;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255));
|
|
|
|
in.copyTo(all(Rect(0,0,N,N)));
|
|
|
|
src.copyTo(all(Rect(0,N+1,N,N)));
|
|
|
|
src.copyTo(all(Rect(N+1,0,N,N)));
|
|
|
|
dst.copyTo(all(Rect(N+1,N+1,N,N)));
|
|
|
|
imwrite("logPolar.png", all);
|
|
|
|
imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all);
|
|
|
|
cv::waitKey();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2018-04-17 20:50:52 +08:00
|
|
|
TEST(Imgproc_warpPolar, identity)
|
|
|
|
{
|
|
|
|
const int N = 33;
|
|
|
|
Mat in(N, N, CV_8UC3, Scalar(255, 0, 0));
|
|
|
|
in(cv::Rect(N / 3, N / 3, N / 3, N / 3)).setTo(Scalar::all(255));
|
|
|
|
cv::blur(in, in, Size(5, 5));
|
|
|
|
cv::blur(in, in, Size(5, 5));
|
|
|
|
|
|
|
|
Mat src = in.clone();
|
|
|
|
Mat dst;
|
|
|
|
|
|
|
|
Rect roi = Rect(0, 0, in.cols - ((N + 19) / 20), in.rows);
|
|
|
|
Point2f center = Point2f((N - 1) * 0.5f, (N - 1) * 0.5f);
|
|
|
|
double radius = N * 0.5;
|
2021-11-20 05:00:57 +08:00
|
|
|
int flags = WARP_FILL_OUTLIERS | INTER_LINEAR;
|
2018-04-17 20:50:52 +08:00
|
|
|
// test linearPolar
|
|
|
|
for (int ki = 1; ki <= 5; ki++)
|
|
|
|
{
|
2021-11-20 05:00:57 +08:00
|
|
|
warpPolar(src, dst, src.size(), center, radius, flags + WARP_POLAR_LINEAR + WARP_INVERSE_MAP);
|
2018-04-17 20:50:52 +08:00
|
|
|
warpPolar(dst, src, src.size(), center, radius, flags + WARP_POLAR_LINEAR);
|
|
|
|
|
|
|
|
double psnr = cv::PSNR(in(roi), src(roi));
|
|
|
|
EXPECT_LE(25, psnr) << "iteration=" << ki;
|
|
|
|
}
|
|
|
|
// test logPolar
|
|
|
|
src = in.clone();
|
|
|
|
for (int ki = 1; ki <= 5; ki++)
|
|
|
|
{
|
2021-11-20 05:00:57 +08:00
|
|
|
warpPolar(src, dst, src.size(),center, radius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP );
|
2018-04-17 20:50:52 +08:00
|
|
|
warpPolar(dst, src, src.size(),center, radius, flags + WARP_POLAR_LOG);
|
|
|
|
|
|
|
|
double psnr = cv::PSNR(in(roi), src(roi));
|
|
|
|
EXPECT_LE(25, psnr) << "iteration=" << ki;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
Mat all(N*2+2,N*2+2, src.type(), Scalar(0,0,255));
|
|
|
|
in.copyTo(all(Rect(0,0,N,N)));
|
|
|
|
src.copyTo(all(Rect(0,N+1,N,N)));
|
|
|
|
src.copyTo(all(Rect(N+1,0,N,N)));
|
|
|
|
dst.copyTo(all(Rect(N+1,N+1,N,N)));
|
|
|
|
imwrite("linearPolar.png", all);
|
|
|
|
imshow("input", in); imshow("result", dst); imshow("restore", src); imshow("all", all);
|
|
|
|
cv::waitKey();
|
|
|
|
#endif
|
|
|
|
}
|
2016-03-03 23:04:33 +08:00
|
|
|
|
2023-06-16 23:30:21 +08:00
|
|
|
TEST(Imgproc_Remap, issue_23562)
|
|
|
|
{
|
|
|
|
cv::RNG rng(17);
|
|
|
|
Mat_<float> mapx({3, 3}, {0, 1, 2, 0, 1, 2, 0, 1, 2});
|
|
|
|
Mat_<float> mapy({3, 3}, {0, 0, 0, 1, 1, 1, 2, 2, 2});
|
|
|
|
for (int cn = 1; cn <= 4; ++cn) {
|
|
|
|
Mat src(3, 3, CV_32FC(cn));
|
|
|
|
rng.fill(src, cv::RNG::UNIFORM, -1, 1);
|
|
|
|
Mat dst = Mat::zeros(3, 3, CV_32FC(cn));
|
|
|
|
Mat ref = src.clone();
|
|
|
|
|
|
|
|
remap(src, dst, mapx, mapy, INTER_LINEAR, BORDER_TRANSPARENT);
|
|
|
|
ASSERT_EQ(0.0, cvtest::norm(ref, dst, NORM_INF)) << "channels=" << cn;
|
|
|
|
}
|
2023-07-12 20:20:01 +08:00
|
|
|
|
|
|
|
mapx = Mat1f({3, 3}, {0, 1, 2, 0, 1, 2, 0, 1, 2});
|
|
|
|
mapy = Mat1f({3, 3}, {0, 0, 0, 1, 1, 1, 2, 2, 1.5});
|
|
|
|
for (int cn = 1; cn <= 4; ++cn) {
|
|
|
|
Mat src = cv::Mat(3, 3, CV_32FC(cn));
|
|
|
|
Mat dst = 10 * Mat::ones(3, 3, CV_32FC(cn));
|
|
|
|
for(int y = 0; y < 3; ++y) {
|
|
|
|
for(int x = 0; x < 3; ++x) {
|
|
|
|
for(int k = 0; k < cn; ++k) {
|
|
|
|
src.ptr<float>(y,x)[k] = 10.f * y + x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat ref = src.clone();
|
|
|
|
for(int k = 0; k < cn; ++k) {
|
|
|
|
ref.ptr<float>(2,2)[k] = (src.ptr<float>(1, 2)[k] + src.ptr<float>(2, 2)[k]) / 2.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
remap(src, dst, mapx, mapy, INTER_LINEAR, BORDER_TRANSPARENT);
|
|
|
|
ASSERT_EQ(0.0, cvtest::norm(ref, dst, NORM_INF)) << "channels=" << cn;
|
|
|
|
}
|
2023-06-16 23:30:21 +08:00
|
|
|
}
|
|
|
|
|
2024-12-05 14:03:51 +08:00
|
|
|
TEST(Imgproc_Resize, issue_26497)
|
|
|
|
{
|
|
|
|
std::vector<float> vec = {0.f, 1.f, 2.f, 3.f};
|
|
|
|
Mat A(vec), B;
|
|
|
|
resize(A, B, Size(2,2), 0, 0, INTER_LINEAR);
|
|
|
|
double minv = 0, maxv = 0;
|
|
|
|
cvtest::minMaxIdx(B, &minv, &maxv, nullptr, nullptr, noArray());
|
|
|
|
EXPECT_EQ(B.size(), Size(2, 2));
|
|
|
|
EXPECT_LE(0., minv);
|
|
|
|
EXPECT_LE(maxv, 3.);
|
|
|
|
}
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
}} // namespace
|
2011-02-10 04:55:11 +08:00
|
|
|
/* End of file. */
|