opencv/modules/features2d/src/dynamic.cpp

195 lines
5.6 KiB
C++
Raw Normal View History

2010-11-24 06:26:36 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector(const Ptr<AdjusterAdapter>& a,
int min_features, int max_features, int max_iters ) :
escape_iters_(max_iters), min_features_(min_features), max_features_(max_features), adjuster_(a)
{}
void DynamicAdaptedFeatureDetector::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
2010-11-24 06:26:36 +08:00
//for oscillation testing
bool down = false;
bool up = false;
//flag for whether the correct threshhold has been reached
bool thresh_good = false;
//this is bad but adjuster should persist from detection to detection
AdjusterAdapter& adjuster = const_cast<AdjusterAdapter&> (*adjuster_);
//break if the desired number hasn't been reached.
int iter_count = escape_iters_;
do
{
2010-11-24 06:26:36 +08:00
keypoints.clear();
//the adjuster takes care of calling the detector with updated parameters
adjuster.detect(image, keypoints,mask);
if (int(keypoints.size()) < min_features_)
{
2010-11-24 06:26:36 +08:00
down = true;
adjuster.tooFew(min_features_, keypoints.size());
}
else if (int(keypoints.size()) > max_features_)
{
2010-11-24 06:26:36 +08:00
up = true;
adjuster.tooMany(max_features_, keypoints.size());
}
else
2010-11-24 06:26:36 +08:00
thresh_good = true;
}
while (--iter_count >= 0 && !(down && up) && !thresh_good && adjuster.good());
2010-11-24 06:26:36 +08:00
}
FastAdjuster::FastAdjuster(int init_thresh, bool nonmax) :
thresh_(init_thresh), nonmax_(nonmax)
{}
void FastAdjuster::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
2010-11-24 06:26:36 +08:00
FastFeatureDetector(thresh_, nonmax_).detect(image, keypoints, mask);
}
void FastAdjuster::tooFew(int min, int n_detected)
{
2010-11-24 06:26:36 +08:00
//fast is easy to adjust
thresh_--;
}
void FastAdjuster::tooMany(int max, int n_detected)
{
2010-11-24 06:26:36 +08:00
//fast is easy to adjust
thresh_++;
}
//return whether or not the threshhold is beyond
//a useful point
bool FastAdjuster::good() const
{
2010-11-24 06:26:36 +08:00
return (thresh_ > 1) && (thresh_ < 200);
}
StarAdjuster::StarAdjuster(double initial_thresh) :
thresh_(initial_thresh)
{}
void StarAdjuster::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask) const
{
2010-11-24 06:26:36 +08:00
StarFeatureDetector detector_tmp(16, thresh_, 10, 8, 3);
detector_tmp.detect(image, keypoints, mask);
}
void StarAdjuster::tooFew(int min, int n_detected)
{
2010-11-24 06:26:36 +08:00
thresh_ *= 0.9;
if (thresh_ < 1.1)
thresh_ = 1.1;
}
void StarAdjuster::tooMany(int max, int n_detected)
{
2010-11-24 06:26:36 +08:00
thresh_ *= 1.1;
}
bool StarAdjuster::good() const
{
2010-11-24 06:26:36 +08:00
return (thresh_ > 2) && (thresh_ < 200);
}
SurfAdjuster::SurfAdjuster() :
thresh_(400.0)
{}
void SurfAdjuster::detectImpl(const Mat& image, vector<KeyPoint>& keypoints, const cv::Mat& mask) const
{
2010-11-24 06:26:36 +08:00
SurfFeatureDetector detector_tmp(thresh_);
detector_tmp.detect(image, keypoints, mask);
}
void SurfAdjuster::tooFew(int min, int n_detected)
{
2010-11-24 06:26:36 +08:00
thresh_ *= 0.9;
if (thresh_ < 1.1)
thresh_ = 1.1;
}
void SurfAdjuster::tooMany(int max, int n_detected)
{
2010-11-24 06:26:36 +08:00
thresh_ *= 1.1;
}
//return whether or not the threshhold is beyond
//a useful point
bool SurfAdjuster::good() const
{
2010-11-24 06:26:36 +08:00
return (thresh_ > 2) && (thresh_ < 1000);
}
Ptr<AdjusterAdapter> AdjusterAdapter::create( const string& detectorType )
{
Ptr<AdjusterAdapter> adapter;
if( !detectorType.compare( "FAST" ) )
{
adapter = new FastAdjuster();
}
else if( !detectorType.compare( "STAR" ) )
{
adapter = new StarAdjuster();
}
else if( !detectorType.compare( "SURF" ) )
{
adapter = new SurfAdjuster();
}
return adapter;
}
2010-11-24 06:26:36 +08:00
}