2012-08-29 20:49:07 +08:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Copyright (C) 1993-2011, NVIDIA Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
2012-10-02 02:37:20 +08:00
|
|
|
#if !defined CUDA_DISABLER
|
|
|
|
|
2012-08-29 20:49:07 +08:00
|
|
|
#include "internal_shared.hpp"
|
|
|
|
|
|
|
|
#include "opencv2/gpu/device/vec_traits.hpp"
|
|
|
|
#include "opencv2/gpu/device/vec_math.hpp"
|
2012-09-27 22:11:06 +08:00
|
|
|
#include "opencv2/gpu/device/block.hpp"
|
2012-08-29 20:49:07 +08:00
|
|
|
#include "opencv2/gpu/device/border_interpolate.hpp"
|
|
|
|
|
|
|
|
using namespace cv::gpu;
|
|
|
|
|
|
|
|
typedef unsigned char uchar;
|
|
|
|
typedef unsigned short ushort;
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////
|
2012-09-24 21:01:44 +08:00
|
|
|
//// Non Local Means Denosing
|
2012-08-29 20:49:07 +08:00
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
|
|
{
|
|
|
|
namespace imgproc
|
|
|
|
{
|
|
|
|
__device__ __forceinline__ float norm2(const float& v) { return v*v; }
|
|
|
|
__device__ __forceinline__ float norm2(const float2& v) { return v.x*v.x + v.y*v.y; }
|
|
|
|
__device__ __forceinline__ float norm2(const float3& v) { return v.x*v.x + v.y*v.y + v.z*v.z; }
|
|
|
|
__device__ __forceinline__ float norm2(const float4& v) { return v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w; }
|
|
|
|
|
|
|
|
template<typename T, typename B>
|
|
|
|
__global__ void nlm_kernel(const PtrStepSz<T> src, PtrStep<T> dst, const B b, int search_radius, int block_radius, float h2_inv_half)
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
|
|
|
|
|
|
|
|
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
|
|
|
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
|
|
|
|
|
|
|
if (x >= src.cols || y >= src.rows)
|
|
|
|
return;
|
|
|
|
|
|
|
|
float block_radius2_inv = -1.f/(block_radius * block_radius);
|
|
|
|
|
|
|
|
value_type sum1 = VecTraits<value_type>::all(0);
|
|
|
|
float sum2 = 0.f;
|
|
|
|
|
2012-09-24 21:01:44 +08:00
|
|
|
if (x - search_radius - block_radius >=0 && y - search_radius - block_radius >=0 &&
|
|
|
|
x + search_radius + block_radius < src.cols && y + search_radius + block_radius < src.rows)
|
|
|
|
{
|
|
|
|
|
|
|
|
for(float cy = -search_radius; cy <= search_radius; ++cy)
|
|
|
|
for(float cx = -search_radius; cx <= search_radius; ++cx)
|
|
|
|
{
|
|
|
|
float color2 = 0;
|
|
|
|
for(float by = -block_radius; by <= block_radius; ++by)
|
|
|
|
for(float bx = -block_radius; bx <= block_radius; ++bx)
|
|
|
|
{
|
|
|
|
value_type v1 = saturate_cast<value_type>(src(y + by, x + bx));
|
|
|
|
value_type v2 = saturate_cast<value_type>(src(y + cy + by, x + cx + bx));
|
|
|
|
color2 += norm2(v1 - v2);
|
|
|
|
}
|
|
|
|
|
|
|
|
float dist2 = cx * cx + cy * cy;
|
|
|
|
float w = __expf(color2 * h2_inv_half + dist2 * block_radius2_inv);
|
|
|
|
|
|
|
|
sum1 = sum1 + saturate_cast<value_type>(src(y + cy, x + cy)) * w;
|
|
|
|
sum2 += w;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for(float cy = -search_radius; cy <= search_radius; ++cy)
|
|
|
|
for(float cx = -search_radius; cx <= search_radius; ++cx)
|
|
|
|
{
|
|
|
|
float color2 = 0;
|
|
|
|
for(float by = -block_radius; by <= block_radius; ++by)
|
|
|
|
for(float bx = -block_radius; bx <= block_radius; ++bx)
|
|
|
|
{
|
|
|
|
value_type v1 = saturate_cast<value_type>(b.at(y + by, x + bx, src.data, src.step));
|
|
|
|
value_type v2 = saturate_cast<value_type>(b.at(y + cy + by, x + cx + bx, src.data, src.step));
|
|
|
|
color2 += norm2(v1 - v2);
|
|
|
|
}
|
|
|
|
|
|
|
|
float dist2 = cx * cx + cy * cy;
|
|
|
|
float w = __expf(color2 * h2_inv_half + dist2 * block_radius2_inv);
|
|
|
|
|
|
|
|
sum1 = sum1 + saturate_cast<value_type>(b.at(y + cy, x + cy, src.data, src.step)) * w;
|
|
|
|
sum2 += w;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
2012-08-29 20:49:07 +08:00
|
|
|
|
|
|
|
dst(y, x) = saturate_cast<T>(sum1 / sum2);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T, template <typename> class B>
|
|
|
|
void nlm_caller(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
dim3 block (32, 8);
|
|
|
|
dim3 grid (divUp (src.cols, block.x), divUp (src.rows, block.y));
|
|
|
|
|
|
|
|
B<T> b(src.rows, src.cols);
|
|
|
|
|
|
|
|
float h2_inv_half = -0.5f/(h * h * VecTraits<T>::cn);
|
|
|
|
|
|
|
|
cudaSafeCall( cudaFuncSetCacheConfig (nlm_kernel<T, B<T> >, cudaFuncCachePreferL1) );
|
|
|
|
nlm_kernel<<<grid, block>>>((PtrStepSz<T>)src, (PtrStepSz<T>)dst, b, search_radius, block_radius, h2_inv_half);
|
|
|
|
cudaSafeCall ( cudaGetLastError () );
|
|
|
|
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
void nlm_bruteforce_gpu(const PtrStepSzb& src, PtrStepSzb dst, int search_radius, int block_radius, float h, int borderMode, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
typedef void (*func_t)(const PtrStepSzb src, PtrStepSzb dst, int search_radius, int block_radius, float h, cudaStream_t stream);
|
|
|
|
|
|
|
|
static func_t funcs[] =
|
|
|
|
{
|
|
|
|
nlm_caller<T, BrdReflect101>,
|
|
|
|
nlm_caller<T, BrdReplicate>,
|
|
|
|
nlm_caller<T, BrdConstant>,
|
|
|
|
nlm_caller<T, BrdReflect>,
|
|
|
|
nlm_caller<T, BrdWrap>,
|
|
|
|
};
|
|
|
|
funcs[borderMode](src, dst, search_radius, block_radius, h, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
template void nlm_bruteforce_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
|
2012-09-27 22:11:06 +08:00
|
|
|
template void nlm_bruteforce_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
|
2012-08-29 20:49:07 +08:00
|
|
|
template void nlm_bruteforce_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, int, int, float, int, cudaStream_t);
|
|
|
|
}
|
|
|
|
}}}
|
2012-10-02 02:37:20 +08:00
|
|
|
|
2012-09-27 22:11:06 +08:00
|
|
|
//////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//// Non Local Means Denosing (fast approximate version)
|
|
|
|
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
|
|
{
|
|
|
|
namespace imgproc
|
|
|
|
{
|
|
|
|
__device__ __forceinline__ int calcDist(const uchar& a, const uchar& b) { return (a-b)*(a-b); }
|
|
|
|
__device__ __forceinline__ int calcDist(const uchar2& a, const uchar2& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y); }
|
|
|
|
__device__ __forceinline__ int calcDist(const uchar3& a, const uchar3& b) { return (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) + (a.z-b.z)*(a.z-b.z); }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class T> struct FastNonLocalMenas
|
|
|
|
{
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
CTA_SIZE = 256,
|
|
|
|
|
|
|
|
//TILE_COLS = 256,
|
|
|
|
//TILE_ROWS = 32,
|
|
|
|
|
|
|
|
TILE_COLS = 256,
|
|
|
|
TILE_ROWS = 32,
|
|
|
|
|
|
|
|
STRIDE = CTA_SIZE
|
|
|
|
};
|
|
|
|
|
|
|
|
struct plus
|
|
|
|
{
|
|
|
|
__device__ __forceinline float operator()(float v1, float v2) const { return v1 + v2; }
|
|
|
|
};
|
|
|
|
|
|
|
|
int search_radius;
|
|
|
|
int block_radius;
|
|
|
|
|
|
|
|
int search_window;
|
|
|
|
int block_window;
|
|
|
|
float minus_h2_inv;
|
|
|
|
|
|
|
|
FastNonLocalMenas(int search_window_, int block_window_, float h) : search_radius(search_window_/2), block_radius(block_window_/2),
|
|
|
|
search_window(search_window_), block_window(block_window_), minus_h2_inv(-1.f/(h * h * VecTraits<T>::cn)) {}
|
|
|
|
|
|
|
|
PtrStep<T> src;
|
|
|
|
mutable PtrStepi buffer;
|
|
|
|
|
|
|
|
__device__ __forceinline__ void initSums_TileFistColumn(int i, int j, int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums) const
|
|
|
|
{
|
|
|
|
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
|
|
|
{
|
|
|
|
dist_sums[index] = 0;
|
|
|
|
|
|
|
|
for(int tx = 0; tx < block_window; ++tx)
|
|
|
|
col_dist_sums(tx, index) = 0;
|
|
|
|
|
|
|
|
int y = index / search_window;
|
|
|
|
int x = index - y * search_window;
|
|
|
|
|
|
|
|
int ay = i;
|
|
|
|
int ax = j;
|
|
|
|
|
|
|
|
int by = i + y - search_radius;
|
|
|
|
int bx = j + x - search_radius;
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
for (int tx = -block_radius; tx <= block_radius; ++tx)
|
|
|
|
{
|
|
|
|
int col_dist_sums_tx_block_radius_index = 0;
|
|
|
|
|
|
|
|
for (int ty = -block_radius; ty <= block_radius; ++ty)
|
|
|
|
{
|
|
|
|
int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
|
|
|
|
|
|
|
|
dist_sums[index] += dist;
|
|
|
|
col_dist_sums_tx_block_radius_index += dist;
|
|
|
|
}
|
|
|
|
|
|
|
|
col_dist_sums(tx + block_radius, index) = col_dist_sums_tx_block_radius_index;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
for (int ty = -block_radius; ty <= block_radius; ++ty)
|
|
|
|
for (int tx = -block_radius; tx <= block_radius; ++tx)
|
|
|
|
{
|
|
|
|
int dist = calcDist(src(ay + ty, ax + tx), src(by + ty, bx + tx));
|
|
|
|
|
|
|
|
dist_sums[index] += dist;
|
|
|
|
col_dist_sums(tx + block_radius, index) += dist;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
up_col_dist_sums(j, index) = col_dist_sums(block_window - 1, index);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ __forceinline__ void shiftLeftSums_TileFirstRow(int i, int j, int first_col, int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums) const
|
|
|
|
{
|
|
|
|
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
|
|
|
{
|
|
|
|
int y = index / search_window;
|
|
|
|
int x = index - y * search_window;
|
|
|
|
|
|
|
|
int ay = i;
|
|
|
|
int ax = j + block_radius;
|
|
|
|
|
|
|
|
int by = i + y - search_radius;
|
|
|
|
int bx = j + x - search_radius + block_radius;
|
|
|
|
|
|
|
|
int col_dist_sum = 0;
|
|
|
|
|
|
|
|
for (int ty = -block_radius; ty <= block_radius; ++ty)
|
|
|
|
col_dist_sum += calcDist(src(ay + ty, ax), src(by + ty, bx));
|
|
|
|
|
|
|
|
int old_dist_sums = dist_sums[index];
|
|
|
|
int old_col_sum = col_dist_sums(first_col, index);
|
|
|
|
dist_sums[index] += col_dist_sum - old_col_sum;
|
|
|
|
|
|
|
|
|
|
|
|
col_dist_sums(first_col, index) = col_dist_sum;
|
|
|
|
up_col_dist_sums(j, index) = col_dist_sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ __forceinline__ void shiftLeftSums_UsingUpSums(int i, int j, int first_col, int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums) const
|
|
|
|
{
|
|
|
|
int ay = i;
|
|
|
|
int ax = j + block_radius;
|
|
|
|
|
|
|
|
int start_by = i - search_radius;
|
|
|
|
int start_bx = j - search_radius + block_radius;
|
|
|
|
|
|
|
|
T a_up = src(ay - block_radius - 1, ax);
|
|
|
|
T a_down = src(ay + block_radius, ax);
|
|
|
|
|
|
|
|
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
|
|
|
{
|
|
|
|
dist_sums[index] -= col_dist_sums(first_col, index);
|
|
|
|
|
|
|
|
int y = index / search_window;
|
|
|
|
int x = index - y * search_window;
|
|
|
|
|
|
|
|
int by = start_by + y;
|
|
|
|
int bx = start_bx + x;
|
|
|
|
|
|
|
|
T b_up = src(by - block_radius - 1, bx);
|
|
|
|
T b_down = src(by + block_radius, bx);
|
|
|
|
|
|
|
|
int col_dist_sums_first_col_index = up_col_dist_sums(j, index) + calcDist(a_down, b_down) - calcDist(a_up, b_up);
|
|
|
|
|
|
|
|
col_dist_sums(first_col, index) = col_dist_sums_first_col_index;
|
|
|
|
dist_sums[index] += col_dist_sums_first_col_index;
|
|
|
|
up_col_dist_sums(j, index) = col_dist_sums_first_col_index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ __forceinline__ void convolve_search_window(int i, int j, const int* dist_sums, PtrStepi& col_dist_sums, PtrStepi& up_col_dist_sums, T& dst) const
|
|
|
|
{
|
|
|
|
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_type;
|
|
|
|
|
|
|
|
float weights_sum = 0;
|
|
|
|
sum_type sum = VecTraits<sum_type>::all(0);
|
|
|
|
|
|
|
|
float bw2_inv = 1.f/(block_window * block_window);
|
|
|
|
|
|
|
|
int start_x = j - search_radius;
|
|
|
|
int start_y = i - search_radius;
|
|
|
|
|
|
|
|
for(int index = threadIdx.x; index < search_window * search_window; index += STRIDE)
|
|
|
|
{
|
|
|
|
int y = index / search_window;
|
|
|
|
int x = index - y * search_window;
|
|
|
|
|
|
|
|
float avg_dist = dist_sums[index] * bw2_inv;
|
|
|
|
float weight = __expf(avg_dist * minus_h2_inv);
|
|
|
|
weights_sum += weight;
|
|
|
|
|
|
|
|
sum = sum + weight * saturate_cast<sum_type>(src(start_y + y, start_x + x));
|
|
|
|
}
|
|
|
|
|
|
|
|
volatile __shared__ float cta_buffer[CTA_SIZE];
|
|
|
|
|
|
|
|
int tid = threadIdx.x;
|
|
|
|
|
|
|
|
cta_buffer[tid] = weights_sum;
|
|
|
|
__syncthreads();
|
|
|
|
Block::reduce<CTA_SIZE>(cta_buffer, plus());
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
weights_sum = cta_buffer[0];
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
for(int n = 0; n < VecTraits<T>::cn; ++n)
|
|
|
|
{
|
|
|
|
cta_buffer[tid] = reinterpret_cast<float*>(&sum)[n];
|
|
|
|
__syncthreads();
|
|
|
|
Block::reduce<CTA_SIZE>(cta_buffer, plus());
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
reinterpret_cast<float*>(&sum)[n] = cta_buffer[0];
|
|
|
|
__syncthreads();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tid == 0)
|
|
|
|
dst = saturate_cast<T>(sum/weights_sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ __forceinline__ void operator()(PtrStepSz<T>& dst) const
|
|
|
|
{
|
|
|
|
int tbx = blockIdx.x * TILE_COLS;
|
|
|
|
int tby = blockIdx.y * TILE_ROWS;
|
|
|
|
|
|
|
|
int tex = ::min(tbx + TILE_COLS, dst.cols);
|
|
|
|
int tey = ::min(tby + TILE_ROWS, dst.rows);
|
|
|
|
|
|
|
|
PtrStepi col_dist_sums;
|
|
|
|
col_dist_sums.data = buffer.ptr(dst.cols + blockIdx.x * block_window) + blockIdx.y * search_window * search_window;
|
|
|
|
col_dist_sums.step = buffer.step;
|
|
|
|
|
|
|
|
PtrStepi up_col_dist_sums;
|
|
|
|
up_col_dist_sums.data = buffer.data + blockIdx.y * search_window * search_window;
|
|
|
|
up_col_dist_sums.step = buffer.step;
|
|
|
|
|
|
|
|
extern __shared__ int dist_sums[]; //search_window * search_window
|
|
|
|
|
|
|
|
int first_col = -1;
|
|
|
|
|
|
|
|
for (int i = tby; i < tey; ++i)
|
|
|
|
for (int j = tbx; j < tex; ++j)
|
|
|
|
{
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
if (j == tbx)
|
|
|
|
{
|
|
|
|
initSums_TileFistColumn(i, j, dist_sums, col_dist_sums, up_col_dist_sums);
|
|
|
|
first_col = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (i == tby)
|
|
|
|
shiftLeftSums_TileFirstRow(i, j, first_col, dist_sums, col_dist_sums, up_col_dist_sums);
|
|
|
|
else
|
|
|
|
shiftLeftSums_UsingUpSums(i, j, first_col, dist_sums, col_dist_sums, up_col_dist_sums);
|
|
|
|
|
|
|
|
first_col = (first_col + 1) % block_window;
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
convolve_search_window(i, j, dist_sums, col_dist_sums, up_col_dist_sums, dst(i, j));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
__global__ void fast_nlm_kernel(const FastNonLocalMenas<T> fnlm, PtrStepSz<T> dst) { fnlm(dst); }
|
|
|
|
|
|
|
|
void nln_fast_get_buffer_size(const PtrStepSzb& src, int search_window, int block_window, int& buffer_cols, int& buffer_rows)
|
|
|
|
{
|
|
|
|
typedef FastNonLocalMenas<uchar> FNLM;
|
|
|
|
dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
|
|
|
|
|
|
|
|
buffer_cols = search_window * search_window * grid.y;
|
|
|
|
buffer_rows = src.cols + block_window * grid.x;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
void nlm_fast_gpu(const PtrStepSzb& src, PtrStepSzb dst, PtrStepi buffer,
|
|
|
|
int search_window, int block_window, float h, cudaStream_t stream)
|
|
|
|
{
|
|
|
|
typedef FastNonLocalMenas<T> FNLM;
|
|
|
|
FNLM fnlm(search_window, block_window, h);
|
|
|
|
|
|
|
|
fnlm.src = (PtrStepSz<T>)src;
|
|
|
|
fnlm.buffer = buffer;
|
|
|
|
|
|
|
|
dim3 block(FNLM::CTA_SIZE, 1);
|
|
|
|
dim3 grid(divUp(src.cols, FNLM::TILE_COLS), divUp(src.rows, FNLM::TILE_ROWS));
|
|
|
|
int smem = search_window * search_window * sizeof(int);
|
|
|
|
|
|
|
|
|
|
|
|
fast_nlm_kernel<<<grid, block, smem>>>(fnlm, (PtrStepSz<T>)dst);
|
|
|
|
cudaSafeCall ( cudaGetLastError () );
|
|
|
|
if (stream == 0)
|
|
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
|
|
}
|
|
|
|
|
|
|
|
template void nlm_fast_gpu<uchar>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
|
|
|
|
template void nlm_fast_gpu<uchar2>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
|
|
|
|
template void nlm_fast_gpu<uchar3>(const PtrStepSzb&, PtrStepSzb, PtrStepi, int, int, float, cudaStream_t);
|
|
|
|
}
|
|
|
|
}}}
|
|
|
|
|
|
|
|
|
2012-10-02 02:37:20 +08:00
|
|
|
#endif /* CUDA_DISABLER */
|