2018-06-27 21:37:10 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#include "opencv2/objdetect.hpp"
|
|
|
|
// #include "opencv2/calib3d.hpp"
|
|
|
|
|
|
|
|
#include <limits>
|
|
|
|
#include <cmath>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
class QRDecode
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void init(Mat src, double eps_vertical_ = 0.19, double eps_horizontal_ = 0.09);
|
|
|
|
void binarization();
|
|
|
|
bool localization();
|
|
|
|
bool transformation();
|
|
|
|
Mat getBinBarcode() { return bin_barcode; }
|
|
|
|
Mat getLocalizationBarcode() { return local_barcode; }
|
|
|
|
Mat getTransformationBarcode() { return transform_barcode; }
|
|
|
|
std::vector<Point> getTransformationPoints() { return transformation_points; }
|
|
|
|
Mat getStraightBarcode() { return straight_barcode; }
|
|
|
|
protected:
|
|
|
|
std::vector<Vec3d> searchVerticalLines();
|
|
|
|
std::vector<Vec3d> separateHorizontalLines(std::vector<Vec3d> list_lines);
|
|
|
|
std::vector<Vec3d> pointClustering(std::vector<Vec3d> list_lines);
|
|
|
|
void fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len);
|
|
|
|
Point getTransformationPoint(Point left, Point center, double cos_angle_rotation,
|
|
|
|
bool right_rotate = true);
|
|
|
|
Point intersectionLines(Point a1, Point a2, Point b1, Point b2);
|
|
|
|
std::vector<Point> getQuadrilateral(std::vector<Point> angle_list);
|
|
|
|
double getQuadrilateralArea(Point a, Point b, Point c, Point d);
|
|
|
|
double getCosVectors(Point a, Point b, Point c);
|
|
|
|
|
|
|
|
Mat barcode, bin_barcode, local_barcode, transform_barcode, straight_barcode;
|
|
|
|
std::vector<Point> localization_points, transformation_points;
|
|
|
|
std::vector<double> localization_length;
|
|
|
|
double experimental_area;
|
|
|
|
|
|
|
|
double eps_vertical, eps_horizontal;
|
|
|
|
std::vector<Vec3d> result;
|
|
|
|
std::vector<double> test_lines;
|
|
|
|
uint8_t next_pixel, future_pixel;
|
|
|
|
double length, weight;
|
|
|
|
};
|
|
|
|
|
|
|
|
void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_)
|
|
|
|
{
|
|
|
|
barcode = src;
|
|
|
|
eps_vertical = eps_vertical_;
|
|
|
|
eps_horizontal = eps_horizontal_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void QRDecode::binarization()
|
|
|
|
{
|
|
|
|
Mat filter_barcode;
|
|
|
|
GaussianBlur(barcode, filter_barcode, Size(3, 3), 0);
|
|
|
|
threshold(filter_barcode, bin_barcode, 0, 255, THRESH_BINARY + THRESH_OTSU);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool QRDecode::localization()
|
|
|
|
{
|
|
|
|
cvtColor(bin_barcode, local_barcode, COLOR_GRAY2RGB);
|
|
|
|
Point begin, end;
|
|
|
|
|
|
|
|
std::vector<Vec3d> list_lines_x = searchVerticalLines();
|
2018-07-07 22:56:40 +08:00
|
|
|
if (list_lines_x.empty()) return false;
|
2018-06-27 21:37:10 +08:00
|
|
|
std::vector<Vec3d> list_lines_y = separateHorizontalLines(list_lines_x);
|
2018-07-07 22:56:40 +08:00
|
|
|
if (list_lines_y.empty()) return false;
|
2018-06-27 21:37:10 +08:00
|
|
|
std::vector<Vec3d> result_point = pointClustering(list_lines_y);
|
2018-07-07 22:56:40 +08:00
|
|
|
if (result_point.empty()) return false;
|
2018-06-27 21:37:10 +08:00
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
|
{
|
|
|
|
localization_points.push_back(
|
|
|
|
Point(static_cast<int>(result_point[i][0]),
|
|
|
|
static_cast<int>(result_point[i][1] + result_point[i][2])));
|
|
|
|
localization_length.push_back(result_point[i][2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
fixationPoints(localization_points, localization_length);
|
|
|
|
|
|
|
|
|
|
|
|
if (localization_points.size() != 3) { return false; }
|
|
|
|
return true;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Vec3d> QRDecode::searchVerticalLines()
|
|
|
|
{
|
|
|
|
result.clear();
|
|
|
|
int temp_length = 0;
|
|
|
|
|
|
|
|
for (int x = 0; x < bin_barcode.rows; x++)
|
|
|
|
{
|
|
|
|
for (int y = 0; y < bin_barcode.cols; y++)
|
|
|
|
{
|
|
|
|
if (bin_barcode.at<uint8_t>(x, y) > 0) { continue; }
|
|
|
|
|
|
|
|
// --------------- Search vertical lines --------------- //
|
|
|
|
|
|
|
|
test_lines.clear();
|
|
|
|
future_pixel = 255;
|
|
|
|
|
|
|
|
for (int i = x; i < bin_barcode.rows - 1; i++)
|
|
|
|
{
|
|
|
|
next_pixel = bin_barcode.at<uint8_t>(i + 1, y);
|
|
|
|
temp_length++;
|
|
|
|
if (next_pixel == future_pixel)
|
|
|
|
{
|
|
|
|
future_pixel = 255 - future_pixel;
|
|
|
|
test_lines.push_back(temp_length);
|
|
|
|
temp_length = 0;
|
|
|
|
if (test_lines.size() == 5) { break; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// --------------- Compute vertical lines --------------- //
|
|
|
|
|
|
|
|
if (test_lines.size() == 5)
|
|
|
|
{
|
|
|
|
length = 0.0; weight = 0.0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
|
|
|
|
|
|
|
|
for (size_t i = 0; i < test_lines.size(); i++)
|
|
|
|
{
|
|
|
|
if (i == 2) { weight += abs((test_lines[i] / length) - 3.0/7.0); }
|
|
|
|
else { weight += abs((test_lines[i] / length) - 1.0/7.0); }
|
|
|
|
}
|
|
|
|
|
|
|
|
if (weight < eps_vertical)
|
|
|
|
{
|
|
|
|
Vec3d line;
|
|
|
|
line[0] = x; line[1] = y, line[2] = length;
|
|
|
|
result.push_back(line);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Vec3d> QRDecode::separateHorizontalLines(std::vector<Vec3d> list_lines)
|
|
|
|
{
|
|
|
|
result.clear();
|
|
|
|
int temp_length = 0;
|
|
|
|
int x, y;
|
|
|
|
|
|
|
|
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
|
|
|
|
{
|
|
|
|
x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] / 2);
|
|
|
|
y = static_cast<int>(list_lines[pnt][1]);
|
|
|
|
|
|
|
|
// --------------- Search horizontal up-lines --------------- //
|
|
|
|
test_lines.clear();
|
|
|
|
future_pixel = 255;
|
|
|
|
|
|
|
|
for (int j = y; j < bin_barcode.cols - 1; j++)
|
|
|
|
{
|
|
|
|
next_pixel = bin_barcode.at<uint8_t>(x, j + 1);
|
|
|
|
temp_length++;
|
|
|
|
if (next_pixel == future_pixel)
|
|
|
|
{
|
|
|
|
future_pixel = 255 - future_pixel;
|
|
|
|
test_lines.push_back(temp_length);
|
|
|
|
temp_length = 0;
|
|
|
|
if (test_lines.size() == 3) { break; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// --------------- Search horizontal down-lines --------------- //
|
|
|
|
future_pixel = 255;
|
|
|
|
|
|
|
|
for (int j = y; j >= 1; j--)
|
|
|
|
{
|
|
|
|
next_pixel = bin_barcode.at<uint8_t>(x, j - 1);
|
|
|
|
temp_length++;
|
|
|
|
if (next_pixel == future_pixel)
|
|
|
|
{
|
|
|
|
future_pixel = 255 - future_pixel;
|
|
|
|
test_lines.push_back(temp_length);
|
|
|
|
temp_length = 0;
|
|
|
|
if (test_lines.size() == 6) { break; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// --------------- Compute horizontal lines --------------- //
|
|
|
|
|
|
|
|
if (test_lines.size() == 6)
|
|
|
|
{
|
|
|
|
length = 0.0; weight = 0.0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
|
|
|
|
|
|
|
|
for (size_t i = 0; i < test_lines.size(); i++)
|
|
|
|
{
|
|
|
|
if (i % 3 == 0) { weight += abs((test_lines[i] / length) - 3.0/14.0); }
|
|
|
|
else { weight += abs((test_lines[i] / length) - 1.0/ 7.0); }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(weight < eps_horizontal)
|
|
|
|
{
|
|
|
|
result.push_back(list_lines[pnt]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Vec3d> QRDecode::pointClustering(std::vector<Vec3d> list_lines)
|
|
|
|
{
|
|
|
|
std::vector<Vec3d> centers;
|
|
|
|
std::vector<Point> clusters[3];
|
|
|
|
double weight_clusters[3] = {0.0, 0.0, 0.0};
|
|
|
|
Point basis[3], temp_pnt;
|
|
|
|
double temp_norm = 0.0, temp_compute_norm, distance[3];
|
|
|
|
|
|
|
|
basis[0] = Point(static_cast<int>(list_lines[0][1]), static_cast<int>(list_lines[0][0]));
|
|
|
|
for (size_t i = 1; i < list_lines.size(); i++)
|
|
|
|
{
|
|
|
|
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
|
|
|
|
temp_compute_norm = norm(basis[0] - temp_pnt);
|
|
|
|
if (temp_norm < temp_compute_norm)
|
|
|
|
{
|
|
|
|
basis[1] = temp_pnt;
|
|
|
|
temp_norm = temp_compute_norm;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 1; i < list_lines.size(); i++)
|
|
|
|
{
|
|
|
|
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
|
|
|
|
temp_compute_norm = norm(basis[0] - temp_pnt) + norm(basis[1] - temp_pnt);
|
|
|
|
if (temp_norm < temp_compute_norm)
|
|
|
|
{
|
|
|
|
basis[2] = temp_pnt;
|
|
|
|
temp_norm = temp_compute_norm;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < list_lines.size(); i++)
|
|
|
|
{
|
|
|
|
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
|
|
|
|
distance[0] = norm(basis[0] - temp_pnt);
|
|
|
|
distance[1] = norm(basis[1] - temp_pnt);
|
|
|
|
distance[2] = norm(basis[2] - temp_pnt);
|
|
|
|
if (distance[0] < distance[1] && distance[0] < distance[2])
|
|
|
|
{
|
|
|
|
clusters[0].push_back(temp_pnt);
|
|
|
|
weight_clusters[0] += list_lines[i][2];
|
|
|
|
}
|
|
|
|
else if (distance[1] < distance[0] && distance[1] < distance[2])
|
|
|
|
{
|
|
|
|
clusters[1].push_back(temp_pnt);
|
|
|
|
weight_clusters[1] += list_lines[i][2];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
clusters[2].push_back(temp_pnt);
|
|
|
|
weight_clusters[2] += list_lines[i][2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < 3; i++)
|
|
|
|
{
|
|
|
|
basis[i] = Point(0, 0);
|
|
|
|
for (size_t j = 0; j < clusters[i].size(); j++) { basis[i] += clusters[i][j]; }
|
|
|
|
basis[i] = basis[i] / static_cast<int>(clusters[i].size());
|
|
|
|
weight = weight_clusters[i] / (2 * clusters[i].size());
|
|
|
|
centers.push_back(Vec3d(basis[i].x, basis[i].y, weight));
|
|
|
|
}
|
|
|
|
|
|
|
|
return centers;
|
|
|
|
}
|
|
|
|
|
|
|
|
void QRDecode::fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len)
|
|
|
|
{
|
|
|
|
double cos_angles[3], norm_triangl[3];
|
|
|
|
|
|
|
|
norm_triangl[0] = norm(local_point[1] - local_point[2]);
|
|
|
|
norm_triangl[1] = norm(local_point[0] - local_point[2]);
|
|
|
|
norm_triangl[2] = norm(local_point[1] - local_point[0]);
|
|
|
|
|
|
|
|
cos_angles[0] = (pow(norm_triangl[1], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[0], 2))
|
|
|
|
/ (2 * norm_triangl[1] * norm_triangl[2]);
|
|
|
|
cos_angles[1] = (pow(norm_triangl[0], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[1], 2))
|
|
|
|
/ (2 * norm_triangl[0] * norm_triangl[2]);
|
|
|
|
cos_angles[2] = (pow(norm_triangl[0], 2) + pow(norm_triangl[1], 2) - pow(norm_triangl[2], 2))
|
|
|
|
/ (2 * norm_triangl[0] * norm_triangl[1]);
|
|
|
|
|
|
|
|
int i_min_cos =
|
|
|
|
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
|
|
|
|
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
|
|
|
|
|
|
|
|
Point temp_pnt;
|
|
|
|
double tmp_len;
|
|
|
|
temp_pnt = local_point[0];
|
|
|
|
tmp_len = local_len[0];
|
|
|
|
local_point[0] = local_point[i_min_cos];
|
|
|
|
local_len[0] = local_len[i_min_cos];
|
|
|
|
local_point[i_min_cos] = temp_pnt;
|
|
|
|
local_len[i_min_cos] = tmp_len;
|
|
|
|
|
|
|
|
Mat vector_mult(Size(3, 3), CV_32FC1);
|
|
|
|
vector_mult.at<float>(0, 0) = 1;
|
|
|
|
vector_mult.at<float>(1, 0) = 1;
|
|
|
|
vector_mult.at<float>(2, 0) = 1;
|
|
|
|
vector_mult.at<float>(0, 1) = static_cast<float>((local_point[1] - local_point[0]).x);
|
|
|
|
vector_mult.at<float>(1, 1) = static_cast<float>((local_point[1] - local_point[0]).y);
|
|
|
|
vector_mult.at<float>(0, 2) = static_cast<float>((local_point[2] - local_point[0]).x);
|
|
|
|
vector_mult.at<float>(1, 2) = static_cast<float>((local_point[2] - local_point[0]).y);
|
|
|
|
double res_vect_mult = determinant(vector_mult);
|
|
|
|
if (res_vect_mult < 0)
|
|
|
|
{
|
|
|
|
temp_pnt = local_point[1];
|
|
|
|
tmp_len = local_len[1];
|
|
|
|
local_point[1] = local_point[2];
|
|
|
|
local_len[1] = local_len[2];
|
|
|
|
local_point[2] = temp_pnt;
|
|
|
|
local_len[2] = tmp_len;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool QRDecode::transformation()
|
|
|
|
{
|
|
|
|
cvtColor(bin_barcode, transform_barcode, COLOR_GRAY2RGB);
|
|
|
|
if (localization_points.size() != 3) { return false; }
|
|
|
|
|
|
|
|
Point red = localization_points[0];
|
|
|
|
Point green = localization_points[1];
|
|
|
|
Point blue = localization_points[2];
|
|
|
|
Point adj_b_r_pnt, adj_r_b_pnt, adj_g_r_pnt, adj_r_g_pnt;
|
|
|
|
Point line_r_b_pnt, line_r_g_pnt, norm_r_b_pnt, norm_r_g_pnt;
|
|
|
|
adj_b_r_pnt = getTransformationPoint(blue, red, -1);
|
|
|
|
adj_r_b_pnt = getTransformationPoint(red, blue, -1);
|
|
|
|
adj_g_r_pnt = getTransformationPoint(green, red, -1);
|
|
|
|
adj_r_g_pnt = getTransformationPoint(red, green, -1);
|
|
|
|
line_r_b_pnt = getTransformationPoint(red, blue, -0.91);
|
|
|
|
line_r_g_pnt = getTransformationPoint(red, green, -0.91);
|
|
|
|
norm_r_b_pnt = getTransformationPoint(red, blue, 0.0, true);
|
|
|
|
norm_r_g_pnt = getTransformationPoint(red, green, 0.0, false);
|
|
|
|
|
|
|
|
transformation_points.push_back(intersectionLines(
|
|
|
|
adj_r_g_pnt, line_r_g_pnt, adj_r_b_pnt, line_r_b_pnt));
|
|
|
|
transformation_points.push_back(intersectionLines(
|
|
|
|
adj_b_r_pnt, norm_r_g_pnt, adj_r_g_pnt, line_r_g_pnt));
|
|
|
|
transformation_points.push_back(intersectionLines(
|
|
|
|
norm_r_b_pnt, adj_g_r_pnt, adj_b_r_pnt, norm_r_g_pnt));
|
|
|
|
transformation_points.push_back(intersectionLines(
|
|
|
|
norm_r_b_pnt, adj_g_r_pnt, adj_r_b_pnt, line_r_b_pnt));
|
|
|
|
|
|
|
|
experimental_area = getQuadrilateralArea(transformation_points[0],
|
|
|
|
transformation_points[1],
|
|
|
|
transformation_points[2],
|
|
|
|
transformation_points[3]);
|
|
|
|
std::vector<Point> quadrilateral = getQuadrilateral(transformation_points);
|
|
|
|
transformation_points = quadrilateral;
|
|
|
|
|
|
|
|
int max_length_norm = -1;
|
|
|
|
size_t transform_size = transformation_points.size();
|
|
|
|
for (size_t i = 0; i < transform_size; i++)
|
|
|
|
{
|
|
|
|
int len_norm = static_cast<int>(norm(transformation_points[i % transform_size] -
|
|
|
|
transformation_points[(i + 1) % transform_size]));
|
|
|
|
if (max_length_norm < len_norm) { max_length_norm = len_norm; }
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Point> perspective_points;
|
|
|
|
perspective_points.push_back(Point(0, 0));
|
|
|
|
perspective_points.push_back(Point(0, max_length_norm));
|
|
|
|
perspective_points.push_back(Point(max_length_norm, max_length_norm));
|
|
|
|
perspective_points.push_back(Point(max_length_norm, 0));
|
|
|
|
|
|
|
|
// warpPerspective(bin_barcode, straight_barcode,
|
|
|
|
// findHomography(transformation_points, perspective_points),
|
|
|
|
// Size(max_length_norm, max_length_norm));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Point QRDecode::getTransformationPoint(Point left, Point center, double cos_angle_rotation,
|
|
|
|
bool right_rotate)
|
|
|
|
{
|
|
|
|
Point temp_pnt, prev_pnt(0, 0), next_pnt, start_pnt(center);
|
|
|
|
double temp_delta, min_delta;
|
|
|
|
int steps = 0;
|
|
|
|
|
|
|
|
future_pixel = 255;
|
|
|
|
while(true)
|
|
|
|
{
|
|
|
|
min_delta = std::numeric_limits<double>::max();
|
|
|
|
for (int i = -1; i < 2; i++)
|
|
|
|
{
|
|
|
|
for (int j = -1; j < 2; j++)
|
|
|
|
{
|
|
|
|
if (i == 0 && j == 0) { continue; }
|
|
|
|
temp_pnt = Point(start_pnt.x + i, start_pnt.y + j);
|
|
|
|
temp_delta = abs(getCosVectors(left, center, temp_pnt) - cos_angle_rotation);
|
|
|
|
if (temp_delta < min_delta && prev_pnt != temp_pnt)
|
|
|
|
{
|
|
|
|
next_pnt = temp_pnt;
|
|
|
|
min_delta = temp_delta;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
prev_pnt = start_pnt;
|
|
|
|
start_pnt = next_pnt;
|
|
|
|
next_pixel = bin_barcode.at<uint8_t>(start_pnt.y, start_pnt.x);
|
|
|
|
if (next_pixel == future_pixel)
|
|
|
|
{
|
|
|
|
future_pixel = 255 - future_pixel;
|
|
|
|
steps++;
|
|
|
|
if (steps == 3) { break; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cos_angle_rotation == 0.0)
|
|
|
|
{
|
|
|
|
Mat vector_mult(Size(3, 3), CV_32FC1);
|
|
|
|
vector_mult.at<float>(0, 0) = 1;
|
|
|
|
vector_mult.at<float>(1, 0) = 1;
|
|
|
|
vector_mult.at<float>(2, 0) = 1;
|
|
|
|
vector_mult.at<float>(0, 1) = static_cast<float>((left - center).x);
|
|
|
|
vector_mult.at<float>(1, 1) = static_cast<float>((left - center).y);
|
|
|
|
vector_mult.at<float>(0, 2) = static_cast<float>((left - start_pnt).x);
|
|
|
|
vector_mult.at<float>(1, 2) = static_cast<float>((left - start_pnt).y);
|
|
|
|
double res_vect_mult = determinant(vector_mult);
|
|
|
|
if (( right_rotate && res_vect_mult < 0) ||
|
|
|
|
(!right_rotate && res_vect_mult > 0))
|
|
|
|
{
|
|
|
|
start_pnt = getTransformationPoint(start_pnt, center, -1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return start_pnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
Point QRDecode::intersectionLines(Point a1, Point a2, Point b1, Point b2)
|
|
|
|
{
|
|
|
|
Point result_square_angle(
|
|
|
|
static_cast<int>(
|
|
|
|
static_cast<double>
|
|
|
|
((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) -
|
|
|
|
(b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) /
|
|
|
|
((a1.x - a2.x) * (b1.y - b2.y) -
|
|
|
|
(a1.y - a2.y) * (b1.x - b2.x))),
|
|
|
|
static_cast<int>(
|
|
|
|
static_cast<double>
|
|
|
|
((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) -
|
|
|
|
(b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) /
|
|
|
|
((a1.x - a2.x) * (b1.y - b2.y) -
|
|
|
|
(a1.y - a2.y) * (b1.x - b2.x)))
|
|
|
|
);
|
|
|
|
return result_square_angle;
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
|
|
|
|
{
|
|
|
|
size_t angle_size = angle_list.size();
|
|
|
|
uint8_t value, mask_value;
|
|
|
|
Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
|
|
|
|
for (size_t i = 0; i < angle_size; i++)
|
|
|
|
{
|
|
|
|
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size],
|
|
|
|
angle_list[(i + 1) % angle_size]);
|
|
|
|
for(int j = 0; j < line_iter.count; j++, ++line_iter)
|
|
|
|
{
|
|
|
|
value = bin_barcode.at<uint8_t>(line_iter.pos());
|
|
|
|
mask_value = mask.at<uint8_t>(line_iter.pos() + Point(1, 1));
|
|
|
|
if (value == 0 && mask_value == 0)
|
|
|
|
{
|
|
|
|
floodFill(bin_barcode, mask, line_iter.pos(), 255);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
std::vector<Point> locations;
|
|
|
|
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1),
|
|
|
|
Range(1, bin_barcode.cols - 1));
|
|
|
|
|
|
|
|
cv::findNonZero(mask_roi, locations);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < angle_list.size(); i++)
|
|
|
|
{
|
|
|
|
locations.push_back(angle_list[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector< std::vector<Point> > hull(1), approx_hull(1);
|
|
|
|
convexHull(Mat(locations), hull[0]);
|
|
|
|
int hull_size = static_cast<int>(hull[0].size());
|
|
|
|
|
|
|
|
Point min_pnt;
|
|
|
|
|
|
|
|
std::vector<Point> min_abc;
|
|
|
|
double min_abs_cos_abc, abs_cos_abc;
|
|
|
|
for (int count = 0; count < 4; count++)
|
|
|
|
{
|
|
|
|
min_abs_cos_abc = std::numeric_limits<double>::max();
|
|
|
|
for (int i = 0; i < hull_size; i++)
|
|
|
|
{
|
|
|
|
Point a = hull[0][ i % hull_size];
|
|
|
|
Point b = hull[0][(i + 1) % hull_size];
|
|
|
|
Point c = hull[0][(i + 2) % hull_size];
|
|
|
|
abs_cos_abc = abs(getCosVectors(a, b, c));
|
|
|
|
|
|
|
|
bool flag_detect = true;
|
|
|
|
for (size_t j = 0; j < min_abc.size(); j++)
|
|
|
|
{
|
|
|
|
if (min_abc[j] == b) { flag_detect = false; break; }
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flag_detect && (abs_cos_abc < min_abs_cos_abc))
|
|
|
|
{
|
|
|
|
min_pnt = b;
|
|
|
|
min_abs_cos_abc = abs_cos_abc;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
min_abc.push_back(min_pnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int min_abc_size = static_cast<int>(min_abc.size());
|
|
|
|
std::vector<int> index_min_abc(min_abc_size);
|
|
|
|
for (int i = 0; i < min_abc_size; i++)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < hull_size; j++)
|
|
|
|
{
|
|
|
|
if (hull[0][j] == min_abc[i]) { index_min_abc[i] = j; break; }
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Point> result_hull_point(angle_size);
|
|
|
|
double min_norm, temp_norm;
|
|
|
|
for (size_t i = 0; i < angle_size; i++)
|
|
|
|
{
|
|
|
|
min_norm = std::numeric_limits<double>::max();
|
|
|
|
Point closest_pnt;
|
|
|
|
for (int j = 0; j < min_abc_size; j++)
|
|
|
|
{
|
|
|
|
if (min_norm > norm(hull[0][index_min_abc[j]] - angle_list[i]))
|
|
|
|
{
|
|
|
|
min_norm = norm(hull[0][index_min_abc[j]] - angle_list[i]);
|
|
|
|
closest_pnt = hull[0][index_min_abc[j]];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result_hull_point[i] = closest_pnt;
|
|
|
|
}
|
|
|
|
|
|
|
|
int start_line[2] = {0, 0}, finish_line[2] = {0, 0}, unstable_pnt = 0;
|
|
|
|
for (int i = 0; i < hull_size; i++)
|
|
|
|
{
|
|
|
|
if (result_hull_point[3] == hull[0][i]) { start_line[0] = i; }
|
|
|
|
if (result_hull_point[2] == hull[0][i]) { finish_line[0] = start_line[1] = i; }
|
|
|
|
if (result_hull_point[1] == hull[0][i]) { finish_line[1] = i; }
|
|
|
|
if (result_hull_point[0] == hull[0][i]) { unstable_pnt = i; }
|
|
|
|
}
|
|
|
|
|
|
|
|
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull, count_points;
|
|
|
|
Point result_side_begin[4], result_side_end[4];
|
|
|
|
|
|
|
|
min_norm = std::numeric_limits<double>::max();
|
|
|
|
index_hull = start_line[0];
|
|
|
|
count_points = abs(start_line[0] - finish_line[0]);
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; }
|
|
|
|
else { next_index_hull = index_hull - 1; }
|
|
|
|
|
|
|
|
if (next_index_hull == hull_size) { next_index_hull = 0; }
|
|
|
|
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
|
|
|
|
|
|
|
|
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[2]) >
|
|
|
|
norm(hull[0][index_hull] - angle_list[3]) ? angle_list[3] : angle_list[2];
|
|
|
|
|
|
|
|
Point intrsc_line_hull =
|
|
|
|
intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
|
|
|
|
angle_list[2], angle_list[3]);
|
|
|
|
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt);
|
|
|
|
if (min_norm > temp_norm &&
|
|
|
|
norm(hull[0][index_hull] - hull[0][next_index_hull]) >
|
|
|
|
norm(angle_list[2] - angle_list[3]) / 10)
|
|
|
|
{
|
|
|
|
min_norm = temp_norm;
|
|
|
|
result_side_begin[0] = hull[0][index_hull];
|
|
|
|
result_side_end[0] = hull[0][next_index_hull];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
index_hull = next_index_hull;
|
|
|
|
}
|
|
|
|
while(index_hull != finish_line[0]);
|
|
|
|
|
|
|
|
if (min_norm == std::numeric_limits<double>::max())
|
|
|
|
{
|
|
|
|
result_side_begin[0] = angle_list[2];
|
|
|
|
result_side_end[0] = angle_list[3];
|
|
|
|
}
|
|
|
|
|
|
|
|
min_norm = std::numeric_limits<double>::max();
|
|
|
|
index_hull = start_line[1];
|
|
|
|
count_points = abs(start_line[1] - finish_line[1]);
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; }
|
|
|
|
else { next_index_hull = index_hull - 1; }
|
|
|
|
|
|
|
|
if (next_index_hull == hull_size) { next_index_hull = 0; }
|
|
|
|
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
|
|
|
|
|
|
|
|
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[1]) >
|
|
|
|
norm(hull[0][index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
|
|
|
|
|
|
|
|
Point intrsc_line_hull =
|
|
|
|
intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
|
|
|
|
angle_list[1], angle_list[2]);
|
|
|
|
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt);
|
|
|
|
if (min_norm > temp_norm &&
|
|
|
|
norm(hull[0][index_hull] - hull[0][next_index_hull]) >
|
|
|
|
norm(angle_list[1] - angle_list[2]) / 20)
|
|
|
|
{
|
|
|
|
min_norm = temp_norm;
|
|
|
|
result_side_begin[1] = hull[0][index_hull];
|
|
|
|
result_side_end[1] = hull[0][next_index_hull];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
index_hull = next_index_hull;
|
|
|
|
}
|
|
|
|
while(index_hull != finish_line[1]);
|
|
|
|
|
|
|
|
if (min_norm == std::numeric_limits<double>::max())
|
|
|
|
{
|
|
|
|
result_side_begin[1] = angle_list[1];
|
|
|
|
result_side_end[1] = angle_list[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
double test_norm[4] = { 0.0, 0.0, 0.0, 0.0 };
|
|
|
|
int test_index[4];
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
|
|
{
|
|
|
|
test_index[i] = (i < 2) ? static_cast<int>(start_line[0])
|
|
|
|
: static_cast<int>(finish_line[1]);
|
|
|
|
do
|
|
|
|
{
|
|
|
|
next_index_hull = ((i + 1) % 2 != 0) ? test_index[i] + 1 : test_index[i] - 1;
|
|
|
|
if (next_index_hull == hull_size) { next_index_hull = 0; }
|
|
|
|
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
|
|
|
|
test_norm[i] += norm(hull[0][next_index_hull] - hull[0][unstable_pnt]);
|
|
|
|
test_index[i] = next_index_hull;
|
|
|
|
}
|
|
|
|
while(test_index[i] != unstable_pnt);
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<Point> result_angle_list(4), test_result_angle_list(4);
|
|
|
|
double min_area = std::numeric_limits<double>::max(), test_area;
|
|
|
|
index_hull = start_line[0];
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (test_norm[0] < test_norm[1]) { next_index_hull = index_hull + 1; }
|
|
|
|
else { next_index_hull = index_hull - 1; }
|
|
|
|
|
|
|
|
if (next_index_hull == hull_size) { next_index_hull = 0; }
|
|
|
|
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
|
|
|
|
|
|
|
|
extra_index_hull = finish_line[1];
|
|
|
|
do
|
|
|
|
{
|
|
|
|
if (test_norm[2] < test_norm[3]) { extra_next_index_hull = extra_index_hull + 1; }
|
|
|
|
else { extra_next_index_hull = extra_index_hull - 1; }
|
|
|
|
|
|
|
|
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
|
|
|
|
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
|
|
|
|
|
|
|
|
test_result_angle_list[0]
|
|
|
|
= intersectionLines(result_side_begin[0], result_side_end[0],
|
|
|
|
result_side_begin[1], result_side_end[1]);
|
|
|
|
test_result_angle_list[1]
|
|
|
|
= intersectionLines(result_side_begin[1], result_side_end[1],
|
|
|
|
hull[0][extra_index_hull], hull[0][extra_next_index_hull]);
|
|
|
|
test_result_angle_list[2]
|
|
|
|
= intersectionLines(hull[0][extra_index_hull], hull[0][extra_next_index_hull],
|
|
|
|
hull[0][index_hull], hull[0][next_index_hull]);
|
|
|
|
test_result_angle_list[3]
|
|
|
|
= intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
|
|
|
|
result_side_begin[0], result_side_end[0]);
|
|
|
|
test_area = getQuadrilateralArea(test_result_angle_list[0],
|
|
|
|
test_result_angle_list[1],
|
|
|
|
test_result_angle_list[2],
|
|
|
|
test_result_angle_list[3]);
|
|
|
|
if (min_area > test_area)
|
|
|
|
{
|
|
|
|
min_area = test_area;
|
|
|
|
for (size_t i = 0; i < test_result_angle_list.size(); i++)
|
|
|
|
{
|
|
|
|
result_angle_list[i] = test_result_angle_list[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
extra_index_hull = extra_next_index_hull;
|
|
|
|
}
|
|
|
|
while(extra_index_hull != unstable_pnt);
|
|
|
|
|
|
|
|
index_hull = next_index_hull;
|
|
|
|
}
|
|
|
|
while(index_hull != unstable_pnt);
|
|
|
|
|
|
|
|
if (norm(result_angle_list[0] - angle_list[2]) >
|
|
|
|
norm(angle_list[2] - angle_list[1]) / 3) { result_angle_list[0] = angle_list[2]; }
|
|
|
|
|
|
|
|
if (norm(result_angle_list[1] - angle_list[1]) >
|
|
|
|
norm(angle_list[1] - angle_list[0]) / 3) { result_angle_list[1] = angle_list[1]; }
|
|
|
|
|
|
|
|
if (norm(result_angle_list[2] - angle_list[0]) >
|
|
|
|
norm(angle_list[0] - angle_list[3]) / 3) { result_angle_list[2] = angle_list[0]; }
|
|
|
|
|
|
|
|
if (norm(result_angle_list[3] - angle_list[3]) >
|
|
|
|
norm(angle_list[3] - angle_list[2]) / 3) { result_angle_list[3] = angle_list[3]; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return result_angle_list;
|
|
|
|
}
|
|
|
|
|
|
|
|
// b __________ c
|
|
|
|
// / |
|
|
|
|
// / |
|
|
|
|
// / S |
|
|
|
|
// / |
|
|
|
|
// a --------------- d
|
|
|
|
|
|
|
|
double QRDecode::getQuadrilateralArea(Point a, Point b, Point c, Point d)
|
|
|
|
{
|
|
|
|
double length_sides[4], perimeter = 0.0, result_area = 1.0;
|
|
|
|
length_sides[0] = norm(a - b); length_sides[1] = norm(b - c);
|
|
|
|
length_sides[2] = norm(c - d); length_sides[3] = norm(d - a);
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++) { perimeter += length_sides[i]; }
|
|
|
|
perimeter /= 2;
|
|
|
|
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
|
|
{
|
|
|
|
result_area *= (perimeter - length_sides[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
result_area = sqrt(result_area);
|
|
|
|
|
|
|
|
return result_area;
|
|
|
|
}
|
|
|
|
|
|
|
|
// / | b
|
|
|
|
// / |
|
|
|
|
// / |
|
|
|
|
// a/ | c
|
|
|
|
|
|
|
|
double QRDecode::getCosVectors(Point a, Point b, Point c)
|
|
|
|
{
|
|
|
|
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double eps_x, double eps_y)
|
|
|
|
{
|
|
|
|
CV_Assert(in.isMat());
|
|
|
|
CV_Assert(in.getMat().type() == CV_8UC1);
|
|
|
|
QRDecode qrdec;
|
|
|
|
qrdec.init(in.getMat(), eps_x, eps_y);
|
|
|
|
qrdec.binarization();
|
|
|
|
if (!qrdec.localization()) { return false; }
|
|
|
|
if (!qrdec.transformation()) { return false; }
|
|
|
|
points = qrdec.getTransformationPoints();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|