opencv/modules/dnn/perf/perf_net.cpp

383 lines
14 KiB
C++
Raw Normal View History

2017-09-22 20:15:57 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "perf_precomp.hpp"
#include "opencv2/core/ocl.hpp"
#include "opencv2/dnn/shape_utils.hpp"
#include "../test/test_common.hpp"
namespace opencv_test {
2017-09-22 20:15:57 +08:00
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<Backend, Target> >
2017-09-22 20:15:57 +08:00
{
public:
dnn::Backend backend;
dnn::Target target;
dnn::Net net;
DNNTestNetwork()
2017-09-22 20:15:57 +08:00
{
backend = (dnn::Backend)(int)get<0>(GetParam());
target = (dnn::Target)(int)get<1>(GetParam());
}
2017-09-22 20:15:57 +08:00
2023-10-17 02:25:56 +08:00
void processNet(std::string weights, std::string proto,
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
const std::vector<std::tuple<Mat, std::string>>& inputs, const std::string& outputLayer = ""){
2017-09-22 20:15:57 +08:00
weights = findDataFile(weights, false);
if (!proto.empty())
proto = findDataFile(proto);
net = readNet(weights, proto);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
// Set multiple inputs
for(auto &inp: inputs){
net.setInput(std::get<0>(inp), std::get<1>(inp));
}
2017-09-22 20:15:57 +08:00
net.setPreferableBackend(backend);
net.setPreferableTarget(target);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
// Calculate multiple inputs memory consumption
std::vector<MatShape> netMatShapes;
for(auto &inp: inputs){
netMatShapes.push_back(shape(std::get<0>(inp)));
}
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference Added int32, int64 support and type inference to dnn #24411 **Added a type inference to dnn similar to the shape inference, added int32 and int64 support.** - Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type - Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types - All layers output blobs are now allocated using the calculated types from the type inference. - Inputs and constants with int32 and int64 types are not automatically converted into float32 now. - Added int32 and int64 support for all the layers with indexing and for all the layers required in tests. Added int32 and int64 support for CUDA: - Added host<->device data moving for int32 and int64 - Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates) Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model) **CURRENT PROBLEMS**: - ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102) - I didn't add type inference and int support to VULCAN, so it doesn't work at all now. - Some layers don't support int yet, so some unknown models may not work. **CURRENT WORKAROUNDS**: - CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion) - CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion - CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion) **DISABLED TESTS**: - RAFT model **REMOVED TESTS**: - Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant) **TODO IN NEXT PULL REQUESTS**: - Add int64 support for ONNX parser - Add int support for more layers - Add int support for OCL (currently int layers just run on CPU) - Add int tests - Add int support for other backends
2024-03-01 22:07:38 +08:00
bool fp16 = false;
#ifdef HAVE_OPENCL
fp16 = ocl::Device::getDefault().isExtensionSupported("cl_khr_fp16");
#endif
std::vector<cv::dnn::MatType> netMatTypes;
for (auto& inp : inputs) {
cv::dnn::MatType t = std::get<0>(inp).depth();
if (t == CV_32F && fp16 && target == DNN_TARGET_OPENCL_FP16)
t = CV_16F;
netMatTypes.push_back(t);
}
2017-09-22 20:15:57 +08:00
net.forward(outputLayer); // warmup
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference Added int32, int64 support and type inference to dnn #24411 **Added a type inference to dnn similar to the shape inference, added int32 and int64 support.** - Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type - Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types - All layers output blobs are now allocated using the calculated types from the type inference. - Inputs and constants with int32 and int64 types are not automatically converted into float32 now. - Added int32 and int64 support for all the layers with indexing and for all the layers required in tests. Added int32 and int64 support for CUDA: - Added host<->device data moving for int32 and int64 - Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates) Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model) **CURRENT PROBLEMS**: - ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102) - I didn't add type inference and int support to VULCAN, so it doesn't work at all now. - Some layers don't support int yet, so some unknown models may not work. **CURRENT WORKAROUNDS**: - CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion) - CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion - CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion) **DISABLED TESTS**: - RAFT model **REMOVED TESTS**: - Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant) **TODO IN NEXT PULL REQUESTS**: - Add int64 support for ONNX parser - Add int support for more layers - Add int support for OCL (currently int layers just run on CPU) - Add int tests - Add int support for other backends
2024-03-01 22:07:38 +08:00
size_t weightsMemory = 0, blobsMemory = 0;
net.getMemoryConsumption(netMatShapes, netMatTypes, weightsMemory, blobsMemory);
int64 flops = net.getFLOPS(netMatShapes, netMatTypes);
CV_Assert(flops > 0);
2017-09-22 20:15:57 +08:00
std::cout << "Memory consumption:" << std::endl;
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl;
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl;
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl;
PERF_SAMPLE_BEGIN()
net.forward();
PERF_SAMPLE_END()
SANITY_CHECK_NOTHING();
}
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
2023-10-17 02:25:56 +08:00
void processNet(std::string weights, std::string proto,
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat &input, const std::string& outputLayer = "")
{
2023-10-17 02:25:56 +08:00
processNet(weights, proto, {std::make_tuple(input, "")}, outputLayer);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
2023-10-17 02:25:56 +08:00
void processNet(std::string weights, std::string proto,
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Size inpSize, const std::string& outputLayer = "")
{
Mat input_data(inpSize, CV_32FC3);
randu(input_data, 0.0f, 1.0f);
Mat input = blobFromImage(input_data, 1.0, Size(), Scalar(), false);
2023-10-17 02:25:56 +08:00
processNet(weights, proto, input, outputLayer);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
2017-09-22 20:15:57 +08:00
};
PERF_TEST_P_(DNNTestNetwork, AlexNet)
{
2023-10-17 02:25:56 +08:00
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt", cv::Size(227, 227));
2017-09-22 20:15:57 +08:00
}
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
{
2023-10-17 02:25:56 +08:00
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt", cv::Size(224, 224));
2017-09-22 20:15:57 +08:00
}
PERF_TEST_P_(DNNTestNetwork, ResNet_50)
2017-09-22 20:15:57 +08:00
{
2023-10-17 02:25:56 +08:00
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt", cv::Size(224, 224));
2017-09-22 20:15:57 +08:00
}
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
{
2023-10-17 02:25:56 +08:00
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt", cv::Size(227, 227));
2017-09-22 20:15:57 +08:00
}
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException("");
2023-10-17 02:25:56 +08:00
processNet("dnn/tensorflow_inception_graph.pb", "", cv::Size(224, 224), "softmax2");
2017-09-22 20:15:57 +08:00
}
2017-12-06 19:51:05 +08:00
PERF_TEST_P_(DNNTestNetwork, SSD)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
2023-10-17 02:25:56 +08:00
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", cv::Size(300, 300));
2017-12-06 19:51:05 +08:00
}
2017-09-22 20:15:57 +08:00
2017-12-18 22:22:57 +08:00
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe)
{
2023-10-17 02:25:56 +08:00
processNet("dnn/MobileNetSSD_deploy_19e3ec3.caffemodel", "dnn/MobileNetSSD_deploy_19e3ec3.prototxt", cv::Size(300, 300));
2017-12-18 22:22:57 +08:00
}
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
2017-12-18 22:22:57 +08:00
{
2023-10-17 02:25:56 +08:00
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", cv::Size(300, 300));
}
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
{
2023-10-17 02:25:56 +08:00
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", cv::Size(300, 300));
2017-12-18 22:22:57 +08:00
}
PERF_TEST_P_(DNNTestNetwork, DenseNet_121)
{
2023-10-17 02:25:56 +08:00
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", cv::Size(224, 224));
}
PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && (target == DNN_TARGET_MYRIAD || target == DNN_TARGET_HDDL))
throw SkipTestException("");
// The same .caffemodel but modified .prototxt
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
2023-10-17 02:25:56 +08:00
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", cv::Size(368, 368));
}
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
2023-10-17 02:25:56 +08:00
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", cv::Size(300, 300));
}
2018-04-13 23:53:12 +08:00
PERF_TEST_P_(DNNTestNetwork, YOLOv3)
{
applyTestTag(
CV_TEST_TAG_MEMORY_2GB,
CV_TEST_TAG_DEBUG_VERYLONG
);
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
if (target == DNN_TARGET_MYRIAD)
throw SkipTestException("");
#endif
Mat sample = imread(findDataFile("dnn/dog416.png"));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
processNet("dnn/yolov3.weights", "dnn/yolov3.cfg", inp);
2020-05-27 00:20:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, YOLOv4)
{
applyTestTag(
CV_TEST_TAG_MEMORY_2GB,
CV_TEST_TAG_DEBUG_VERYLONG
);
if (target == DNN_TARGET_MYRIAD) // not enough resources
2020-05-27 00:20:32 +08:00
throw SkipTestException("");
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
#endif
2020-05-27 00:20:32 +08:00
Mat sample = imread(findDataFile("dnn/dog416.png"));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
processNet("dnn/yolov4.weights", "dnn/yolov4.cfg", inp);
2018-04-13 23:53:12 +08:00
}
2020-07-04 03:14:05 +08:00
PERF_TEST_P_(DNNTestNetwork, YOLOv4_tiny)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
if (target == DNN_TARGET_MYRIAD)
throw SkipTestException("");
#endif
2020-07-04 03:14:05 +08:00
Mat sample = imread(findDataFile("dnn/dog416.png"));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(), Scalar(), true);
processNet("dnn/yolov4-tiny-2020-12.weights", "dnn/yolov4-tiny-2020-12.cfg", inp);
2020-07-04 03:14:05 +08:00
}
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
PERF_TEST_P_(DNNTestNetwork, YOLOv5) {
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
Mat sample = imread(findDataFile("dnn/dog416.png"));
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
2024-02-12 19:20:35 +08:00
processNet("dnn/yolov5n.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, YOLOv8)
{
applyTestTag(
CV_TEST_TAG_MEMORY_512MB,
CV_TEST_TAG_DEBUG_LONG
);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat sample = imread(findDataFile("dnn/dog416.png"));
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
2024-02-12 19:20:35 +08:00
processNet("dnn/yolov8n.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, YOLOX) {
applyTestTag(
CV_TEST_TAG_MEMORY_512MB,
CV_TEST_TAG_DEBUG_VERYLONG
);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat sample = imread(findDataFile("dnn/dog416.png"));
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(640, 640), Scalar(), true);
2024-02-12 19:20:35 +08:00
processNet("dnn/yolox_s.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
2023-10-17 02:25:56 +08:00
processNet("dnn/frozen_east_text_detection.pb", "", cv::Size(320, 320));
}
PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
2024-02-12 19:20:35 +08:00
processNet("dnn/mosaic-9.onnx", "", cv::Size(224, 224));
}
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
2019-04-03 22:49:05 +08:00
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
2019-04-03 22:49:05 +08:00
throw SkipTestException("Test is disabled in OpenVINO 2019R1");
2019-07-25 14:57:49 +08:00
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
2019-07-25 14:57:49 +08:00
throw SkipTestException("Test is disabled in OpenVINO 2019R2");
#endif
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000)
if (target == DNN_TARGET_MYRIAD)
throw SkipTestException("Test is disabled in OpenVINO 2021.1+ / MYRIAD");
2019-04-03 22:49:05 +08:00
#endif
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) ||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
throw SkipTestException("");
processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb",
2023-10-17 02:25:56 +08:00
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt",
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
cv::Size(800, 600));
}
2020-05-26 15:51:26 +08:00
PERF_TEST_P_(DNNTestNetwork, EfficientDet)
{
if (target != DNN_TARGET_CPU)
2020-05-26 15:51:26 +08:00
throw SkipTestException("");
Mat sample = imread(findDataFile("dnn/dog416.png"));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(512, 512), Scalar(), true);
processNet("dnn/efficientdet-d0.pb", "dnn/efficientdet-d0.pbtxt", inp);
2020-05-26 15:51:26 +08:00
}
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
PERF_TEST_P_(DNNTestNetwork, EfficientNet)
{
Mat sample = imread(findDataFile("dnn/dog416.png"));
Mat inp = blobFromImage(sample, 1.0 / 255.0, Size(224, 224), Scalar(), true);
transposeND(inp, {0, 2, 3, 1}, inp);
2024-02-12 19:20:35 +08:00
processNet("dnn/efficientnet-lite4.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, YuNet) {
2024-02-12 19:20:35 +08:00
processNet("dnn/onnx/models/yunet-202303.onnx", "", cv::Size(640, 640));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, SFace) {
2024-02-12 19:20:35 +08:00
processNet("dnn/face_recognition_sface_2021dec.onnx", "", cv::Size(112, 112));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, MPPalm) {
Mat inp(cv::Size(192, 192), CV_32FC3);
randu(inp, 0.0f, 1.0f);
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
transposeND(inp, {0, 2, 3, 1}, inp);
2024-02-12 19:20:35 +08:00
processNet("dnn/palm_detection_mediapipe_2023feb.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, MPHand) {
Mat inp(cv::Size(224, 224), CV_32FC3);
randu(inp, 0.0f, 1.0f);
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
transposeND(inp, {0, 2, 3, 1}, inp);
2024-02-12 19:20:35 +08:00
processNet("dnn/handpose_estimation_mediapipe_2023feb.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, MPPose) {
Mat inp(cv::Size(256, 256), CV_32FC3);
randu(inp, 0.0f, 1.0f);
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
transposeND(inp, {0, 2, 3, 1}, inp);
2024-02-12 19:20:35 +08:00
processNet("dnn/pose_estimation_mediapipe_2023mar.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, PPOCRv3) {
applyTestTag(CV_TEST_TAG_MEMORY_512MB);
2024-02-12 19:20:35 +08:00
processNet("dnn/onnx/models/PP_OCRv3_DB_text_det.onnx", "", cv::Size(736, 736));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, PPHumanSeg) {
2024-02-12 19:20:35 +08:00
processNet("dnn/human_segmentation_pphumanseg_2023mar.onnx", "", cv::Size(192, 192));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
PERF_TEST_P_(DNNTestNetwork, CRNN) {
Mat inp(cv::Size(100, 32), CV_32FC1);
randu(inp, 0.0f, 1.0f);
inp = blobFromImage(inp, 1.0, Size(), Scalar(), false);
2024-02-12 19:20:35 +08:00
processNet("dnn/text_recognition_CRNN_EN_2021sep.onnx", "", inp);
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
Merge pull request #24476 from fengyuentau:attention_layer dnn: add attention layer #24476 Resolves #24609 Merge with: https://github.com/opencv/opencv_extra/pull/1128. Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention. TODO: - [x] benchmark (before this PR vs. with this PR vs. ORT). - [x] Layer fusion: Take care Slice with end=INT64_MAX. - [x] Layer fusion: match more potential attention (VIT) patterns. - [x] Single-head attention is supported. - [x] Test AttentionSubgraph fusion. - [x] Add acc tests for VIT_B_32 and VitTrack - [x] Add perf tests for VIT_B_32 and VitTrack ## Benchmarks Platform: Macbook Air M1. ### Attention Subgraph Input scale: [1, 197, 768]. | | mean (ms) | median (ms) | min (ms) | | ---------------------- | --------- | ----------- | -------- | | w/ Attention (this PR) | 3.75 | 3.68 | 3.22 | | w/o Attention | 9.06 | 9.01 | 8.24 | | ORT (python) | 4.32 | 2.63 | 2.50 | ### ViTs All data in millisecond (ms). | ViTs | With Attention | Without Attention | ORT | | -------- | -------------- | ----------------- | ------ | | vit_b_16 | 302.77 | 365.35 | 109.70 | | vit_b_32 | 89.92 | 116.22 | 30.36 | | vit_l_16 | 1593.32 | 1730.74 | 419.92 | | vit_l_32 | 468.11 | 577.41 | 134.12 | | VitTrack | 3.80 | 3.87 | 2.25 | ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-12-21 00:35:07 +08:00
PERF_TEST_P_(DNNTestNetwork, VitTrack) {
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
Mat inp1(cv::Size(128, 128), CV_32FC3);
Mat inp2(cv::Size(256, 256), CV_32FC3);
randu(inp1, 0.0f, 1.0f);
randu(inp2, 0.0f, 1.0f);
inp1 = blobFromImage(inp1, 1.0, Size(), Scalar(), false);
inp2 = blobFromImage(inp2, 1.0, Size(), Scalar(), false);
2024-02-12 19:20:35 +08:00
processNet("dnn/onnx/models/object_tracking_vittrack_2023sep.onnx", "", {std::make_tuple(inp1, "template"), std::make_tuple(inp2, "search")});
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
}
Merge pull request #23987 from dkurt:openvino_int8_backend OpenVINO backend for INT8 models #23987 ### Pull Request Readiness Checklist TODO: - [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069) - [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum) - [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039) - [x] Single layer tests (convolution) - [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~ Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`: | backend | performance (median time) | |---|---| | OpenCV | 77.42ms | | OpenVINO 2023.0 | 10.90ms | CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz` Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef --- See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 21:24:43 +08:00
PERF_TEST_P_(DNNTestNetwork, EfficientDet_int8)
{
if (target != DNN_TARGET_CPU || (backend != DNN_BACKEND_OPENCV &&
backend != DNN_BACKEND_TIMVX && backend != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)) {
throw SkipTestException("");
}
Mat inp = imread(findDataFile("dnn/dog416.png"));
Merge pull request #24298 from WanliZhong:extend_perf_net_test Extend performance test models #24298 **Merged With https://github.com/opencv/opencv_extra/pull/1095** This PR aims to extend the performance tests. - **YOLOv5** for object detection - **YOLOv8** for object detection - **EfficientNet** for classification Models from OpenCV Zoo: - **YOLOX** for object detection - **YuNet** for face detection - **SFace** for face recognization - **MPPalm** for palm detection - **MPHand** for hand landmark - **MPPose** for pose estimation - **ViTTrack** for object tracking - **PPOCRv3** for text detection - **CRNN** for text recognization - **PPHumanSeg** for human segmentation If other models should be added, **please leave some comments**. Thanks! Build opencv with script: ```shell -DBUILD_opencv_python2=OFF -DBUILD_opencv_python3=OFF -DBUILD_opencv_gapi=OFF -DINSTALL_PYTHON_EXAMPLES=OFF -DINSTALL_C_EXAMPLES=OFF -DBUILD_DOCS=OFF -DBUILD_EXAMPLES=OFF -DBUILD_ZLIB=OFF -DWITH_FFMPEG=OFF ``` Performance Test on **Apple M2 CPU** ```shell MacOS 14.0 8 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 76.244 | 76.611 | 62.534 | 57.678 | 57.238 | | EfficientNet | --- | --- | 109.224 | 130.753 | 109.076 | | MPHand | --- | --- | 19.289 | 22.727 | 27.593 | | MPPalm | 47.150 | 47.061 | 41.064 | 65.598 | 40.109 | | MPPose | --- | --- | 26.592 | 32.022 | 26.956 | | PPHumanSeg | 41.672 | 41.790 | 27.819 | 27.212 | 30.461 | | PPOCRv3 | --- | --- | 140.371 | 187.922 | 170.026 | | SFace | 43.830 | 43.834 | 27.575 | 30.653 | 26.387 | | ViTTrack | --- | --- | --- | 14.617 | 15.028 | | YOLOX | 1060.507 | 1061.361 | 495.816 | 533.309 | 549.713 | | YOLOv5 | --- | --- | --- | 191.350 | 193.261 | | YOLOv8 | --- | --- | 198.893 | 218.733 | 223.142 | | YuNet | 27.084 | 27.095 | 26.238 | 30.512 | 34.439 | | MobileNet_SSD_Caffe | 44.742 | 44.565 | 33.005 | 29.421 | 29.286 | | MobileNet_SSD_v1_TensorFlow | 49.352 | 49.274 | 35.163 | 32.134 | 31.904 | | MobileNet_SSD_v2_TensorFlow | 83.537 | 83.379 | 56.403 | 42.947 | 42.148 | | ResNet_50 | 148.872 | 148.817 | 77.331 | 67.682 | 67.760 | **n threads:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 44.262 | 44.408 | 41.540 | 40.731 | 41.151 | | EfficientNet | --- | --- | 28.683 | 42.676 | 38.204 | | MPHand | --- | --- | 6.738 | 13.126 | 8.155 | | MPPalm | 16.613 | 16.588 | 12.477 | 31.370 | 17.048 | | MPPose | --- | --- | 12.985 | 19.700 | 16.537 | | PPHumanSeg | 14.993 | 15.133 | 13.438 | 15.269 | 15.252 | | PPOCRv3 | --- | --- | 63.752 | 85.469 | 76.190 | | SFace | 10.685 | 10.822 | 8.127 | 8.318 | 7.934 | | ViTTrack | --- | --- | --- | 10.079 | 9.579 | | YOLOX | 417.358 | 422.977 | 230.036 | 234.662 | 228.555 | | YOLOv5 | --- | --- | --- | 74.249 | 75.480 | | YOLOv8 | --- | --- | 63.762 | 88.770 | 70.927 | | YuNet | 8.589 | 8.731 | 11.269 | 16.466 | 14.513 | | MobileNet_SSD_Caffe | 12.575 | 12.636 | 11.529 | 12.114 | 12.236 | | MobileNet_SSD_v1_TensorFlow | 13.922 | 14.160 | 13.078 | 12.124 | 13.298 | | MobileNet_SSD_v2_TensorFlow | 25.096 | 24.836 | 22.823 | 20.238 | 20.319 | | ResNet_50 | 41.561 | 41.296 | 29.092 | 30.412 | 29.339 | Performance Test on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html) ```shell Ubuntu 22.04.2 LTS 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz) 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz) 20 threads ``` **1 thread:** | Name of Test | 4.5.5-1th | 4.6.0-1th | 4.7.0-1th | 4.8.0-1th | 4.8.1-1th | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 16.752 | 16.851 | 16.840 | 16.625 | 16.663 | | EfficientNet | --- | --- | 61.107 | 76.037 | 53.890 | | MPHand | --- | --- | 8.906 | 9.969 | 8.403 | | MPPalm | 24.243 | 24.638 | 18.104 | 35.140 | 18.387 | | MPPose | --- | --- | 12.322 | 16.515 | 12.355 | | PPHumanSeg | 15.249 | 15.303 | 10.203 | 10.298 | 10.353 | | PPOCRv3 | --- | --- | 87.788 | 144.253 | 90.648 | | SFace | 15.583 | 15.884 | 13.957 | 13.298 | 13.284 | | ViTTrack | --- | --- | --- | 11.760 | 11.710 | | YOLOX | 324.927 | 325.173 | 235.986 | 253.653 | 254.472 | | YOLOv5 | --- | --- | --- | 102.163 | 102.621 | | YOLOv8 | --- | --- | 87.013 | 103.182 | 103.146 | | YuNet | 12.806 | 12.645 | 10.515 | 12.647 | 12.711 | | MobileNet_SSD_Caffe | 23.556 | 23.768 | 24.304 | 22.569 | 22.602 | | MobileNet_SSD_v1_TensorFlow | 26.136 | 26.276 | 26.854 | 24.828 | 24.961 | | MobileNet_SSD_v2_TensorFlow | 43.521 | 43.614 | 46.892 | 44.044 | 44.682 | | ResNet_50 | 73.588 | 73.501 | 75.191 | 66.893 | 65.144 | **n thread:** | Name of Test | 4.5.5-nth | 4.6.0-nth | 4.7.0-nth | 4.8.0-nth | 4.8.1-nth | |--------------|:---------:|:---------:|:---------:|:---------:|:---------:| | CRNN | 8.665 | 8.827 | 10.643 | 7.703 | 7.743 | | EfficientNet | --- | --- | 16.591 | 12.715 | 9.022 | | MPHand | --- | --- | 2.678 | 2.785 | 1.680 | | MPPalm | 5.309 | 5.319 | 3.822 | 10.568 | 4.467 | | MPPose | --- | --- | 3.644 | 6.088 | 4.608 | | PPHumanSeg | 4.756 | 4.865 | 5.084 | 5.179 | 5.148 | | PPOCRv3 | --- | --- | 32.023 | 50.591 | 32.414 | | SFace | 3.838 | 3.980 | 4.629 | 3.145 | 3.155 | | ViTTrack | --- | --- | --- | 10.335 | 10.357 | | YOLOX | 68.314 | 68.081 | 82.801 | 74.219 | 73.970 | | YOLOv5 | --- | --- | --- | 47.150 | 47.523 | | YOLOv8 | --- | --- | 32.195 | 30.359 | 30.267 | | YuNet | 2.604 | 2.644 | 2.622 | 3.278 | 3.349 | | MobileNet_SSD_Caffe | 13.005 | 5.935 | 8.586 | 4.629 | 4.713 | | MobileNet_SSD_v1_TensorFlow | 7.002 | 7.129 | 9.314 | 5.271 | 5.213 | | MobileNet_SSD_v2_TensorFlow | 11.939 | 12.111 | 22.688 | 12.038 | 12.086 | | ResNet_50 | 18.227 | 18.600 | 26.150 | 15.584 | 15.706 |
2023-10-04 18:05:32 +08:00
inp = blobFromImage(inp, 1.0 / 255.0, Size(320, 320), Scalar(), true);
2024-02-12 19:20:35 +08:00
processNet("dnn/tflite/coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite", "", inp);
Merge pull request #23987 from dkurt:openvino_int8_backend OpenVINO backend for INT8 models #23987 ### Pull Request Readiness Checklist TODO: - [x] DetectionOutput layer (https://github.com/opencv/opencv/pull/24069) - [x] Less FP32 fallbacks (i.e. Sigmoid, eltwise sum) - [x] Accuracy, performance tests (https://github.com/opencv/opencv/pull/24039) - [x] Single layer tests (convolution) - [x] ~~Fixes for OpenVINO 2022.1 (https://pullrequest.opencv.org/buildbot/builders/precommit_custom_linux/builds/100334)~~ Performace results for object detection model `coco_efficientdet_lite0_v1_1.0_quant_2021_09_06.tflite`: | backend | performance (median time) | |---|---| | OpenCV | 77.42ms | | OpenVINO 2023.0 | 10.90ms | CPU: `11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz` Serialized model per-layer stats (note that Convolution should use `*_I8` primitives if they are quantized correctly): https://gist.github.com/dkurt/7772bbf1907035441bb5454f19f0feef --- See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-09-28 21:24:43 +08:00
}
PERF_TEST_P_(DNNTestNetwork, VIT_B_32)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
2024-02-12 19:20:35 +08:00
processNet("dnn/onnx/models/vit_b_32.onnx", "", cv::Size(224, 224));
Merge pull request #24476 from fengyuentau:attention_layer dnn: add attention layer #24476 Resolves #24609 Merge with: https://github.com/opencv/opencv_extra/pull/1128. Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention. TODO: - [x] benchmark (before this PR vs. with this PR vs. ORT). - [x] Layer fusion: Take care Slice with end=INT64_MAX. - [x] Layer fusion: match more potential attention (VIT) patterns. - [x] Single-head attention is supported. - [x] Test AttentionSubgraph fusion. - [x] Add acc tests for VIT_B_32 and VitTrack - [x] Add perf tests for VIT_B_32 and VitTrack ## Benchmarks Platform: Macbook Air M1. ### Attention Subgraph Input scale: [1, 197, 768]. | | mean (ms) | median (ms) | min (ms) | | ---------------------- | --------- | ----------- | -------- | | w/ Attention (this PR) | 3.75 | 3.68 | 3.22 | | w/o Attention | 9.06 | 9.01 | 8.24 | | ORT (python) | 4.32 | 2.63 | 2.50 | ### ViTs All data in millisecond (ms). | ViTs | With Attention | Without Attention | ORT | | -------- | -------------- | ----------------- | ------ | | vit_b_16 | 302.77 | 365.35 | 109.70 | | vit_b_32 | 89.92 | 116.22 | 30.36 | | vit_l_16 | 1593.32 | 1730.74 | 419.92 | | vit_l_32 | 468.11 | 577.41 | 134.12 | | VitTrack | 3.80 | 3.87 | 2.25 | ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
2023-12-21 00:35:07 +08:00
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets());
2017-09-22 20:15:57 +08:00
} // namespace