2017-09-22 20:15:57 +08:00
|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
#include "perf_precomp.hpp"
|
|
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
|
|
|
|
#include "opencv2/dnn/shape_utils.hpp"
|
|
|
|
|
2018-06-05 17:48:35 +08:00
|
|
|
#include "../test/test_common.hpp"
|
|
|
|
|
2017-11-05 21:48:40 +08:00
|
|
|
namespace opencv_test {
|
2017-09-22 20:15:57 +08:00
|
|
|
|
2018-08-30 22:53:41 +08:00
|
|
|
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<Backend, Target> >
|
2017-09-22 20:15:57 +08:00
|
|
|
{
|
|
|
|
public:
|
|
|
|
dnn::Backend backend;
|
|
|
|
dnn::Target target;
|
|
|
|
|
|
|
|
dnn::Net net;
|
|
|
|
|
2018-02-06 16:57:35 +08:00
|
|
|
DNNTestNetwork()
|
2017-09-22 20:15:57 +08:00
|
|
|
{
|
|
|
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
|
|
|
target = (dnn::Target)(int)get<1>(GetParam());
|
2018-02-06 16:57:35 +08:00
|
|
|
}
|
2017-09-22 20:15:57 +08:00
|
|
|
|
2023-10-17 02:25:56 +08:00
|
|
|
void processNet(std::string weights, std::string proto,
|
2023-10-04 18:05:32 +08:00
|
|
|
const std::vector<std::tuple<Mat, std::string>>& inputs, const std::string& outputLayer = ""){
|
2017-09-22 20:15:57 +08:00
|
|
|
weights = findDataFile(weights, false);
|
|
|
|
if (!proto.empty())
|
2019-06-20 21:43:28 +08:00
|
|
|
proto = findDataFile(proto);
|
2024-01-12 20:54:50 +08:00
|
|
|
net = readNet(weights, proto);
|
2023-10-04 18:05:32 +08:00
|
|
|
// Set multiple inputs
|
|
|
|
for(auto &inp: inputs){
|
|
|
|
net.setInput(std::get<0>(inp), std::get<1>(inp));
|
|
|
|
}
|
|
|
|
|
2017-09-22 20:15:57 +08:00
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
|
2023-10-04 18:05:32 +08:00
|
|
|
// Calculate multiple inputs memory consumption
|
|
|
|
std::vector<MatShape> netMatShapes;
|
|
|
|
for(auto &inp: inputs){
|
|
|
|
netMatShapes.push_back(shape(std::get<0>(inp)));
|
|
|
|
}
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
|
|
|
|
bool fp16 = false;
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
|
|
|
|
#endif
|
|
|
|
std::vector<cv::dnn::MatType> netMatTypes;
|
|
|
|
for (auto& inp : inputs) {
|
|
|
|
cv::dnn::MatType t = std::get<0>(inp).depth();
|
|
|
|
if (t == CV_32F && fp16 && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
t = CV_16F;
|
|
|
|
netMatTypes.push_back(t);
|
|
|
|
}
|
2017-09-22 20:15:57 +08:00
|
|
|
|
|
|
|
net.forward(outputLayer); // warmup
|
|
|
|
|
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 22:07:38 +08:00
|
|
|
size_t weightsMemory = 0, blobsMemory = 0;
|
|
|
|
net.getMemoryConsumption(netMatShapes, netMatTypes, weightsMemory, blobsMemory);
|
|
|
|
int64 flops = net.getFLOPS(netMatShapes, netMatTypes);
|
|
|
|
CV_Assert(flops > 0);
|
2017-09-22 20:15:57 +08:00
|
|
|
std::cout << "Memory consumption:" << std::endl;
|
|
|
|
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl;
|
|
|
|
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl;
|
|
|
|
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl;
|
|
|
|
|
|
|
|
PERF_SAMPLE_BEGIN()
|
|
|
|
net.forward();
|
|
|
|
PERF_SAMPLE_END()
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
2023-10-04 18:05:32 +08:00
|
|
|
|
2023-10-17 02:25:56 +08:00
|
|
|
void processNet(std::string weights, std::string proto,
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat &input, const std::string& outputLayer = "")
|
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet(weights, proto, {std::make_tuple(input, "")}, outputLayer);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
2023-10-17 02:25:56 +08:00
|
|
|
void processNet(std::string weights, std::string proto,
|
2023-10-04 18:05:32 +08:00
|
|
|
Size inpSize, const std::string& outputLayer = "")
|
|
|
|
{
|
|
|
|
Mat input_data(inpSize, CV_32FC3);
|
|
|
|
randu(input_data, 0.0f, 1.0f);
|
|
|
|
Mat input = blobFromImage(input_data, 1.0, Size(), Scalar(), false);
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet(weights, proto, input, outputLayer);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
2017-09-22 20:15:57 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, AlexNet)
|
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", cv::Size(227, 227));
|
2017-09-22 20:15:57 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
|
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", cv::Size(224, 224));
|
2017-09-22 20:15:57 +08:00
|
|
|
}
|
|
|
|
|
2018-02-06 16:57:35 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, ResNet_50)
|
2017-09-22 20:15:57 +08:00
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", cv::Size(224, 224));
|
2017-09-22 20:15:57 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
|
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", cv::Size(227, 227));
|
2017-09-22 20:15:57 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
|
|
|
|
{
|
2019-12-02 21:16:06 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException("");
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/tensorflow_inception_graph.pb", "", cv::Size(224, 224), "softmax2");
|
2017-09-22 20:15:57 +08:00
|
|
|
}
|
|
|
|
|
2017-12-06 19:51:05 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, SSD)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", cv::Size(300, 300));
|
2017-12-06 19:51:05 +08:00
|
|
|
}
|
2017-09-22 20:15:57 +08:00
|
|
|
|
2017-12-18 22:22:57 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe)
|
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", "dnn/MobileNetSSD_deploy_19e3ec3.prototxt", cv::Size(300, 300));
|
2017-12-18 22:22:57 +08:00
|
|
|
}
|
|
|
|
|
2018-06-08 21:55:21 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
2017-12-18 22:22:57 +08:00
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", cv::Size(300, 300));
|
2018-06-08 21:55:21 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", cv::Size(300, 300));
|
2017-12-18 22:22:57 +08:00
|
|
|
}
|
|
|
|
|
2018-02-06 16:57:35 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, DenseNet_121)
|
|
|
|
{
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", cv::Size(224, 224));
|
2018-02-06 16:57:35 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2023-10-13 21:53:18 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_HDDL))
|
2018-05-31 19:05:21 +08:00
|
|
|
throw SkipTestException("");
|
2018-02-06 16:57:35 +08:00
|
|
|
// The same .caffemodel but modified .prototxt
|
|
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", cv::Size(368, 368));
|
2018-02-06 16:57:35 +08:00
|
|
|
}
|
|
|
|
|
2018-02-07 16:28:45 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", cv::Size(300, 300));
|
2018-02-07 16:28:45 +08:00
|
|
|
}
|
|
|
|
|
2018-04-13 23:53:12 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv3)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(
|
|
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
|
|
);
|
2020-07-16 06:52:08 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
#endif
|
2020-12-17 15:53:35 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
|
2020-10-07 07:40:27 +08:00
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#endif
|
2020-07-16 06:52:08 +08:00
|
|
|
|
2019-06-20 21:43:28 +08:00
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
|
2023-10-13 21:53:18 +08:00
|
|
|
processNet("dnn/yolov3.weights", "dnn/yolov3.cfg", inp);
|
2020-05-27 00:20:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv4)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(
|
|
|
|
CV_TEST_TAG_MEMORY_2GB,
|
|
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
|
|
);
|
2020-10-07 07:40:27 +08:00
|
|
|
if (target == DNN_TARGET_MYRIAD) // not enough resources
|
2020-05-27 00:20:32 +08:00
|
|
|
throw SkipTestException("");
|
2020-07-16 06:52:08 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
#endif
|
2020-05-27 00:20:32 +08:00
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
|
2023-10-13 21:53:18 +08:00
|
|
|
processNet("dnn/yolov4.weights", "dnn/yolov4.cfg", inp);
|
2018-04-13 23:53:12 +08:00
|
|
|
}
|
|
|
|
|
2020-07-04 03:14:05 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv4_tiny)
|
|
|
|
{
|
2020-12-17 15:53:35 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
|
2020-10-07 07:40:27 +08:00
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#endif
|
2020-07-04 03:14:05 +08:00
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
|
2023-10-13 21:53:18 +08:00
|
|
|
processNet("dnn/yolov4-tiny-2020-12.weights", "dnn/yolov4-tiny-2020-12.cfg", inp);
|
2020-07-04 03:14:05 +08:00
|
|
|
}
|
|
|
|
|
2023-10-04 18:05:32 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv5) {
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/yolov5n.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
2023-12-25 12:57:02 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv8)
|
|
|
|
{
|
|
|
|
applyTestTag(
|
|
|
|
CV_TEST_TAG_MEMORY_512MB,
|
|
|
|
CV_TEST_TAG_DEBUG_LONG
|
|
|
|
);
|
|
|
|
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/yolov8n.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOX) {
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(
|
|
|
|
CV_TEST_TAG_MEMORY_512MB,
|
|
|
|
CV_TEST_TAG_DEBUG_VERYLONG
|
|
|
|
);
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/yolox_s.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
2018-06-07 21:29:04 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2023-10-17 02:25:56 +08:00
|
|
|
processNet("dnn/frozen_east_text_detection.pb", "", cv::Size(320, 320));
|
2018-06-07 21:29:04 +08:00
|
|
|
}
|
|
|
|
|
2018-06-09 20:37:04 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/mosaic-9.onnx", "", cv::Size(224, 224));
|
2018-06-09 20:37:04 +08:00
|
|
|
}
|
|
|
|
|
2018-07-26 22:22:05 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
|
|
|
|
{
|
2023-12-25 12:57:02 +08:00
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2019-04-03 22:49:05 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
2019-12-02 21:16:06 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
2019-04-03 22:49:05 +08:00
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2019R1");
|
2019-07-25 14:57:49 +08:00
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
2019-12-02 21:16:06 +08:00
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
2019-07-25 14:57:49 +08:00
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2019R2");
|
2020-10-07 07:40:27 +08:00
|
|
|
#endif
|
2020-12-17 15:53:35 +08:00
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000)
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2021.1+ / MYRIAD");
|
2019-04-03 22:49:05 +08:00
|
|
|
#endif
|
2023-10-13 21:53:18 +08:00
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) ||
|
2018-07-26 22:22:05 +08:00
|
|
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb",
|
2023-10-17 02:25:56 +08:00
|
|
|
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt",
|
2023-10-04 18:05:32 +08:00
|
|
|
cv::Size(800, 600));
|
2018-07-26 22:22:05 +08:00
|
|
|
}
|
|
|
|
|
2020-05-26 15:51:26 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientDet)
|
|
|
|
{
|
2023-10-13 21:53:18 +08:00
|
|
|
if (target != DNN_TARGET_CPU)
|
2020-05-26 15:51:26 +08:00
|
|
|
throw SkipTestException("");
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(512, 512), Scalar(), true);
|
2023-10-13 21:53:18 +08:00
|
|
|
processNet("dnn/efficientdet-d0.pb", "dnn/efficientdet-d0.pbtxt", inp);
|
2020-05-26 15:51:26 +08:00
|
|
|
}
|
|
|
|
|
2023-10-04 18:05:32 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientNet)
|
|
|
|
{
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(224, 224), Scalar(), true);
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/efficientnet-lite4.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YuNet) {
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/onnx/models/yunet-202303.onnx", "", cv::Size(640, 640));
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SFace) {
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/face_recognition_sface_2021dec.onnx", "", cv::Size(112, 112));
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPPalm) {
|
|
|
|
Mat inp(cv::Size(192, 192), CV_32FC3);
|
|
|
|
randu(inp, 0.0f, 1.0f);
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/palm_detection_mediapipe_2023feb.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPHand) {
|
|
|
|
Mat inp(cv::Size(224, 224), CV_32FC3);
|
|
|
|
randu(inp, 0.0f, 1.0f);
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/handpose_estimation_mediapipe_2023feb.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MPPose) {
|
|
|
|
Mat inp(cv::Size(256, 256), CV_32FC3);
|
|
|
|
randu(inp, 0.0f, 1.0f);
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
|
|
|
transposeND(inp, {0, 2, 3, 1}, inp);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/pose_estimation_mediapipe_2023mar.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, PPOCRv3) {
|
|
|
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/onnx/models/PP_OCRv3_DB_text_det.onnx", "", cv::Size(736, 736));
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, PPHumanSeg) {
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/human_segmentation_pphumanseg_2023mar.onnx", "", cv::Size(192, 192));
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, CRNN) {
|
|
|
|
Mat inp(cv::Size(100, 32), CV_32FC1);
|
|
|
|
randu(inp, 0.0f, 1.0f);
|
|
|
|
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/text_recognition_CRNN_EN_2021sep.onnx", "", inp);
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
2023-12-21 00:35:07 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, VitTrack) {
|
2023-10-04 18:05:32 +08:00
|
|
|
Mat inp1(cv::Size(128, 128), CV_32FC3);
|
|
|
|
Mat inp2(cv::Size(256, 256), CV_32FC3);
|
|
|
|
randu(inp1, 0.0f, 1.0f);
|
|
|
|
randu(inp2, 0.0f, 1.0f);
|
|
|
|
inp1 = blobFromImage(inp1, 1.0, Size(), Scalar(), false);
|
|
|
|
inp2 = blobFromImage(inp2, 1.0, Size(), Scalar(), false);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/onnx/models/object_tracking_vittrack_2023sep.onnx", "", {std::make_tuple(inp1, "template"), std::make_tuple(inp2, "search")});
|
2023-10-04 18:05:32 +08:00
|
|
|
}
|
|
|
|
|
2023-09-28 21:24:43 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientDet_int8)
|
|
|
|
{
|
|
|
|
if (target != DNN_TARGET_CPU || (backend != DNN_BACKEND_OPENCV &&
|
|
|
|
backend != DNN_BACKEND_TIMVX && backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)) {
|
|
|
|
throw SkipTestException("");
|
|
|
|
}
|
|
|
|
Mat inp = imread(findDataFile("dnn/dog416.png"));
|
2023-10-04 18:05:32 +08:00
|
|
|
inp = blobFromImage(inp, 1.0 / 255.0, Size(320, 320), Scalar(), true);
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", "", inp);
|
2023-09-28 21:24:43 +08:00
|
|
|
}
|
|
|
|
|
2023-12-25 12:57:02 +08:00
|
|
|
PERF_TEST_P_(DNNTestNetwork, VIT_B_32)
|
|
|
|
{
|
|
|
|
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
|
|
|
|
|
2024-02-12 19:20:35 +08:00
|
|
|
processNet("dnn/onnx/models/vit_b_32.onnx", "", cv::Size(224, 224));
|
2023-12-21 00:35:07 +08:00
|
|
|
}
|
|
|
|
|
2018-08-30 22:53:41 +08:00
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets());
|
2017-09-22 20:15:57 +08:00
|
|
|
|
|
|
|
} // namespace
|