opencv/modules/imgproc/src/featureselect.cpp

550 lines
19 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
2014-08-01 22:11:20 +08:00
#include "opencl_kernels_imgproc.hpp"
2016-12-14 23:08:09 +08:00
#include "opencv2/core/openvx/ovx_defs.hpp"
#include <cstdio>
#include <vector>
#include <iostream>
2014-02-03 18:47:32 +08:00
#include <functional>
namespace cv
{
#ifdef CV_CXX11
struct greaterThanPtr
#else
struct greaterThanPtr : public std::binary_function<const float *, const float *, bool>
#endif
{
bool operator () (const float * a, const float * b) const
// Ensure a fully deterministic result of the sort
{ return (*a > *b) ? true : (*a < *b) ? false : (a > b); }
};
2014-03-05 00:04:16 +08:00
#ifdef HAVE_OPENCL
struct Corner
{
float val;
short y;
short x;
bool operator < (const Corner & c) const
// Ensure a fully deterministic result of the sort
{ return (val > c.val) ? true : (val < c.val) ? false : (y > c.y) ? true : (y < c.y) ? false : (x > c.x); }
};
static bool ocl_goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize, int gradientSize,
bool useHarrisDetector, double harrisK )
{
2014-03-05 00:04:16 +08:00
UMat eig, maxEigenValue;
if( useHarrisDetector )
cornerHarris( _image, eig, blockSize, gradientSize, harrisK );
else
cornerMinEigenVal( _image, eig, blockSize, gradientSize );
Size imgsize = _image.size();
size_t total, i, j, ncorners = 0, possibleCornersCount =
std::max(1024, static_cast<int>(imgsize.area() * 0.1));
bool haveMask = !_mask.empty();
UMat corners_buffer(1, (int)possibleCornersCount + 1, CV_32FC2);
CV_Assert(sizeof(Corner) == corners_buffer.elemSize());
Mat tmpCorners;
2014-03-05 00:04:16 +08:00
// find threshold
{
CV_Assert(eig.type() == CV_32FC1);
int dbsize = ocl::Device::getDefault().maxComputeUnits();
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
int wgs2_aligned = 1;
while (wgs2_aligned < (int)wgs)
wgs2_aligned <<= 1;
wgs2_aligned >>= 1;
ocl::Kernel k("maxEigenVal", ocl::imgproc::gftt_oclsrc,
format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D groupnum=%d -D WGS2_ALIGNED=%d%s",
(int)wgs, dbsize, wgs2_aligned, haveMask ? " -D HAVE_MASK" : ""));
if (k.empty())
return false;
UMat mask = _mask.getUMat();
maxEigenValue.create(1, dbsize, CV_32FC1);
ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig),
dbarg = ocl::KernelArg::PtrWriteOnly(maxEigenValue),
2014-09-11 22:11:23 +08:00
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer);
2014-03-05 00:04:16 +08:00
if (haveMask)
k.args(eigarg, eig.cols, (int)eig.total(), dbarg, maskarg);
else
k.args(eigarg, eig.cols, (int)eig.total(), dbarg);
size_t globalsize = dbsize * wgs;
if (!k.run(1, &globalsize, &wgs, false))
return false;
ocl::Kernel k2("maxEigenValTask", ocl::imgproc::gftt_oclsrc,
format("-D OP_MAX_EIGEN_VAL -D WGS=%d -D WGS2_ALIGNED=%d -D groupnum=%d",
wgs, wgs2_aligned, dbsize));
if (k2.empty())
return false;
k2.args(dbarg, (float)qualityLevel, cornersarg);
2014-03-05 00:04:16 +08:00
if (!k2.runTask(false))
return false;
}
// collect list of pointers to features - put them into temporary image
{
ocl::Kernel k("findCorners", ocl::imgproc::gftt_oclsrc,
2014-03-05 00:04:16 +08:00
format("-D OP_FIND_CORNERS%s", haveMask ? " -D HAVE_MASK" : ""));
if (k.empty())
return false;
ocl::KernelArg eigarg = ocl::KernelArg::ReadOnlyNoSize(eig),
cornersarg = ocl::KernelArg::PtrWriteOnly(corners_buffer),
2014-03-05 00:04:16 +08:00
thresholdarg = ocl::KernelArg::PtrReadOnly(maxEigenValue);
if (!haveMask)
k.args(eigarg, cornersarg, eig.rows - 2, eig.cols - 2, thresholdarg,
(int)possibleCornersCount);
else
{
UMat mask = _mask.getUMat();
2014-03-05 00:04:16 +08:00
k.args(eigarg, ocl::KernelArg::ReadOnlyNoSize(mask),
cornersarg, eig.rows - 2, eig.cols - 2,
2014-03-05 00:04:16 +08:00
thresholdarg, (int)possibleCornersCount);
}
size_t globalsize[2] = { (size_t)eig.cols - 2, (size_t)eig.rows - 2 };
if (!k.run(2, globalsize, NULL, false))
return false;
tmpCorners = corners_buffer.getMat(ACCESS_RW);
total = std::min<size_t>(tmpCorners.at<Vec2i>(0, 0)[0], possibleCornersCount);
2014-04-02 21:10:10 +08:00
if (total == 0)
{
_corners.release();
return true;
}
}
Corner* corner_ptr = tmpCorners.ptr<Corner>() + 1;
std::sort(corner_ptr, corner_ptr + total);
std::vector<Point2f> corners;
corners.reserve(total);
if (minDistance >= 1)
{
// Partition the image into larger grids
int w = imgsize.width, h = imgsize.height;
const int cell_size = cvRound(minDistance);
const int grid_width = (w + cell_size - 1) / cell_size;
const int grid_height = (h + cell_size - 1) / cell_size;
std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
minDistance *= minDistance;
for( i = 0; i < total; i++ )
{
const Corner & c = corner_ptr[i];
bool good = true;
int x_cell = c.x / cell_size;
int y_cell = c.y / cell_size;
int x1 = x_cell - 1;
int y1 = y_cell - 1;
int x2 = x_cell + 1;
int y2 = y_cell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
2014-03-05 00:04:16 +08:00
x2 = std::min(grid_width - 1, x2);
y2 = std::min(grid_height - 1, y2);
for( int yy = y1; yy <= y2; yy++ )
for( int xx = x1; xx <= x2; xx++ )
{
2014-03-05 00:04:16 +08:00
std::vector<Point2f> &m = grid[yy * grid_width + xx];
if( m.size() )
{
for(j = 0; j < m.size(); j++)
{
float dx = c.x - m[j].x;
float dy = c.y - m[j].y;
if( dx*dx + dy*dy < minDistance )
{
good = false;
goto break_out;
}
}
}
}
break_out:
if (good)
{
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)c.x, (float)c.y));
corners.push_back(Point2f((float)c.x, (float)c.y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
}
else
{
for( i = 0; i < total; i++ )
{
const Corner & c = corner_ptr[i];
corners.push_back(Point2f((float)c.x, (float)c.y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
return true;
}
2014-01-27 17:25:21 +08:00
#endif
#ifdef HAVE_OPENVX
struct VxKeypointsComparator
{
bool operator () (const vx_keypoint_t& a, const vx_keypoint_t& b)
{
return a.strength > b.strength;
}
};
static bool openvx_harris(Mat image, OutputArray _corners,
int _maxCorners, double _qualityLevel, double _minDistance,
2017-09-25 20:58:09 +08:00
int _blockSize, int _gradientSize, double _harrisK)
{
using namespace ivx;
if(image.type() != CV_8UC1) return false;
//OpenVX implementations don't have to provide other sizes
if(!(_blockSize == 3 || _blockSize == 5 || _blockSize == 7)) return false;
try
{
Context context = ovx::getOpenVXContext();
Image ovxImage = Image::createFromHandle(context, Image::matTypeToFormat(image.type()),
Image::createAddressing(image), image.data);
//The minimum threshold which to eliminate Harris Corner scores (computed using the normalized Sobel kernel).
//set to 0, we'll filter it later by threshold
ivx::Scalar strengthThresh = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, 0);
//The gradient window size to use on the input.
2017-09-25 20:58:09 +08:00
vx_int32 gradientSize = _gradientSize;
//The block window size used to compute the harris corner score
vx_int32 blockSize = _blockSize;
//The scalar sensitivity threshold k from the Harris-Stephens equation
ivx::Scalar sensivity = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, _harrisK);
//The radial Euclidean distance for non-maximum suppression
ivx::Scalar minDistance = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, _minDistance);
vx_size capacity = image.cols * image.rows;
Array corners = Array::create(context, VX_TYPE_KEYPOINT, capacity);
ivx::Scalar numCorners = ivx::Scalar::create<VX_TYPE_SIZE>(context, 0);
IVX_CHECK_STATUS(vxuHarrisCorners(context, ovxImage, strengthThresh, minDistance, sensivity,
gradientSize, blockSize, corners, numCorners));
std::vector<vx_keypoint_t> vxKeypoints;
corners.copyTo(vxKeypoints);
std::sort(vxKeypoints.begin(), vxKeypoints.end(), VxKeypointsComparator());
vx_float32 maxStrength = 0.0f;
if(vxKeypoints.size() > 0)
maxStrength = vxKeypoints[0].strength;
size_t maxKeypoints = min((size_t)_maxCorners, vxKeypoints.size());
std::vector<Point2f> keypoints;
keypoints.reserve(maxKeypoints);
for(size_t i = 0; i < maxKeypoints; i++)
{
vx_keypoint_t kp = vxKeypoints[i];
if(kp.strength < maxStrength*_qualityLevel) break;
keypoints.push_back(Point2f((float)kp.x, (float)kp.y));
}
Mat(keypoints).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
#ifdef VX_VERSION_1_1
//we should take user memory back before release
//(it's not done automatically according to standard)
ovxImage.swapHandle();
#endif
}
catch (const RuntimeError & e)
{
2016-12-14 23:08:09 +08:00
VX_DbgThrow(e.what());
}
catch (const WrapperError & e)
{
2016-12-14 23:08:09 +08:00
VX_DbgThrow(e.what());
}
return true;
}
#endif
}
2012-10-17 15:12:04 +08:00
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize, int gradientSize,
bool useHarrisDetector, double harrisK )
{
CV_INSTRUMENT_REGION();
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 );
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) );
2014-01-27 17:25:21 +08:00
CV_OCL_RUN(_image.dims() <= 2 && _image.isUMat(),
ocl_goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
_mask, blockSize, gradientSize, useHarrisDetector, harrisK))
Mat image = _image.getMat(), eig, tmp;
2014-10-28 21:06:36 +08:00
if (image.empty())
{
_corners.release();
return;
}
2016-12-03 00:24:30 +08:00
// Disabled due to bad accuracy
CV_OVX_RUN(false && useHarrisDetector && _mask.empty() &&
!ovx::skipSmallImages<VX_KERNEL_HARRIS_CORNERS>(image.cols, image.rows),
2017-09-25 20:58:09 +08:00
openvx_harris(image, _corners, maxCorners, qualityLevel, minDistance, blockSize, gradientSize, harrisK))
if( useHarrisDetector )
cornerHarris( image, eig, blockSize, gradientSize, harrisK );
else
cornerMinEigenVal( image, eig, blockSize, gradientSize );
double maxVal = 0;
minMaxLoc( eig, 0, &maxVal, 0, 0, _mask );
threshold( eig, eig, maxVal*qualityLevel, 0, THRESH_TOZERO );
dilate( eig, tmp, Mat());
Size imgsize = image.size();
std::vector<const float*> tmpCorners;
// collect list of pointers to features - put them into temporary image
Mat mask = _mask.getMat();
for( int y = 1; y < imgsize.height - 1; y++ )
{
const float* eig_data = (const float*)eig.ptr(y);
const float* tmp_data = (const float*)tmp.ptr(y);
const uchar* mask_data = mask.data ? mask.ptr(y) : 0;
for( int x = 1; x < imgsize.width - 1; x++ )
{
float val = eig_data[x];
if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) )
tmpCorners.push_back(eig_data + x);
}
}
2014-03-05 00:04:16 +08:00
std::vector<Point2f> corners;
size_t i, j, total = tmpCorners.size(), ncorners = 0;
2015-12-03 21:19:08 +08:00
if (total == 0)
{
_corners.release();
return;
}
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() );
if (minDistance >= 1)
{
// Partition the image into larger grids
int w = image.cols;
int h = image.rows;
const int cell_size = cvRound(minDistance);
const int grid_width = (w + cell_size - 1) / cell_size;
const int grid_height = (h + cell_size - 1) / cell_size;
std::vector<std::vector<Point2f> > grid(grid_width*grid_height);
minDistance *= minDistance;
for( i = 0; i < total; i++ )
{
int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
int y = (int)(ofs / eig.step);
int x = (int)((ofs - y*eig.step)/sizeof(float));
2012-10-17 15:12:04 +08:00
bool good = true;
int x_cell = x / cell_size;
int y_cell = y / cell_size;
int x1 = x_cell - 1;
int y1 = y_cell - 1;
int x2 = x_cell + 1;
int y2 = y_cell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(grid_width-1, x2);
y2 = std::min(grid_height-1, y2);
for( int yy = y1; yy <= y2; yy++ )
2015-12-03 21:19:08 +08:00
{
for( int xx = x1; xx <= x2; xx++ )
2012-10-17 15:12:04 +08:00
{
std::vector <Point2f> &m = grid[yy*grid_width + xx];
if( m.size() )
{
for(j = 0; j < m.size(); j++)
{
float dx = x - m[j].x;
float dy = y - m[j].y;
if( dx*dx + dy*dy < minDistance )
{
good = false;
goto break_out;
}
}
2012-10-17 15:12:04 +08:00
}
}
2015-12-03 21:19:08 +08:00
}
break_out:
if (good)
{
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y));
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
}
else
{
for( i = 0; i < total; i++ )
{
int ofs = (int)((const uchar*)tmpCorners[i] - eig.ptr());
int y = (int)(ofs / eig.step);
int x = (int)((ofs - y*eig.step)/sizeof(float));
corners.push_back(Point2f((float)x, (float)y));
++ncorners;
if( maxCorners > 0 && (int)ncorners == maxCorners )
break;
}
}
2012-10-17 15:12:04 +08:00
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F);
}
CV_IMPL void
cvGoodFeaturesToTrack( const void* _image, void*, void*,
CvPoint2D32f* _corners, int *_corner_count,
double quality_level, double min_distance,
const void* _maskImage, int block_size,
int use_harris, double harris_k )
{
cv::Mat image = cv::cvarrToMat(_image), mask;
std::vector<cv::Point2f> corners;
if( _maskImage )
mask = cv::cvarrToMat(_maskImage);
CV_Assert( _corners && _corner_count );
cv::goodFeaturesToTrack( image, corners, *_corner_count, quality_level,
min_distance, mask, block_size, use_harris != 0, harris_k );
size_t i, ncorners = corners.size();
for( i = 0; i < ncorners; i++ )
_corners[i] = cvPoint2D32f(corners[i]);
*_corner_count = (int)ncorners;
}
void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
int maxCorners, double qualityLevel, double minDistance,
InputArray _mask, int blockSize,
bool useHarrisDetector, double harrisK )
{
cv::goodFeaturesToTrack(_image, _corners, maxCorners, qualityLevel, minDistance,
_mask, blockSize, 3, useHarrisDetector, harrisK );
}
/* End of file. */