opencv/modules/imgproc/src/deriv.cpp

862 lines
33 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
#endif
/****************************************************************************************\
Sobel & Scharr Derivative Filters
\****************************************************************************************/
namespace cv
{
static void getScharrKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, bool normalize, int ktype )
{
const int ksize = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksize, 1, ktype, -1, true);
_ky.create(ksize, 1, ktype, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int kerI[3];
if( order == 0 )
kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize || order == 1 ? 1. : 1./32;
temp.convertTo(*kernel, ktype, scale);
}
}
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, int _ksize, bool normalize, int ktype )
{
int i, j, ksizeX = _ksize, ksizeY = _ksize;
if( ksizeX == 1 && dx > 0 )
ksizeX = 3;
if( ksizeY == 1 && dy > 0 )
ksizeY = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksizeX, 1, ktype, -1, true);
_ky.create(ksizeY, 1, ktype, -1, true);
Mat kx = _kx.getMat();
2012-10-17 15:12:04 +08:00
Mat ky = _ky.getMat();
if( _ksize % 2 == 0 || _ksize > 31 )
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int ksize = k == 0 ? ksizeX : ksizeY;
CV_Assert( ksize > order );
if( ksize == 1 )
kerI[0] = 1;
else if( ksize == 3 )
{
if( order == 0 )
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
else
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
}
else
{
int oldval, newval;
kerI[0] = 1;
for( i = 0; i < ksize; i++ )
kerI[i+1] = 0;
for( i = 0; i < ksize - order - 1; i++ )
{
oldval = kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j]+kerI[j-1];
kerI[j-1] = oldval;
oldval = newval;
}
}
for( i = 0; i < order; i++ )
{
oldval = -kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j-1] - kerI[j];
kerI[j-1] = oldval;
oldval = newval;
}
}
}
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1));
temp.convertTo(*kernel, ktype, scale);
}
}
}
void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy,
int ksize, bool normalize, int ktype )
{
if( ksize <= 0 )
getScharrKernels( kx, ky, dx, dy, normalize, ktype );
else
getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype );
}
cv::Ptr<cv::FilterEngine> cv::createDerivFilter(int srcType, int dstType,
int dx, int dy, int ksize, int borderType )
{
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F );
return createSeparableLinearFilter(srcType, dstType,
kx, ky, Point(-1,-1), 0, borderType );
}
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
namespace cv
{
#if (IPP_VERSION_X100 >= 801)
static bool IPPDerivScharr(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, double scale, double delta, int borderType)
{
if ((0 > dx) || (0 > dy) || (1 != dx + dy))
return false;
2014-04-15 14:00:08 +08:00
if (fabs(delta) > FLT_EPSILON)
return false;
2014-04-15 14:00:08 +08:00
IppiBorderType ippiBorderType = ippiGetBorderType(borderType & (~BORDER_ISOLATED));
if ((int)ippiBorderType < 0)
return false;
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
int dtype = CV_MAKETYPE(ddepth, cn);
Mat src = _src.getMat();
if (0 == (BORDER_ISOLATED & borderType))
{
Size size; Point offset;
src.locateROI(size, offset);
if (0 < offset.x)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemLeft);
if (0 < offset.y)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemTop);
if (offset.x + src.cols < size.width)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemRight);
if (offset.y + src.rows < size.height)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemBottom);
}
bool horz = (0 == dx) && (1 == dy);
IppiSize roiSize = {src.cols, src.rows};
_dst.create( _src.size(), dtype);
Mat dst = _dst.getMat();
if ((CV_8U == stype) && (CV_16S == dtype))
{
int bufferSize = 0; Ipp8u *pBuffer; IppStatus sts;
if (horz)
{
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp8u, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = ippiFilterScharrHorizMaskBorder_8u16s_C1R(src.data, (int)src.step, (Ipp16s *)dst.data, (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
else
{
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp8u, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = ippiFilterScharrVertMaskBorder_8u16s_C1R(src.data, (int)src.step, (Ipp16s *)dst.data, (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
ippsFree(pBuffer);
return (0 <= sts);
}
else if ((CV_16S == stype) && (CV_16S == dtype))
{
int bufferSize = 0; Ipp8u *pBuffer; IppStatus sts;
if (horz)
{
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp16s, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = ippiFilterScharrHorizMaskBorder_16s_C1R((Ipp16s *)src.data, (int)src.step, (Ipp16s *)dst.data, (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
else
{
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp16s, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = ippiFilterScharrVertMaskBorder_16s_C1R((Ipp16s *)src.data, (int)src.step, (Ipp16s *)dst.data, (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
ippsFree(pBuffer);
return (0 <= sts);
}
else if ((CV_32F == stype) && (CV_32F == dtype))
{
int bufferSize = 0; Ipp8u *pBuffer; IppStatus sts;
if (horz)
{
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp32f, ipp32f, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = ippiFilterScharrHorizMaskBorder_32f_C1R((Ipp32f *)src.data, (int)src.step, (Ipp32f *)dst.data, (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
else
{
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp32f, ipp32f, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = ippiFilterScharrVertMaskBorder_32f_C1R((Ipp32f *)src.data, (int)src.step, (Ipp32f *)dst.data, (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
ippsFree(pBuffer);
if (sts < 0)
return false;
if (FLT_EPSILON < fabs(scale - 1.0))
ippiMulC_32f_C1R((Ipp32f *)dst.data, (int)dst.step, (Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, roiSize);
return true;
}
return false;
}
#elif (IPP_VERSION_MAJOR >= 7)
static bool IPPDerivScharr(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, double scale, double delta, int borderType)
{
2014-04-15 20:20:18 +08:00
if (BORDER_REPLICATE != borderType)
return false;
if ((0 > dx) || (0 > dy) || (1 != dx + dy))
return false;
2014-04-15 20:20:18 +08:00
if (fabs(delta) > FLT_EPSILON)
return false;
Mat src = _src.getMat(), dst = _dst.getMat();
int bufSize = 0;
cv::AutoBuffer<char> buffer;
IppiSize roi = ippiSize(src.cols, src.rows);
if( ddepth < 0 )
ddepth = src.depth();
dst.create( src.size(), CV_MAKETYPE(ddepth, src.channels()) );
switch(src.type())
{
2014-04-16 23:45:35 +08:00
case CV_8UC1:
{
if(scale != 1)
return false;
switch(dst.type())
{
case CV_16S:
{
if ((dx == 1) && (dy == 0))
{
if (0 > ippiFilterScharrVertGetBufferSize_8u16s_C1R(roi,&bufSize))
return false;
buffer.allocate(bufSize);
return (0 <= ippiFilterScharrVertBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer));
}
if ((dx == 0) && (dy == 1))
{
if (0 > ippiFilterScharrHorizGetBufferSize_8u16s_C1R(roi,&bufSize))
return false;
buffer.allocate(bufSize);
return (0 <= ippiFilterScharrHorizBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, roi, ippBorderRepl, 0, (Ipp8u*)(char*)buffer));
}
return false;
}
default:
return false;
}
}
2014-04-16 23:45:35 +08:00
case CV_32FC1:
#if defined(HAVE_IPP_ICV_ONLY) // N/A: ippiMulC_32f_C1R
return false;
#else
{
switch(dst.type())
{
2014-04-16 23:45:35 +08:00
case CV_32FC1:
{
if ((dx == 1) && (dy == 0))
{
if (0 > ippiFilterScharrVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize))
return false;
buffer.allocate(bufSize);
if (0 > ippiFilterScharrVertBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
{
return false;
}
if (scale != 1)
/* IPP is fast, so MulC produce very little perf degradation.*/
//ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f*)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
ippiMulC_32f_C1R((Ipp32f*)dst.data, (int)dst.step, (Ipp32f)scale, (Ipp32f*)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if ((dx == 0) && (dy == 1))
{
if (0 > ippiFilterScharrHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows),&bufSize))
return false;
buffer.allocate(bufSize);
if (0 > ippiFilterScharrHorizBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
if (scale != 1)
ippiMulC_32f_C1R((Ipp32f *)dst.data, (int)dst.step, (Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
}
default:
return false;
}
}
#endif
default:
return false;
}
}
#endif
2014-04-18 19:13:34 +08:00
static bool IPPDerivSobel(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType)
{
2014-04-18 19:13:34 +08:00
if ((borderType != BORDER_REPLICATE) || (3 != ksize) || (5 != ksize))
return false;
if (fabs(delta) > FLT_EPSILON)
return false;
2014-04-18 19:13:34 +08:00
if (1 != _src.channels())
return false;
int bufSize = 0;
cv::AutoBuffer<char> buffer;
Mat src = _src.getMat(), dst = _dst.getMat();
if ( ddepth < 0 )
ddepth = src.depth();
if (src.type() == CV_8U && dst.type() == CV_16S && scale == 1)
{
if ((dx == 1) && (dy == 0))
{
if (0 > ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize))
return false;
buffer.allocate(bufSize);
return (0 <= ippiFilterSobelNegVertBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer));
}
if ((dx == 0) && (dy == 1))
{
if (0 > ippiFilterSobelHorizGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize))
return false;
buffer.allocate(bufSize);
return (0 <= ippiFilterSobelHorizBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer));
}
if ((dx == 2) && (dy == 0))
{
if (0 > ippiFilterSobelVertSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize))
return false;
buffer.allocate(bufSize);
return (0 <= ippiFilterSobelVertSecondBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer));
}
if ((dx == 0) && (dy == 2))
{
if (0 > ippiFilterSobelHorizSecondGetBufferSize_8u16s_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize))
return false;
buffer.allocate(bufSize);
return (0 <= ippiFilterSobelHorizSecondBorder_8u16s_C1R((const Ipp8u*)src.data, (int)src.step,
(Ipp16s*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer));
}
}
if (src.type() == CV_32F && dst.type() == CV_32F)
{
#if defined(HAVE_IPP_ICV_ONLY) // N/A: ippiMulC_32f_C1R
return false;
#else
2014-04-08 18:37:46 +08:00
#if 0
if ((dx == 1) && (dy == 0))
{
if (0 > ippiFilterSobelNegVertGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize), &bufSize))
return false;
buffer.allocate(bufSize);
if (0 > ippiFilterSobelNegVertBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
{
return false;
}
if(scale != 1)
ippiMulC_32f_C1R((Ipp32f *)dst.data, (int)dst.step, (Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if ((dx == 0) && (dy == 1))
{
if (0 > ippiFilterSobelHorizGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize))
return false;
buffer.allocate(bufSize);
if (0 > ippiFilterSobelHorizBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
{
return false;
}
if(scale != 1)
ippiMulC_32f_C1R((Ipp32f *)dst.data, (int)dst.step, (Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
2014-04-08 18:37:46 +08:00
#endif
if((dx == 2) && (dy == 0))
{
if (0 > ippiFilterSobelVertSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize))
return false;
buffer.allocate(bufSize);
if (0 > ippiFilterSobelVertSecondBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
{
return false;
}
if(scale != 1)
ippiMulC_32f_C1R((Ipp32f *)dst.data, (int)dst.step, (Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 2))
{
if (0 > ippiFilterSobelHorizSecondGetBufferSize_32f_C1R(ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),&bufSize))
return false;
buffer.allocate(bufSize);
if (0 > ippiFilterSobelHorizSecondBorder_32f_C1R((const Ipp32f*)src.data, (int)src.step,
(Ipp32f*)dst.data, (int)dst.step, ippiSize(src.cols, src.rows), (IppiMaskSize)(ksize*10+ksize),
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
{
return false;
}
if(scale != 1)
ippiMulC_32f_C1R((Ipp32f *)dst.data, (int)dst.step, (Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
#endif
}
return false;
}
}
2012-10-17 15:12:04 +08:00
#endif
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
int ksize, double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
2011-05-10 14:24:44 +08:00
if (ddepth < 0)
ddepth = sdepth;
2014-04-16 23:45:35 +08:00
int dtype = CV_MAKE_TYPE(ddepth, cn);
_dst.create( _src.size(), dtype );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
return;
if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
2012-10-17 15:12:04 +08:00
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if (ksize < 0)
{
if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
return;
2014-04-18 19:13:34 +08:00
setIppErrorStatus();
}
2014-04-18 19:13:34 +08:00
else if (0 < ksize)
{
2014-04-18 19:13:34 +08:00
if (IPPDerivSobel(_src, _dst, ddepth, dx, dy, ksize, scale, delta, borderType))
return;
2014-04-18 19:13:34 +08:00
setIppErrorStatus();
}
#endif
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
2014-04-16 23:45:35 +08:00
int dtype = CV_MAKETYPE(ddepth, cn);
_dst.create( _src.size(), dtype );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
2012-10-17 15:12:04 +08:00
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
return;
setIppErrorStatus();
#endif
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getScharrKernels( kx, ky, dx, dy, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
#ifdef HAVE_OPENCL
namespace cv {
static bool ocl_Laplacian5(InputArray _src, OutputArray _dst,
const Mat & kd, const Mat & ks, double scale, double delta,
int borderType, int depth, int ddepth)
{
int iscale = cvRound(scale), idelta = cvRound(delta);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
int cn = _src.channels(), wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
if (!doubleSupport && wdepth == CV_64F)
return false;
char cvt[2][40];
ocl::Kernel k("sumConvert", ocl::imgproc::laplacian5_oclsrc,
format("-D srcT=%s -D WT=%s -D dstT=%s -D coeffT=%s -D wdepth=%d "
"-D convertToWT=%s -D convertToDT=%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)),
ocl::typeToStr(wdepth), wdepth,
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]),
ocl::convertTypeStr(wdepth, ddepth, kercn, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat d2x, d2y;
sepFilter2D(_src, d2x, depth, kd, ks, Point(-1, -1), 0, borderType);
sepFilter2D(_src, d2y, depth, ks, kd, Point(-1, -1), 0, borderType);
UMat dst = _dst.getUMat();
ocl::KernelArg d2xarg = ocl::KernelArg::ReadOnlyNoSize(d2x),
d2yarg = ocl::KernelArg::ReadOnlyNoSize(d2y),
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
if (wdepth >= CV_32F)
k.args(d2xarg, d2yarg, dstarg, (float)scale, (float)delta);
else
k.args(d2xarg, d2yarg, dstarg, iscale, idelta);
size_t globalsize[] = { dst.cols * cn / kercn, dst.rows };
return k.run(2, globalsize, NULL, false);
}
}
#endif
void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
double scale, double delta, int borderType )
{
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
2012-10-17 15:12:04 +08:00
2014-04-12 19:40:26 +08:00
#if defined HAVE_IPP && !defined HAVE_IPP_ICV_ONLY
if ((ksize == 3 || ksize == 5) && ((borderType & BORDER_ISOLATED) != 0 || !_src.isSubmatrix()) &&
((stype == CV_8UC1 && ddepth == CV_16S) || (ddepth == CV_32F && stype == CV_32FC1)))
{
int iscale = saturate_cast<int>(scale), idelta = saturate_cast<int>(delta);
bool floatScale = std::fabs(scale - iscale) > DBL_EPSILON, needScale = iscale != 1;
bool floatDelta = std::fabs(delta - idelta) > DBL_EPSILON, needDelta = delta != 0;
int borderTypeNI = borderType & ~BORDER_ISOLATED;
Mat src = _src.getMat(), dst = _dst.getMat();
if (src.data != dst.data)
{
Ipp32s bufsize;
IppStatus status = (IppStatus)-1;
IppiSize roisize = { src.cols, src.rows };
IppiMaskSize masksize = ksize == 3 ? ippMskSize3x3 : ippMskSize5x5;
IppiBorderType borderTypeIpp = ippiGetBorderType(borderTypeNI);
#define IPP_FILTER_LAPLACIAN(ippsrctype, ippdsttype, ippfavor) \
do \
{ \
if (borderTypeIpp >= 0 && ippiFilterLaplacianGetBufferSize_##ippfavor##_C1R(roisize, masksize, &bufsize) >= 0) \
{ \
Ipp8u * buffer = ippsMalloc_8u(bufsize); \
status = ippiFilterLaplacianBorder_##ippfavor##_C1R((const ippsrctype *)src.data, (int)src.step, (ippdsttype *)dst.data, \
(int)dst.step, roisize, masksize, borderTypeIpp, 0, buffer); \
ippsFree(buffer); \
} \
} while ((void)0, 0)
2014-04-14 18:39:46 +08:00
CV_SUPPRESS_DEPRECATED_START
2014-04-12 19:40:26 +08:00
if (sdepth == CV_8U && ddepth == CV_16S && !floatScale && !floatDelta)
{
IPP_FILTER_LAPLACIAN(Ipp8u, Ipp16s, 8u16s);
if (needScale && status >= 0)
status = ippiMulC_16s_C1IRSfs((Ipp16s)iscale, (Ipp16s *)dst.data, (int)dst.step, roisize, 0);
if (needDelta && status >= 0)
status = ippiAddC_16s_C1IRSfs((Ipp16s)idelta, (Ipp16s *)dst.data, (int)dst.step, roisize, 0);
}
else if (sdepth == CV_32F && ddepth == CV_32F)
{
IPP_FILTER_LAPLACIAN(Ipp32f, Ipp32f, 32f);
if (needScale && status >= 0)
status = ippiMulC_32f_C1IR((Ipp32f)scale, (Ipp32f *)dst.data, (int)dst.step, roisize);
if (needDelta && status >= 0)
status = ippiAddC_32f_C1IR((Ipp32f)delta, (Ipp32f *)dst.data, (int)dst.step, roisize);
}
2014-04-14 18:39:46 +08:00
CV_SUPPRESS_DEPRECATED_END
2014-04-12 19:40:26 +08:00
if (status >= 0)
return;
2014-04-16 23:23:44 +08:00
setIppErrorStatus();
2014-04-12 19:40:26 +08:00
}
}
#undef IPP_FILTER_LAPLACIAN
#endif
2012-08-24 18:36:16 +08:00
#ifdef HAVE_TEGRA_OPTIMIZATION
if (scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
2012-10-17 15:12:04 +08:00
if (ksize == 1 && tegra::laplace1(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
2012-10-17 15:12:04 +08:00
if (ksize == 3 && tegra::laplace3(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
2012-10-17 15:12:04 +08:00
if (ksize == 5 && tegra::laplace5(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
}
#endif
2012-10-17 15:12:04 +08:00
if( ksize == 1 || ksize == 3 )
{
float K[2][9] =
{
{ 0, 1, 0, 1, -4, 1, 0, 1, 0 },
{ 2, 0, 2, 0, -8, 0, 2, 0, 2 }
};
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
if( scale != 1 )
kernel *= scale;
filter2D( _src, _dst, ddepth, kernel, Point(-1, -1), delta, borderType );
}
else
{
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
int wdepth = sdepth == CV_8U && ksize <= 5 ? CV_16S : sdepth <= CV_32F ? CV_32F : CV_64F;
int wtype = CV_MAKETYPE(wdepth, cn);
Mat kd, ks;
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
CV_OCL_RUN(_dst.isUMat(),
ocl_Laplacian5(_src, _dst, kd, ks, scale,
delta, borderType, wdepth, ddepth))
const size_t STRIPE_SIZE = 1 << 14;
Ptr<FilterEngine> fx = createSeparableLinearFilter(stype,
2012-10-17 15:12:04 +08:00
wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
Ptr<FilterEngine> fy = createSeparableLinearFilter(stype,
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
Mat src = _src.getMat(), dst = _dst.getMat();
int y = fx->start(src), dsty = 0, dy = 0;
fy->start(src);
const uchar* sptr = src.data + y*src.step;
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(CV_ELEM_SIZE(stype)*src.cols)), 1), src.rows);
Mat d2x( dy0 + kd.rows - 1, src.cols, wtype );
Mat d2y( dy0 + kd.rows - 1, src.cols, wtype );
for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy )
{
fx->proceed( sptr, (int)src.step, dy0, d2x.data, (int)d2x.step );
dy = fy->proceed( sptr, (int)src.step, dy0, d2y.data, (int)d2y.step );
if( dy > 0 )
{
Mat dstripe = dst.rowRange(dsty, dsty + dy);
d2x.rows = d2y.rows = dy; // modify the headers, which should work
d2x += d2y;
d2x.convertTo( dstripe, ddepth, scale, delta );
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE );
if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 )
dst *= -1;
}
CV_IMPL void
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE );
}
/* End of file. */