Improves support for Unix non-Linux systems, including QNX
* Fixes#20395. Improves support for Unix non-Linux systems. Focus on QNX Neutrino.
Signed-off-by: promero <promero@mathworks.com>
* Update system.cpp
There can be an int overflow.
cv::norm( InputArray _src, int normType, InputArray _mask ) is fine,
not cv::norm( InputArray _src1, InputArray _src2, int normType, InputArray _mask ).
- to reduce binaries size of FFmpeg Windows wrapper
- MinGW linker doesn't support -ffunction-sections (used for FFmpeg Windows wrapper)
- move code to improve locality with its used dependencies
- move UMat::dot() to matmul.dispatch.cpp (Mat::dot() is already there)
- move UMat::inv() to lapack.cpp
- move UMat::mul() to arithm.cpp
- move UMat:eye() to matrix_operations.cpp (near setIdentity() implementation)
- move normalize(): convert_scale.cpp => norm.cpp
- move convertAndUnrollScalar(): arithm.cpp => copy.cpp
- move scalarToRawData(): array.cpp => copy.cpp
- move transpose(): matrix_operations.cpp => matrix_transform.cpp
- move flip(), rotate(): copy.cpp => matrix_transform.cpp (rotate90 uses flip and transpose)
- add 'OPENCV_CORE_EXCLUDE_C_API' CMake variable to exclude compilation of C-API functions from the core module
- matrix_wrap.cpp: add compile-time checks for CUDA/OpenGL calls
- the steps above allow to reduce FFmpeg wrapper size for ~1.5Mb (initial size of OpenCV part is about 3Mb)
backport is done to improve merge experience (less conflicts)
backport of commit: 65eb946756
- follows iso c++ guideline C.44
- enables default compiler-created constructors to
also be noexcept
original commit: 77e26a7db3
- handled KernelArg, Image2D
* fix core module android arm64 build
* fix core module android build when neon is off
When building for Android ARM platform, cmake with
`-D CV_DISABLE_OPTIMIZATION=ON`, the expected behavior is
not using ARM NEON, using naive computation instead.
This commit fix the un-expected compile error for neon intrinsincs.
The most of target machine use one type cpu unit resource
to execute some one type of instruction, e.g.
all vx_load API use load/store cpu unit,
and v_muladd API use mul/mula cpu unit, we interleave
vx_load and v_muladd to improve performance on most targets like
RISCV or ARM.