opencv/modules/imgproc/src/moments.cpp

843 lines
25 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
2014-08-01 22:11:20 +08:00
#include "opencl_kernels_imgproc.hpp"
#include "opencv2/core/hal/intrin.hpp"
2013-02-12 22:07:22 +08:00
namespace cv
{
// The function calculates center of gravity and the central second order moments
2013-02-12 22:07:22 +08:00
static void completeMomentState( Moments* moments )
{
double cx = 0, cy = 0;
double mu20, mu11, mu02;
double inv_m00 = 0.0;
CV_Assert( moments != 0 );
if( fabs(moments->m00) > DBL_EPSILON )
{
inv_m00 = 1. / moments->m00;
cx = moments->m10 * inv_m00;
cy = moments->m01 * inv_m00;
}
// mu20 = m20 - m10*cx
mu20 = moments->m20 - moments->m10 * cx;
// mu11 = m11 - m10*cy
mu11 = moments->m11 - moments->m10 * cy;
// mu02 = m02 - m01*cy
mu02 = moments->m02 - moments->m01 * cy;
moments->mu20 = mu20;
moments->mu11 = mu11;
moments->mu02 = mu02;
// mu30 = m30 - cx*(3*mu20 + cx*m10)
moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10);
mu11 += mu11;
// mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20
moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20;
// mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02
moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02;
// mu03 = m03 - cy*(3*mu02 + cy*m01)
moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01);
double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
moments->nu20 = moments->mu20*s2; moments->nu11 = moments->mu11*s2; moments->nu02 = moments->mu02*s2;
moments->nu30 = moments->mu30*s3; moments->nu21 = moments->mu21*s3; moments->nu12 = moments->mu12*s3; moments->nu03 = moments->mu03*s3;
}
2013-02-12 22:07:22 +08:00
static Moments contourMoments( const Mat& contour )
{
2013-02-12 22:07:22 +08:00
Moments m;
int lpt = contour.checkVector(2);
int is_float = contour.depth() == CV_32F;
const Point* ptsi = contour.ptr<Point>();
const Point2f* ptsf = contour.ptr<Point2f>();
2013-02-12 22:07:22 +08:00
CV_Assert( contour.depth() == CV_32S || contour.depth() == CV_32F );
2013-02-12 22:07:22 +08:00
if( lpt == 0 )
return m;
double a00 = 0, a10 = 0, a01 = 0, a20 = 0, a11 = 0, a02 = 0, a30 = 0, a21 = 0, a12 = 0, a03 = 0;
double xi, yi, xi2, yi2, xi_1, yi_1, xi_12, yi_12, dxy, xii_1, yii_1;
if( !is_float )
{
xi_1 = ptsi[lpt-1].x;
yi_1 = ptsi[lpt-1].y;
}
else
{
xi_1 = ptsf[lpt-1].x;
yi_1 = ptsf[lpt-1].y;
}
2013-02-12 22:07:22 +08:00
xi_12 = xi_1 * xi_1;
yi_12 = yi_1 * yi_1;
2013-02-12 22:07:22 +08:00
for( int i = 0; i < lpt; i++ )
{
if( !is_float )
{
2013-02-12 22:07:22 +08:00
xi = ptsi[i].x;
yi = ptsi[i].y;
}
else
{
2013-02-12 22:07:22 +08:00
xi = ptsf[i].x;
yi = ptsf[i].y;
}
2012-06-09 23:00:04 +08:00
2013-02-12 22:07:22 +08:00
xi2 = xi * xi;
yi2 = yi * yi;
dxy = xi_1 * yi - xi * yi_1;
xii_1 = xi_1 + xi;
yii_1 = yi_1 + yi;
a00 += dxy;
a10 += dxy * xii_1;
a01 += dxy * yii_1;
a20 += dxy * (xi_1 * xii_1 + xi2);
a11 += dxy * (xi_1 * (yii_1 + yi_1) + xi * (yii_1 + yi));
a02 += dxy * (yi_1 * yii_1 + yi2);
a30 += dxy * xii_1 * (xi_12 + xi2);
a03 += dxy * yii_1 * (yi_12 + yi2);
a21 += dxy * (xi_12 * (3 * yi_1 + yi) + 2 * xi * xi_1 * yii_1 +
xi2 * (yi_1 + 3 * yi));
a12 += dxy * (yi_12 * (3 * xi_1 + xi) + 2 * yi * yi_1 * xii_1 +
yi2 * (xi_1 + 3 * xi));
xi_1 = xi;
yi_1 = yi;
xi_12 = xi2;
yi_12 = yi2;
}
2013-02-12 22:07:22 +08:00
if( fabs(a00) > FLT_EPSILON )
{
double db1_2, db1_6, db1_12, db1_24, db1_20, db1_60;
2013-02-12 22:07:22 +08:00
if( a00 > 0 )
{
2013-02-12 22:07:22 +08:00
db1_2 = 0.5;
db1_6 = 0.16666666666666666666666666666667;
db1_12 = 0.083333333333333333333333333333333;
db1_24 = 0.041666666666666666666666666666667;
db1_20 = 0.05;
db1_60 = 0.016666666666666666666666666666667;
}
2013-02-12 22:07:22 +08:00
else
{
2013-02-12 22:07:22 +08:00
db1_2 = -0.5;
db1_6 = -0.16666666666666666666666666666667;
db1_12 = -0.083333333333333333333333333333333;
db1_24 = -0.041666666666666666666666666666667;
db1_20 = -0.05;
db1_60 = -0.016666666666666666666666666666667;
}
2013-02-12 22:07:22 +08:00
// spatial moments
m.m00 = a00 * db1_2;
m.m10 = a10 * db1_6;
m.m01 = a01 * db1_6;
m.m20 = a20 * db1_12;
m.m11 = a11 * db1_24;
m.m02 = a02 * db1_12;
m.m30 = a30 * db1_20;
m.m21 = a21 * db1_60;
m.m12 = a12 * db1_60;
m.m03 = a03 * db1_20;
completeMomentState( &m );
}
2013-02-12 22:07:22 +08:00
return m;
}
/****************************************************************************************\
* Spatial Raster Moments *
\****************************************************************************************/
template<typename T, typename WT, typename MT>
2014-09-26 22:39:04 +08:00
struct MomentsInTile_SIMD
{
int operator() (const T *, int, WT &, WT &, WT &, MT &)
{
return 0;
}
};
#if CV_SIMD128
template <>
2014-09-26 22:39:04 +08:00
struct MomentsInTile_SIMD<uchar, int, int>
{
2014-09-26 22:39:04 +08:00
MomentsInTile_SIMD()
{
// nothing
}
2012-06-09 23:00:04 +08:00
int operator() (const uchar * ptr, int len, int & x0, int & x1, int & x2, int & x3)
{
int x = 0;
2012-06-09 23:00:04 +08:00
{
v_int16x8 dx = v_setall_s16(8), qx = v_int16x8(0, 1, 2, 3, 4, 5, 6, 7);
v_uint32x4 z = v_setzero_u32(), qx0 = z, qx1 = z, qx2 = z, qx3 = z;
2012-06-09 23:00:04 +08:00
for( ; x <= len - 8; x += 8 )
{
v_int16x8 p = v_reinterpret_as_s16(v_load_expand(ptr + x));
v_int16x8 sx = v_mul_wrap(qx, qx);
2014-09-26 22:39:04 +08:00
2023-10-13 19:23:30 +08:00
qx0 = v_add(qx0, v_reinterpret_as_u32(p));
qx1 = v_reinterpret_as_u32(v_dotprod(p, qx, v_reinterpret_as_s32(qx1)));
qx2 = v_reinterpret_as_u32(v_dotprod(p, sx, v_reinterpret_as_s32(qx2)));
qx3 = v_reinterpret_as_u32(v_dotprod(v_mul_wrap(p, qx), sx, v_reinterpret_as_s32(qx3)));
2012-06-09 23:00:04 +08:00
2023-10-13 19:23:30 +08:00
qx = v_add(qx, dx);
}
x0 = v_reduce_sum(qx0);
x0 = (x0 & 0xffff) + (x0 >> 16);
x1 = v_reduce_sum(qx1);
x2 = v_reduce_sum(qx2);
x3 = v_reduce_sum(qx3);
}
2012-06-09 23:00:04 +08:00
return x;
}
};
template <>
2014-09-26 22:39:04 +08:00
struct MomentsInTile_SIMD<ushort, int, int64>
{
2014-09-26 22:39:04 +08:00
MomentsInTile_SIMD()
{
// nothing
}
int operator() (const ushort * ptr, int len, int & x0, int & x1, int & x2, int64 & x3)
{
int x = 0;
{
v_int32x4 v_delta = v_setall_s32(4), v_ix0 = v_int32x4(0, 1, 2, 3);
v_uint32x4 z = v_setzero_u32(), v_x0 = z, v_x1 = z, v_x2 = z;
v_uint64x2 v_x3 = v_reinterpret_as_u64(z);
for( ; x <= len - 4; x += 4 )
{
v_int32x4 v_src = v_reinterpret_as_s32(v_load_expand(ptr + x));
2023-10-13 19:23:30 +08:00
v_x0 = v_add(v_x0, v_reinterpret_as_u32(v_src));
v_x1 = v_add(v_x1, v_reinterpret_as_u32(v_mul(v_src, v_ix0)));
2023-10-13 19:23:30 +08:00
v_int32x4 v_ix1 = v_mul(v_ix0, v_ix0);
v_x2 = v_add(v_x2, v_reinterpret_as_u32(v_mul(v_src, v_ix1)));
2023-10-13 19:23:30 +08:00
v_ix1 = v_mul(v_ix0, v_ix1);
v_src = v_mul(v_src, v_ix1);
v_uint64x2 v_lo, v_hi;
v_expand(v_reinterpret_as_u32(v_src), v_lo, v_hi);
2023-10-13 19:23:30 +08:00
v_x3 = v_add(v_x3, v_add(v_lo, v_hi));
2023-10-13 19:23:30 +08:00
v_ix0 = v_add(v_ix0, v_delta);
}
x0 = v_reduce_sum(v_x0);
x1 = v_reduce_sum(v_x1);
x2 = v_reduce_sum(v_x2);
v_store_aligned(buf64, v_reinterpret_as_s64(v_x3));
x3 = buf64[0] + buf64[1];
}
return x;
}
2014-09-26 22:39:04 +08:00
int64 CV_DECL_ALIGNED(16) buf64[2];
};
#endif
template<typename T, typename WT, typename MT>
#if defined __GNUC__ && __GNUC__ == 4 && __GNUC_MINOR__ >= 5 && __GNUC_MINOR__ < 9
// Workaround for http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60196
__attribute__((optimize("no-tree-vectorize")))
#endif
static void momentsInTile( const Mat& img, double* moments )
{
Size size = img.size();
int x, y;
MT mom[10] = {0,0,0,0,0,0,0,0,0,0};
2014-09-26 22:39:04 +08:00
MomentsInTile_SIMD<T, WT, MT> vop;
for( y = 0; y < size.height; y++ )
{
const T* ptr = img.ptr<T>(y);
WT x0 = 0, x1 = 0, x2 = 0;
MT x3 = 0;
x = vop(ptr, size.width, x0, x1, x2, x3);
for( ; x < size.width; x++ )
{
WT p = ptr[x];
WT xp = x * p, xxp;
2012-06-09 23:00:04 +08:00
x0 += p;
x1 += xp;
xxp = xp * x;
x2 += xxp;
x3 += xxp * x;
}
2012-06-09 23:00:04 +08:00
WT py = y * x0, sy = y*y;
2012-06-09 23:00:04 +08:00
mom[9] += ((MT)py) * sy; // m03
mom[8] += ((MT)x1) * sy; // m12
mom[7] += ((MT)x2) * y; // m21
mom[6] += x3; // m30
mom[5] += x0 * sy; // m02
mom[4] += x1 * y; // m11
mom[3] += x2; // m20
mom[2] += py; // m01
mom[1] += x1; // m10
mom[0] += x0; // m00
}
2012-06-09 23:00:04 +08:00
for( x = 0; x < 10; x++ )
moments[x] = (double)mom[x];
}
2013-02-12 22:07:22 +08:00
typedef void (*MomentsInTileFunc)(const Mat& img, double* moments);
2013-02-12 22:07:22 +08:00
Moments::Moments()
{
2013-02-12 22:07:22 +08:00
m00 = m10 = m01 = m20 = m11 = m02 = m30 = m21 = m12 = m03 =
mu20 = mu11 = mu02 = mu30 = mu21 = mu12 = mu03 =
nu20 = nu11 = nu02 = nu30 = nu21 = nu12 = nu03 = 0.;
}
Moments::Moments( double _m00, double _m10, double _m01, double _m20, double _m11,
double _m02, double _m30, double _m21, double _m12, double _m03 )
{
m00 = _m00; m10 = _m10; m01 = _m01;
m20 = _m20; m11 = _m11; m02 = _m02;
m30 = _m30; m21 = _m21; m12 = _m12; m03 = _m03;
2013-02-12 22:07:22 +08:00
double cx = 0, cy = 0, inv_m00 = 0;
if( std::abs(m00) > DBL_EPSILON )
{
2013-02-12 22:07:22 +08:00
inv_m00 = 1./m00;
cx = m10*inv_m00; cy = m01*inv_m00;
}
2013-02-12 22:07:22 +08:00
mu20 = m20 - m10*cx;
mu11 = m11 - m10*cy;
mu02 = m02 - m01*cy;
2013-02-12 22:07:22 +08:00
mu30 = m30 - cx*(3*mu20 + cx*m10);
mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20;
mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02;
mu03 = m03 - cy*(3*mu02 + cy*m01);
2013-02-12 22:07:22 +08:00
double inv_sqrt_m00 = std::sqrt(std::abs(inv_m00));
double s2 = inv_m00*inv_m00, s3 = s2*inv_sqrt_m00;
2013-02-12 22:07:22 +08:00
nu20 = mu20*s2; nu11 = mu11*s2; nu02 = mu02*s2;
nu30 = mu30*s3; nu21 = mu21*s3; nu12 = mu12*s3; nu03 = mu03*s3;
}
2014-01-27 17:25:21 +08:00
#ifdef HAVE_OPENCL
static bool ocl_moments( InputArray _src, Moments& m, bool binary)
{
const int TILE_SIZE = 32;
const int K = 10;
Size sz = _src.getSz();
int xtiles = divUp(sz.width, TILE_SIZE);
int ytiles = divUp(sz.height, TILE_SIZE);
int ntiles = xtiles*ytiles;
if (ntiles == 0)
return false;
ocl::Kernel k = ocl::Kernel("moments", ocl::imgproc::moments_oclsrc,
format("-D TILE_SIZE=%d%s",
TILE_SIZE,
binary ? " -D OP_MOMENTS_BINARY" : ""));
if( k.empty() )
return false;
UMat src = _src.getUMat();
UMat umbuf(1, ntiles*K, CV_32S);
size_t globalsize[] = {(size_t)xtiles, std::max((size_t)TILE_SIZE, (size_t)sz.height)};
size_t localsize[] = {1, TILE_SIZE};
bool ok = k.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::PtrWriteOnly(umbuf),
xtiles).run(2, globalsize, localsize, true);
if(!ok)
return false;
Mat mbuf = umbuf.getMat(ACCESS_READ);
for( int i = 0; i < ntiles; i++ )
{
double x = (i % xtiles)*TILE_SIZE, y = (i / xtiles)*TILE_SIZE;
const int* mom = mbuf.ptr<int>() + i*K;
double xm = x * mom[0], ym = y * mom[0];
// accumulate moments computed in each tile
// + m00 ( = m00' )
m.m00 += mom[0];
// + m10 ( = m10' + x*m00' )
m.m10 += mom[1] + xm;
// + m01 ( = m01' + y*m00' )
m.m01 += mom[2] + ym;
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
m.m20 += mom[3] + x * (mom[1] * 2 + xm);
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
m.m02 += mom[5] + y * (mom[2] * 2 + ym);
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
}
completeMomentState( &m );
return true;
}
2014-01-27 17:25:21 +08:00
#endif
#ifdef HAVE_IPP
typedef IppStatus (CV_STDCALL * ippiMoments)(const void* pSrc, int srcStep, IppiSize roiSize, IppiMomentState_64f* pCtx);
static bool ipp_moments(Mat &src, Moments &m )
{
#if IPP_VERSION_X100 >= 900
CV_INSTRUMENT_REGION_IPP();
#if IPP_VERSION_X100 < 201801
// Degradations for CV_8UC1
if(src.type() == CV_8UC1)
return false;
#endif
IppiSize roi = { src.cols, src.rows };
IppiPoint point = { 0, 0 };
int type = src.type();
IppStatus ippStatus;
IppAutoBuffer<IppiMomentState_64f> state;
int stateSize = 0;
ippiMoments ippiMoments64f =
(type == CV_8UC1)?(ippiMoments)ippiMoments64f_8u_C1R:
(type == CV_16UC1)?(ippiMoments)ippiMoments64f_16u_C1R:
(type == CV_32FC1)?(ippiMoments)ippiMoments64f_32f_C1R:
NULL;
if(!ippiMoments64f)
return false;
ippStatus = ippiMomentGetStateSize_64f(ippAlgHintAccurate, &stateSize);
if(ippStatus < 0)
return false;
if(!state.allocate(stateSize) && stateSize)
return false;
ippStatus = ippiMomentInit_64f(state, ippAlgHintAccurate);
if(ippStatus < 0)
return false;
ippStatus = CV_INSTRUMENT_FUN_IPP(ippiMoments64f, src.ptr<Ipp8u>(), (int)src.step, roi, state);
if(ippStatus < 0)
return false;
ippStatus = ippiGetSpatialMoment_64f(state, 0, 0, 0, point, &m.m00);
if(ippStatus < 0)
return false;
ippiGetSpatialMoment_64f(state, 1, 0, 0, point, &m.m10);
ippiGetSpatialMoment_64f(state, 0, 1, 0, point, &m.m01);
ippiGetSpatialMoment_64f(state, 2, 0, 0, point, &m.m20);
ippiGetSpatialMoment_64f(state, 1, 1, 0, point, &m.m11);
ippiGetSpatialMoment_64f(state, 0, 2, 0, point, &m.m02);
ippiGetSpatialMoment_64f(state, 3, 0, 0, point, &m.m30);
ippiGetSpatialMoment_64f(state, 2, 1, 0, point, &m.m21);
ippiGetSpatialMoment_64f(state, 1, 2, 0, point, &m.m12);
ippiGetSpatialMoment_64f(state, 0, 3, 0, point, &m.m03);
ippStatus = ippiGetCentralMoment_64f(state, 2, 0, 0, &m.mu20);
if(ippStatus < 0)
return false;
ippiGetCentralMoment_64f(state, 1, 1, 0, &m.mu11);
ippiGetCentralMoment_64f(state, 0, 2, 0, &m.mu02);
ippiGetCentralMoment_64f(state, 3, 0, 0, &m.mu30);
ippiGetCentralMoment_64f(state, 2, 1, 0, &m.mu21);
ippiGetCentralMoment_64f(state, 1, 2, 0, &m.mu12);
ippiGetCentralMoment_64f(state, 0, 3, 0, &m.mu03);
ippStatus = ippiGetNormalizedCentralMoment_64f(state, 2, 0, 0, &m.nu20);
if(ippStatus < 0)
return false;
ippiGetNormalizedCentralMoment_64f(state, 1, 1, 0, &m.nu11);
ippiGetNormalizedCentralMoment_64f(state, 0, 2, 0, &m.nu02);
ippiGetNormalizedCentralMoment_64f(state, 3, 0, 0, &m.nu30);
ippiGetNormalizedCentralMoment_64f(state, 2, 1, 0, &m.nu21);
ippiGetNormalizedCentralMoment_64f(state, 1, 2, 0, &m.nu12);
ippiGetNormalizedCentralMoment_64f(state, 0, 3, 0, &m.nu03);
return true;
#else
CV_UNUSED(src); CV_UNUSED(m);
return false;
#endif
2013-02-12 22:07:22 +08:00
}
#endif
2013-02-12 22:07:22 +08:00
}
2013-02-12 22:07:22 +08:00
2024-04-25 21:42:48 +08:00
namespace cv { namespace hal {
static int moments(const cv::Mat& src, bool binary, cv::Moments& m)
{
CV_INSTRUMENT_REGION();
double m_data[10];
int status = 0;
int type = src.type();
int depth = CV_MAT_DEPTH(type);
if( src.checkVector(2) >= 0 && (depth == CV_32F || depth == CV_32S))
2024-05-03 13:40:43 +08:00
status = cv_hal_polygonMoments(src.data, src.total()/2, src.type(), m_data);
2024-04-25 21:42:48 +08:00
else
2024-05-03 13:40:43 +08:00
status = cv_hal_imageMoments(src.data, src.step, src.type(), src.cols, src.rows, binary, m_data);
2024-04-25 21:42:48 +08:00
if (status == CV_HAL_ERROR_OK)
{
m = cv::Moments(m_data[0], m_data[1], m_data[2], m_data[3], m_data[4],
m_data[5], m_data[6], m_data[7], m_data[8], m_data[9]);
}
else if (status != CV_HAL_ERROR_NOT_IMPLEMENTED)
{
CV_Error_(cv::Error::StsInternal,
("HAL implementation moments ==> " CVAUX_STR(cv_hal_imageMoments) " returned %d (0x%08x)", status, status));
}
return status;
}
}}
2013-02-12 22:07:22 +08:00
cv::Moments cv::moments( InputArray _src, bool binary )
{
CV_INSTRUMENT_REGION();
2013-02-12 22:07:22 +08:00
const int TILE_SIZE = 32;
MomentsInTileFunc func = 0;
uchar nzbuf[TILE_SIZE*TILE_SIZE];
Moments m;
2014-04-17 03:35:39 +08:00
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
Size size = _src.size();
if( size.width <= 0 || size.height <= 0 )
2013-02-12 22:07:22 +08:00
return m;
2014-01-27 17:25:21 +08:00
#ifdef HAVE_OPENCL
CV_OCL_RUN_(type == CV_8UC1 && _src.isUMat(), ocl_moments(_src, m, binary), m);
2014-01-27 17:25:21 +08:00
#endif
Mat mat = _src.getMat();
2024-04-25 21:42:48 +08:00
if (hal::moments(mat, binary, m) == CV_HAL_ERROR_OK)
return m;
if( mat.checkVector(2) >= 0 && (depth == CV_32F || depth == CV_32S))
return contourMoments(mat);
if( cn > 1 )
2024-03-04 20:51:05 +08:00
CV_Error( cv::Error::StsBadArg, "Invalid image type (must be single-channel)" );
CV_IPP_RUN(!binary, ipp_moments(mat, m), m);
if( binary || depth == CV_8U )
func = momentsInTile<uchar, int, int>;
else if( depth == CV_16U )
func = momentsInTile<ushort, int, int64>;
else if( depth == CV_16S )
func = momentsInTile<short, int, int64>;
else if( depth == CV_32F )
func = momentsInTile<float, double, double>;
else if( depth == CV_64F )
func = momentsInTile<double, double, double>;
else
2024-03-04 20:51:05 +08:00
CV_Error( cv::Error::StsUnsupportedFormat, "" );
Mat src0(mat);
2012-06-09 23:00:04 +08:00
for( int y = 0; y < size.height; y += TILE_SIZE )
{
Size tileSize;
tileSize.height = std::min(TILE_SIZE, size.height - y);
for( int x = 0; x < size.width; x += TILE_SIZE )
{
tileSize.width = std::min(TILE_SIZE, size.width - x);
Mat src(src0, cv::Rect(x, y, tileSize.width, tileSize.height));
if( binary )
{
cv::Mat tmp(tileSize, CV_8U, nzbuf);
Merge pull request #25564 from mshabunin:cleanup-imgproc-2 imgproc: C-API cleanup, drawContours refactor #25564 Changes: * moved several macros from types_c.h to cvdef.h (assuming we will continue using them) * removed some cases of C-API usage in _imgproc_ module (`CV_TERMCRIT_*` and `CV_CMP_*`) * refactored `drawContours` to use C++ API instead of calling `cvDrawContours` + test for filled contours with holes (case with non-filled contours is simpler and is covered in some other tests) #### Note: There is one case where old drawContours behavior doesn't match the new one - when `contourIdx == -1` (means "draw all contours") and `maxLevel == 0` (means draw only selected contours, but not what is inside). From the docs: > **contourIdx** Parameter indicating a contour to draw. If it is negative, all the contours are drawn. > **maxLevel** Maximal level for drawn contours. If it is 0, only the specified contour is drawn. If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This parameter is only taken into account when there is hierarchy available. Old behavior - only one first contour is drawn: ![actual_screenshot_08 05 2024](https://github.com/opencv/opencv/assets/3304494/d0ae1d64-ddad-46bb-8acc-6f696874f71b) a New behavior (also expected by the test) - all contours are drawn: ![expected_screenshot_08 05 2024](https://github.com/opencv/opencv/assets/3304494/57ccd980-9dde-4006-90ee-19d6ce76912a)
2024-05-17 20:01:05 +08:00
cv::compare( src, 0, tmp, cv::CMP_NE );
src = tmp;
}
2012-06-09 23:00:04 +08:00
double mom[10];
func( src, mom );
2012-06-09 23:00:04 +08:00
if(binary)
{
double s = 1./255;
for( int k = 0; k < 10; k++ )
mom[k] *= s;
}
double xm = x * mom[0], ym = y * mom[0];
// accumulate moments computed in each tile
// + m00 ( = m00' )
m.m00 += mom[0];
// + m10 ( = m10' + x*m00' )
m.m10 += mom[1] + xm;
// + m01 ( = m01' + y*m00' )
m.m01 += mom[2] + ym;
// + m20 ( = m20' + 2*x*m10' + x*x*m00' )
m.m20 += mom[3] + x * (mom[1] * 2 + xm);
// + m11 ( = m11' + x*m01' + y*m10' + x*y*m00' )
m.m11 += mom[4] + x * (mom[2] + ym) + y * mom[1];
// + m02 ( = m02' + 2*y*m01' + y*y*m00' )
m.m02 += mom[5] + y * (mom[2] * 2 + ym);
// + m30 ( = m30' + 3*x*m20' + 3*x*x*m10' + x*x*x*m00' )
m.m30 += mom[6] + x * (3. * mom[3] + x * (3. * mom[1] + xm));
2012-06-09 23:00:04 +08:00
// + m21 ( = m21' + x*(2*m11' + 2*y*m10' + x*m01' + x*y*m00') + y*m20')
m.m21 += mom[7] + x * (2 * (mom[4] + y * mom[1]) + x * (mom[2] + ym)) + y * mom[3];
// + m12 ( = m12' + y*(2*m11' + 2*x*m01' + y*m10' + x*y*m00') + x*m02')
m.m12 += mom[8] + y * (2 * (mom[4] + x * mom[2]) + y * (mom[1] + xm)) + x * mom[5];
// + m03 ( = m03' + 3*y*m02' + 3*y*y*m01' + y*y*y*m00' )
m.m03 += mom[9] + y * (3. * mom[5] + y * (3. * mom[2] + ym));
}
}
2013-02-12 22:07:22 +08:00
completeMomentState( &m );
return m;
}
2013-02-12 22:07:22 +08:00
void cv::HuMoments( const Moments& m, double hu[7] )
{
CV_INSTRUMENT_REGION();
2013-02-12 22:07:22 +08:00
double t0 = m.nu30 + m.nu12;
double t1 = m.nu21 + m.nu03;
double q0 = t0 * t0, q1 = t1 * t1;
2013-02-12 22:07:22 +08:00
double n4 = 4 * m.nu11;
double s = m.nu20 + m.nu02;
double d = m.nu20 - m.nu02;
2013-02-12 22:07:22 +08:00
hu[0] = s;
hu[1] = d * d + n4 * m.nu11;
hu[3] = q0 + q1;
hu[5] = d * (q0 - q1) + n4 * t0 * t1;
t0 *= q0 - 3 * q1;
t1 *= 3 * q0 - q1;
2013-02-12 22:07:22 +08:00
q0 = m.nu30 - 3 * m.nu12;
q1 = 3 * m.nu21 - m.nu03;
2013-02-12 22:07:22 +08:00
hu[2] = q0 * q0 + q1 * q1;
hu[4] = q0 * t0 + q1 * t1;
hu[6] = q1 * t0 - q0 * t1;
}
void cv::HuMoments( const Moments& m, OutputArray _hu )
{
CV_INSTRUMENT_REGION();
2013-02-12 22:07:22 +08:00
_hu.create(7, 1, CV_64F);
Mat hu = _hu.getMat();
CV_Assert( hu.isContinuous() );
HuMoments(m, hu.ptr<double>());
2013-02-12 22:07:22 +08:00
}
CV_IMPL void cvMoments( const CvArr* arr, CvMoments* moments, int binary )
{
const IplImage* img = (const IplImage*)arr;
cv::Mat src;
if( CV_IS_IMAGE(arr) && img->roi && img->roi->coi > 0 )
cv::extractImageCOI(arr, src, img->roi->coi-1);
else
src = cv::cvarrToMat(arr);
cv::Moments m = cv::moments(src, binary != 0);
CV_Assert( moments != 0 );
*moments = cvMoments(m);
}
CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order )
{
int order = x_order + y_order;
if( !moments )
2024-03-04 20:51:05 +08:00
CV_Error( cv::Error::StsNullPtr, "" );
if( (x_order | y_order) < 0 || order > 3 )
2024-03-04 20:51:05 +08:00
CV_Error( cv::Error::StsOutOfRange, "" );
return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
}
CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order )
{
int order = x_order + y_order;
if( !moments )
2024-03-04 20:51:05 +08:00
CV_Error( cv::Error::StsNullPtr, "" );
if( (x_order | y_order) < 0 || order > 3 )
2024-03-04 20:51:05 +08:00
CV_Error( cv::Error::StsOutOfRange, "" );
return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] :
2013-02-12 22:07:22 +08:00
order == 0 ? moments->m00 : 0;
}
CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, int y_order )
{
int order = x_order + y_order;
double mu = cvGetCentralMoment( moments, x_order, y_order );
double m00s = moments->inv_sqrt_m00;
while( --order >= 0 )
mu *= m00s;
return mu * m00s * m00s;
}
2013-02-12 22:07:22 +08:00
CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
{
2013-02-12 22:07:22 +08:00
if( !mState || !HuState )
2024-03-04 20:51:05 +08:00
CV_Error( cv::Error::StsNullPtr, "" );
2012-06-09 23:00:04 +08:00
2013-02-12 22:07:22 +08:00
double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;
2012-06-09 23:00:04 +08:00
2013-02-12 22:07:22 +08:00
double nu20 = mState->mu20 * s2,
nu11 = mState->mu11 * s2,
nu02 = mState->mu02 * s2,
nu30 = mState->mu30 * s3,
nu21 = mState->mu21 * s3, nu12 = mState->mu12 * s3, nu03 = mState->mu03 * s3;
2013-02-12 22:07:22 +08:00
double t0 = nu30 + nu12;
double t1 = nu21 + nu03;
double q0 = t0 * t0, q1 = t1 * t1;
2013-02-12 22:07:22 +08:00
double n4 = 4 * nu11;
double s = nu20 + nu02;
double d = nu20 - nu02;
2013-02-12 22:07:22 +08:00
HuState->hu1 = s;
HuState->hu2 = d * d + n4 * nu11;
HuState->hu4 = q0 + q1;
HuState->hu6 = d * (q0 - q1) + n4 * t0 * t1;
t0 *= q0 - 3 * q1;
t1 *= 3 * q0 - q1;
2013-02-12 22:07:22 +08:00
q0 = nu30 - 3 * nu12;
q1 = 3 * nu21 - nu03;
2013-02-12 22:07:22 +08:00
HuState->hu3 = q0 * q0 + q1 * q1;
HuState->hu5 = q0 * t0 + q1 * t1;
HuState->hu7 = q1 * t0 - q0 * t1;
}
/* End of file. */