Commit Graph

2585 Commits

Author SHA1 Message Date
Alexander Alekhin
261ad78122 core: emit more clear messages in OutputArray::create() 2020-09-18 15:25:29 +00:00
Alexander Alekhin
4fa82809df ocl: avoid rescheduling of async kernels 2020-09-18 14:53:50 +00:00
Alexander Alekhin
efcf307b4c ocl: cleanup dead code in case of disabled OpenCL 2020-08-31 11:30:42 +00:00
Alexander Alekhin
f53ff0d01c Merge pull request #18151 from alalek:core_trace_fix_location 2020-08-21 18:54:40 +00:00
Clement Courbet
da555a2c9b Optimize opencv dft by vectorizing radix2 and radix3.
This is useful for non power-of-two sizes when WITH_IPP is not an option.

This shows consistent improvement over openCV benchmarks, and we measure
even larger improvements on our internal workloads.

For example, for 320x480, `32FC*`, we can see a ~5% improvement}, as
`320=2^6*5` and `480=2^5*3*5`, so the improved radix3 version is used.
`64FC*` is flat as expected, as we do not specialize the functors for `double`
in this change.

```
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, 0, false)                                1.239  1.153     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, 0, true)                                 0.991  0.926     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_COMPLEX_OUTPUT, false)               1.367  1.281     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_COMPLEX_OUTPUT, true)                1.114  1.049     1.06
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE, false)                      1.313  1.254     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE, true)                       1.027  0.977     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   1.296  1.217     1.06
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    1.039  0.963     1.08
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_ROWS, false)                         0.542  0.524     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_ROWS, true)                          0.293  0.277     1.06
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_SCALE, false)                        1.265  1.175     1.08
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC1, DFT_SCALE, true)                         1.004  0.942     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, 0, false)                                1.292  1.280     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, 0, true)                                 1.038  1.030     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_COMPLEX_OUTPUT, false)               1.484  1.488     1.00
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_COMPLEX_OUTPUT, true)                1.222  1.224     1.00
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE, false)                      1.380  1.355     1.02
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE, true)                       1.117  1.133     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   1.372  1.383     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    1.117  1.127     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_ROWS, false)                         0.546  0.539     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_ROWS, true)                          0.293  0.299     0.98
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_SCALE, false)                        1.351  1.339     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 64FC1, DFT_SCALE, true)                         1.099  1.092     1.01
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, 0, false)                                2.235  2.123     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, 0, true)                                 1.843  1.727     1.07
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_COMPLEX_OUTPUT, false)               2.189  2.109     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_COMPLEX_OUTPUT, true)                1.827  1.754     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE, false)                      2.392  2.309     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE, true)                       1.951  1.865     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   2.391  2.293     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    1.954  1.882     1.04
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_ROWS, false)                         0.811  0.815     0.99
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_ROWS, true)                          0.426  0.437     0.98
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_SCALE, false)                        2.268  2.152     1.05
dft::Size_MatType_FlagsType_NzeroRows::(320x480, 32FC2, DFT_SCALE, true)                         1.893  1.788     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, 0, false)                                4.546  4.395     1.03
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, 0, true)                                 3.616  3.426     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_COMPLEX_OUTPUT, false)               4.843  4.668     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_COMPLEX_OUTPUT, true)                3.825  3.748     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE, false)                      4.720  4.525     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE, true)                       3.743  3.601     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   4.755  4.527     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    3.744  3.586     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_ROWS, false)                         1.992  2.012     0.99
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_ROWS, true)                          1.048  1.048     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_SCALE, false)                        4.625  4.451     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC1, DFT_SCALE, true)                         3.643  3.491     1.04
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, 0, false)                                4.499  4.488     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, 0, true)                                 3.559  3.555     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_COMPLEX_OUTPUT, false)               5.155  5.165     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_COMPLEX_OUTPUT, true)                4.103  4.101     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE, false)                      5.484  5.474     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE, true)                       4.617  4.518     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   5.547  5.509     1.01
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    4.553  4.554     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_ROWS, false)                         2.067  2.018     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_ROWS, true)                          1.104  1.079     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_SCALE, false)                        4.665  4.619     1.01
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 64FC1, DFT_SCALE, true)                         3.698  3.681     1.00
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, 0, false)                                8.774  8.275     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, 0, true)                                 6.975  6.527     1.07
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_COMPLEX_OUTPUT, false)               8.720  8.270     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_COMPLEX_OUTPUT, true)                6.928  6.532     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE, false)                      9.272  8.862     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE, true)                       7.323  6.946     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false)   9.262  8.768     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)    7.298  6.871     1.06
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_ROWS, false)                         3.766  3.639     1.03
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_ROWS, true)                          1.932  1.889     1.02
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_SCALE, false)                        8.865  8.417     1.05
dft::Size_MatType_FlagsType_NzeroRows::(800x600, 32FC2, DFT_SCALE, true)                         7.067  6.643     1.06
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, 0, false)                              10.014 10.141    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, 0, true)                               7.600  7.632     1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_COMPLEX_OUTPUT, false)             11.059 11.283    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_COMPLEX_OUTPUT, true)              8.475  8.552     0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE, false)                    12.678 12.789    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE, true)                     10.445 10.359    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 12.626 12.925    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  10.538 10.553    1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_ROWS, false)                       5.041  5.084     0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_ROWS, true)                        2.595  2.607     1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_SCALE, false)                      10.231 10.330    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC1, DFT_SCALE, true)                       7.786  7.815     1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, 0, false)                              13.597 13.302    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, 0, true)                               10.377 10.207    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_COMPLEX_OUTPUT, false)             15.940 15.545    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_COMPLEX_OUTPUT, true)              12.299 12.230    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE, false)                    15.270 15.181    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE, true)                     12.757 12.339    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 15.512 15.157    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  12.505 12.635    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_ROWS, false)                       6.359  6.255     1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_ROWS, true)                        3.314  3.248     1.02
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_SCALE, false)                      13.937 13.733    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 64FC1, DFT_SCALE, true)                       10.782 10.495    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, 0, false)                              18.985 18.926    1.00
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, 0, true)                               14.256 14.509    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_COMPLEX_OUTPUT, false)             18.696 19.021    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_COMPLEX_OUTPUT, true)              14.290 14.429    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE, false)                    20.135 20.296    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE, true)                     15.390 15.512    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 20.121 20.354    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  15.341 15.605    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_ROWS, false)                       8.932  9.084     0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_ROWS, true)                        4.539  4.649     0.98
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_SCALE, false)                      19.137 19.303    0.99
dft::Size_MatType_FlagsType_NzeroRows::(1280x1024, 32FC2, DFT_SCALE, true)                       14.565 14.808    0.98
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, 0, false)                              22.553 21.171    1.07
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, 0, true)                               17.850 16.390    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_COMPLEX_OUTPUT, false)             24.062 22.634    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_COMPLEX_OUTPUT, true)              19.342 17.932    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE, false)                    28.609 27.326    1.05
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE, true)                     24.591 23.289    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 28.667 27.467    1.04
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  24.671 23.309    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_ROWS, false)                       9.458  9.077     1.04
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_ROWS, true)                        4.709  4.566     1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_SCALE, false)                      22.791 21.583    1.06
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC1, DFT_SCALE, true)                       18.029 16.691    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, 0, false)                              25.238 24.427    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, 0, true)                               19.636 19.270    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_COMPLEX_OUTPUT, false)             28.342 27.957    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_COMPLEX_OUTPUT, true)              22.413 22.477    1.00
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE, false)                    26.465 26.085    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE, true)                     21.972 21.704    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 26.497 26.127    1.01
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  22.010 21.523    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_ROWS, false)                       11.188 10.774    1.04
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_ROWS, true)                        6.094  5.916     1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_SCALE, false)                      25.728 24.934    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 64FC1, DFT_SCALE, true)                       20.077 19.653    1.02
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, 0, false)                              43.834 40.726    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, 0, true)                               35.198 32.218    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_COMPLEX_OUTPUT, false)             43.743 40.897    1.07
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_COMPLEX_OUTPUT, true)              35.240 32.226    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE, false)                    46.022 42.612    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE, true)                     36.779 33.961    1.08
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 46.396 42.723    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  37.025 33.874    1.09
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_ROWS, false)                       17.334 16.832    1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_ROWS, true)                        9.212  8.970     1.03
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_SCALE, false)                      44.190 41.211    1.07
dft::Size_MatType_FlagsType_NzeroRows::(1920x1080, 32FC2, DFT_SCALE, true)                       35.900 32.888    1.09
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, 0, false)                              40.948 38.256    1.07
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, 0, true)                               33.825 30.759    1.10
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_COMPLEX_OUTPUT, false)             53.210 53.584    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_COMPLEX_OUTPUT, true)              46.356 46.712    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE, false)                    47.471 47.213    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE, true)                     40.491 41.363    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 46.724 47.049    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  40.834 41.381    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_ROWS, false)                       14.508 14.490    1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_ROWS, true)                        7.832  7.828     1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_SCALE, false)                      41.491 38.341    1.08
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC1, DFT_SCALE, true)                       34.587 31.208    1.11
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, 0, false)                              65.155 63.173    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, 0, true)                               56.091 54.752    1.02
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_COMPLEX_OUTPUT, false)             71.549 70.626    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_COMPLEX_OUTPUT, true)              62.319 61.437    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE, false)                    61.480 59.540    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE, true)                     54.047 52.650    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 61.752 61.366    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  54.400 53.665    1.01
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_ROWS, false)                       20.219 19.704    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_ROWS, true)                        11.145 10.868    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_SCALE, false)                      66.220 64.525    1.03
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 64FC1, DFT_SCALE, true)                       57.389 56.114    1.02
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, 0, false)                              86.761 88.128    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, 0, true)                               75.528 76.725    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_COMPLEX_OUTPUT, false)             86.750 88.223    0.98
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_COMPLEX_OUTPUT, true)              75.830 76.809    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE, false)                    91.728 92.161    1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE, true)                     78.797 79.876    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, false) 92.163 92.177    1.00
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_INVERSE|DFT_COMPLEX_OUTPUT, true)  78.957 79.863    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_ROWS, false)                       24.781 25.576    0.97
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_ROWS, true)                        13.226 13.695    0.97
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_SCALE, false)                      87.990 89.324    0.99
dft::Size_MatType_FlagsType_NzeroRows::(2048x2048, 32FC2, DFT_SCALE, true)                       76.732 77.869    0.99
```
2020-08-21 14:06:09 +02:00
Alexander Alekhin
cd00d8f3f0 core(trace): lazy quering for OPENCV_TRACE_LOCATION
- fixes proper initialization of non-trivial variable
2020-08-20 21:48:05 +00:00
Alexander Alekhin
b3755e617c ocl: silence warning in case of async cleanup
- OpenCL kernel cleanup processing is asynchronous and can be called even after forced clFinish()
- buffers are released later in asynchronous mode
- silence these false positive cases for asynchronous cleanup
2020-08-20 19:33:37 +00:00
nhlsm
68f527267b
Merge pull request #18080 from nhlsm:improve-mat-operator-assign-scalar
* improve Mat::operator=(Scalar)

* touch

* remove trailing whitespace

* TEST: check if old code pass test or not

* remove CV_Error

* remove warning

* fix: is -> Scalar

* 1) Mat *mat -> Mat &mat 2) return bool, add output param

* add comment
2020-08-14 17:21:23 +00:00
Alexander Alekhin
00890aecdf core(ocl): fix ocl::Image2d::isFormatSupported()
in case of OPENCV_OPENCL_DEVICE=disabled
2020-08-13 18:33:18 +00:00
Namgoo Lee
2241bfb0df Use "src" not "*this" for source GpuMat 2020-07-30 01:03:34 +09:00
Alexander Alekhin
e54040d540 core: use lazy on-demand initialization for param_traceEnable 2020-07-12 11:53:46 +00:00
Alexander Alekhin
442999dcdb core: fix handling of ND-arrays in dumpInputArray() helpers 2020-06-12 10:23:32 +00:00
Maksim Shabunin
59608907b8 Added countNonZero test for big arrays and disable IPP for some cases 2020-06-03 18:58:41 +03:00
Vadim Pisarevsky
5489735258
Merge pull request #17436 from vpisarev:fix_python_io
* fixed #17044
1. fixed Python part of the tutorial about using OpenCV XML-YAML-JSON I/O functionality from C++ and Python.
2. added startWriteStruct() and endWriteStruct() methods to FileStorage
3. modifed FileStorage::write() methods to make them work well inside sequences, not only mappings.

* try to fix the doc builder

* added Python regression test for FileStorage I/O API ([TODO] iterating through long sequences can be very slow)

* fixed yaml testing
2020-06-01 11:33:09 +00:00
Egor Pugin
1bec7ca540
Merge pull request #17352 from egorpugin:patch-2
* Fix integer overflow in parseOption().

Previous code does not work for values like 100000MB.

* Fix warning during 32-bit build on inactive code path.

* fix build without C++11
2020-05-25 20:25:18 +00:00
Alexander Alekhin
74e4cfd1da core(MatExpr): fix warning in case of e.s == (0, 0, 0, 0) 2020-05-01 07:29:57 +00:00
Alexander Alekhin
c8f1948d58 core: drop EXPR handing code in InputArray 2020-04-14 18:02:19 +00:00
Alexander Alekhin
936428cb3b core(MatExpr) fetch result before InputArray wrap
- avoid multiple expression evaluations
- avoid issues with reduced support of InputArray::EXPR
2020-04-06 15:28:32 +00:00
Alexander Alekhin
54063c40de core(ocl): options to control buffer access flags
- control using of clEnqueueMapBuffer or clEnqueueReadBuffer[Rect]
- added benchmarks with OpenCL buffer access use cases
2020-04-02 11:11:06 +00:00
Alexander Alekhin
09134ac881 core: emit warning ONCE on ambiguous MatExpr processing 2020-04-01 18:34:20 +00:00
Alexander Alekhin
353273579b Merge pull request #16918 from alalek:build_warnings_3.4 2020-03-27 16:43:23 +00:00
Alexander Alekhin
e661ad2a67 eliminate build warnings 2020-03-27 11:39:07 +00:00
cyy
bdc29cccb6 fix freebsd build 2020-03-27 18:12:10 +08:00
Alexander Alekhin
c920b45fb8 core(persistence): fix resource leaks - force closing files
backporting commit 673eb2b006
2020-03-25 10:49:16 +00:00
Alexander Alekhin
77d1c20fb7 core(buffer_area): handle 'OPENCV_ENABLE_MEMORY_SANITIZER=ON' case 2020-03-16 19:34:08 +03:00
RAJKIRAN NATARAJAN
3b2e409fa7
Merge pull request #16779 from saskatchewancatch:issue-16777
* Fixes issue 16777.

* core: update Concurrency getNumThreads()
2020-03-16 17:12:29 +03:00
Alexander Alekhin
83e1d79403 core: update CPUs detection
- cache value, evaluate once
- better support for MINGW
- anything in 'cv' namespace
- test: dump number of active threads
2020-03-10 21:29:08 +00:00
Alexander Alekhin
34530da66e core: fix coverity issues 2020-03-06 18:12:45 +00:00
Alexander Alekhin
a694e5074f Merge pull request #16723 from jansol:master 2020-03-05 12:25:20 +00:00
Alexander Alekhin
4f288a1e28
Merge pull request #16704 from alalek:core_log_once_log_if
* core(logger): add CV_LOG_ONCE_xxx() CV_LOG_IF_xxx() macros

* core(logger): keep tests disabled
2020-03-04 20:42:41 +00:00
Jan Solanti
ad16c243ca core(ocl): Don't query image formats when none exist
clGetSupportedImageFormats returns CL_INVALID_VALUE if called with
num_entries 0 and a non-NULL image_formats pointer so let's not do that.
2020-03-04 14:15:33 +02:00
Alexander Alekhin
4d0f13544d
Merge pull request #16700 from alalek:fix_core_matexpr_size_gemm
core: fix MatExpr::size() for gemm()

* core(test): MatExpr::size() test for gemm()

* core: fix MatExpr::size() for gemm()
2020-03-02 17:13:02 +03:00
Alexander Alekhin
af9ded89d0 core: fix build getNumberOfCPUs for JavaScript 2020-02-26 18:54:23 +03:00
Alexander Alekhin
c13a62ce10 Merge pull request #16638 from mshabunin:use-safe-buffers 2020-02-26 14:54:57 +00:00
Ganesh Kathiresan
09df7810d1
Merge pull request #16457 from ganesh-k13:bugfix/getCPUCount-fix
* Fixed getCPUCount

Minor new line changes

Android fix | efficient linux checks

Android fix 2

Fixed cpu logic for non linux platforms

Android fix 3

Android fix 4

* No v1 case handle | Refactor long lines

* Refined Cgroups logic | Combine Android and Linux

* Fixed directives

* Added support for --cpus | Fixed minor bug in Andriod | Change file read logic

* Added macro checks for apple errors

* Fixed macro to include android

* Addressed review comments

* Fixed android macro

* Refined return values

* Fixed apple warning

* Addressed review comments

* Fixed whitespace

* Android Fix try 1

* Android Fix try 2

* Android Fix try 3

* Removed unwanted endif

* Android Fix try 4

* Android Fix try 5

* Macro Restructure

* core: updates to CPUs detection (minor)
2020-02-26 17:48:50 +03:00
Alexander Alekhin
f48c84eaee Merge pull request #16656 from alalek:issue_16655 2020-02-26 12:47:46 +00:00
Maksim Shabunin
bf96d8239d Use BufferArea in more places 2020-02-26 11:45:19 +03:00
Alexander Alekhin
d54d01ca46 core(MatExpr): fix .type() bug 2020-02-23 17:05:05 +00:00
Alexander Alekhin
01048e5603
Merge pull request #16616 from alalek:dnn_fix_input_shape
* dnn: fix processing of input shapes

- importer: avoid using of .setInput() => .setInputShape()
- setInput: shape limitation check (partial)

* dnn(test): test .setInput() in readNet()
2020-02-21 22:39:54 +03:00
Vadim Pisarevsky
07b475062f
Merge pull request #16608 from vpisarev:fix_mac_ocl_tests
* fixed several problems when running tests on Mac:
* OCL_pyrUp
* OCL_flip
* some basic UMat tests
* histogram badarg test (out of range access)

* retained the storepix fix in ocl_flip only for 16U/16S datatype, where the OpenCL compiler on Mac generates incorrect code

* moved deletion of ACCESS_FAST flag to non-SVM branch (where SVM is shared virtual memory (in OpenCL 2.x), not support vector machine)

* force OpenCL to use read/write for GPU<=>CPU memory transfers on machines with discrete video only on Macs. On Windows/Linux the drivers are seemingly smart enough to implement map/unmap properly (and maybe more efficiently than explicit read/write)
2020-02-21 16:13:41 +03:00
atinfinity
f81fdd58da
Merge pull request #16445 from atinfinity:fixed-typo
* fixed typo

* add compatibility code to handle migration
2020-02-16 19:16:33 +03:00
Alexander Alekhin
eb14f9a464 Merge pull request #16463 from alalek:core_strong_ptr_alignment 2020-02-08 19:45:43 +00:00
Maksim Shabunin
55cdeaa6dd BufferArea: initial version, usage in StereoBM
New class BufferArea is used to hide complexity of buffers allocations and allow instrumentation with valgrind and sanitizers.
2020-02-07 14:57:36 +03:00
Alexander Alekhin
a4bd7506a5 core: CV_STRONG_ALIGNMENT macro
Should be used to guard unsafe type casts of pointers
2020-01-29 18:44:17 +03:00
Alexander Alekhin
e83438c23d core(build): fix i386 compilation 2020-01-26 00:00:25 +00:00
Chip Kerchner
4d2da2debe Merge pull request #16375 from ChipKerchner:vectorizeMultTranspose
* Reduce LLC loads, stores and multiplies on MulTransposed - 8% faster on VSX

* Add is_same method so c++11 is not required

* Remove trailing whitespaces.

* Change is_same to DataType depth check
2020-01-24 18:00:49 +03:00
Chip Kerchner
301626ba26 Merge pull request #15488 from ChipKerchner:vectorizeMinMax2
Vectorize minMaxIdx functions

* Updated documentation and intrinsic tests for v_reduce

* Add other files back in from the forced push

* Prevent an constant overflow with v_reduce for int8 type

* Another alternative to fix constant overflow warning.

* Fix another compiler warning.

* Update comments and change comparison form to be consistent with other vectorized loops.

* Change return type of v_reduce_min & max for v_uint8 and v_uint16 to be same as lane type.

* Cast v_reduce functions to int to avoid overflow. Reduce number of parameters in MINMAXIDX_REDUCE macro.

* Restore cast type for v_reduce_min & max to LaneType
2020-01-17 19:37:35 +03:00
Alexander Alekhin
e180cc050b
Merge pull request #16236 from alalek:fix_core_simd_emulator
* core: fix intrin_cpp, allow to build modules with SIMD emulator

* core(arithm): fix v_zero initialization

* core(simd): 'strict' types for binary/bitwise operations

* features2d: avoid aligned load issue in GCC 5.4 with emulated SIMD

* core(simd): alignment checks in SIMD emulator
2020-01-10 21:31:02 +03:00
Nuzhny007
7d484d21f7 Fixed compilation on windows with openvx 2020-01-06 06:32:56 +03:00
Alexander Alekhin
523f081923 core(check): add Size_<int> 2019-12-28 13:50:39 +00:00
Brian Wignall
f9c514b391 Fix spelling typos
backport commit 659ffaddb4
2019-12-27 12:46:53 +00:00
Alexander Alekhin
dff8e29f98 Merge pull request #16139 from alalek:core_flip_avoid_unaligned 2019-12-19 10:29:07 +00:00
Alexander Alekhin
8d22ac200f core: workaround flipHoriz() alignment issues 2019-12-19 00:05:23 +00:00
Tatsuro Shibamura
971ae00942 Merge pull request #16027 from shibayan:arm64-windows10
* Support ARM64 Windows 10 platform

* Fixed detection issue for ARM64 Windows 10

* Try enabling ARM NEON intrin

* build: disable NEON with MSVC compiler

* samples(directx): gdi32 dependency
2019-12-17 00:23:30 +03:00
RAJKIRAN NATARAJAN
e6ce752da1 Merge pull request #15966 from saskatchewancatch:issue-15760
Add checks for empty operands in Matrix expressions that don't check properly

* Starting to add checks for empty operands in Matrix expressions that
don't check properly.

* Adding checks and delcarations for checker functions

* Fix signatures and add checks for each class of Matrix Expr operation

* Make it catch the right exception

* Don't expose helper functions to public API
2019-12-12 19:23:57 +03:00
Alexander Alekhin
816f82682b core(trace/itt): avoid calling __itt_thread_set_name() by default
- don't override current application thread names
- set name for own threads only
2019-12-07 21:41:15 +00:00
Alexander Alekhin
72f35e0626
Merge pull request #16052 from alalek:issue_16040
* calib3d: use normalized input in solvePnPGeneric()

* calib3d: java regression test for solvePnPGeneric

* calib3d: python regression test for solvePnPGeneric
2019-12-05 15:36:39 +03:00
Alexander Alekhin
818585fd12 core(tls): unblock TlsAbstraction destructor call
- required to unregister callbacks from system
2019-12-04 08:27:01 +00:00
Alexander Alekhin
50ac880335 Merge pull request #15971 from alalek:core_kmeans_handle_overflow 2019-11-22 21:36:02 +00:00
Natsu
54e6f5c237 Merge pull request #15970 from akemimadoka:master
* Fix android armv7 c++_static init crash

* core: move initialization of 'ios_base::Init' for Android
2019-11-22 18:42:25 +03:00
Alexander Alekhin
3266ac7667 core(kmeans): bailout if can't select cluster center 2019-11-22 14:40:02 +00:00
Alexander Alekhin
7ecdcf6ca6 build: GCC9 compilation 2019-11-12 18:49:34 +03:00
Igor Murzov
cdbfdcc363 Fix OpenCL device detection when some OpenCL platform has no devices
It's not an error if some OpenCL platform has no devices. This makes
OpenCL device detection work correctly in the following scenario:

$ OPENCV_OPENCL_DEVICE=:GPU: ./opencv_test_dnn

OpenCV version: 4.1.2-dev
OpenCV VCS version: 4.1.2-80-g467748ee98-dirty
Build type: Debug
Compiler: /usr/bin/g++  (ver 7.4.0)
Parallel framework: pthreads
CPU features: SSE SSE2 SSE3 *SSE4.1 *SSE4.2 *FP16 *AVX *AVX2 *AVX512-SKX?
Intel(R) IPP version: ippIP AVX2 (l9) 2019.0.0 Gold (-) Jul 24 2018
OpenCL Platforms:
    AMD Accelerated Parallel Processing
    Portable Computing Language
        CPU: pthread-AMD Ryzen 7 2700X Eight-Core Processor (OpenCL 1.2 pocl HSTR: pthread-x86_64-pc-linux-gnu-znver1)
    NVIDIA CUDA
        dGPU: GeForce GTX 1080 (OpenCL 1.2 CUDA)
Current OpenCL device:
    Type = dGPU
    Name = GeForce GTX 1080
    Version = OpenCL 1.2 CUDA
    Driver version = 430.26
2019-11-05 20:02:39 +03:00
yuriyluxriot
4e156a162f Merge pull request #15812 from yuriyluxriot:fls_replaces_tls
* Use FlsAlloc/FlsFree/FlsGetValue/FlsSetValue instead of TlsAlloc/TlsFree/TlsGetValue/TlsSetValue to implment TLS value cleanup when thread has been terminated on Windows Vista and above

* Fix 32-bit build

* Fixed calling convention of cleanup callback

* WINAPI changed to NTAPI

* Use proper guard macro
2019-11-01 22:33:12 +03:00
Chip Kerchner
ed7e4273cd Merge pull request #15555 from ChipKerchner:flipVectorize
* Vectorize flipHoriz and flipVert functions.

* Change v_load_mirror_1 to use vec_revb for VSX

* Only use vec_revb in ISA3.0

* Removing vec_revb code since some of the older compilers don't fully support it.

* Use new v_reverse intrinsic and cleanup code.

* Ensure there are no alignment issues with copies
2019-11-01 22:30:48 +03:00
Alexander Alekhin
bad4e5c3eb Merge pull request #15692 from alalek:core_tls_handle_thread_termination 2019-10-29 20:40:35 +00:00
Alexander Alekhin
6ec5ae0215 core(trace): add ITT control parameter
- OPENCV_TRACE_ITT_ENABLE
2019-10-26 15:03:51 +00:00
Alexander Alekhin
17e2bf5717 core(tls): implement releasing of TLS on thread termination
- move TLS & instrumentation code out of core/utility.hpp
- (*) TLSData lost .gather() method (to dispose thread data on thread termination)
- use TLSDataAccumulator for reliable collecting of thread data
- prefer using of .detachData() + .cleanupDetachedData() instead of .gather() method

(*) API is broken: replace TLSData => TLSDataAccumulator if gather required
(objects disposal on threads termination is not available in accumulator mode)
2019-10-24 06:36:18 +00:00
Alexander Alekhin
938d8dce06 Merge pull request #15685 from pmur:cnz64f-simd 2019-10-18 20:19:40 +00:00
Alexander Alekhin
ad5d14ec0e Merge pull request #15701 from alalek:issue_15691 2019-10-16 11:13:07 +00:00
Alexander Alekhin
823884b064 core(alloc): force initialization of memalign flag
- before main() launch
2019-10-15 13:07:11 +03:00
Alexander Alekhin
6a7d1c15d3 core(ipp): skip huge input in flip()
- IPP/SSE4.2 works well
2019-10-14 18:26:19 +03:00
Paul E. Murphy
ec91a3d59d core: vectorize countNonZero64f
Improves performance a bit. 2.2x on P9 and 2 - 3x on coffee lake
x86-64.
2019-10-11 09:02:46 -05:00
Maksim Shabunin
1ca74c3c03 Merge pull request #15544 from mshabunin:disable_posix_memalign
* Disable posix_memalign by default

* core: fix memalign parameter handling
2019-10-09 14:06:12 +03:00
Marcin Tolysz
3fd36c1be1 Merge pull request #15658 from tolysz:patch-1
* Cuda + OpenGL on ARM

There might be multiple ways of getting OpenCV compile on Tegra (NVIDIA Jetson) platform, but mainly they modify CUDA(8,9,10...) source code, this one fixes it for all installations. 
( https://devtalk.nvidia.com/default/topic/1007290/jetson-tx2/building-opencv-with-opengl-support-/post/5141945/#5141945 et al.).
This way is exactly the same as the one proposed but the code change happens in OpenCV.

* Updated,
The link provided mentions: cuda8 + 9, I have cuda 10 + 10.1 (and can confirm it is still defined this way).
NVIDIA is probably using some other "secret" backend with Jetson.
2019-10-09 11:38:10 +03:00
Sayed Adel
f2fe6f40c2 Merge pull request #15510 from seiko2plus:issue15506
* core: rework and optimize SIMD implementation of dotProd

  - add new universal intrinsics v_dotprod[int32], v_dotprod_expand[u&int8, u&int16, int32], v_cvt_f64(int64)
  - add a boolean param for all v_dotprod&_expand intrinsics that change the behavior of addition order between
    pairs in some platforms in order to reach the maximum optimization when the sum among all lanes is what only matters
  - fix clang build on ppc64le
  - support wide universal intrinsics for dotProd_32s
  - remove raw SIMD and activate universal intrinsics for dotProd_8
  - implement SIMD optimization for dotProd_s16&u16
  - extend performance test data types of dotprod
  - fix GCC VSX workaround of vec_mule and vec_mulo (in little-endian it must be swapped)
  - optimize v_mul_expand(int32) on VSX

* core: remove boolean param from v_dotprod&_expand and implement v_dotprod_fast&v_dotprod_expand_fast

  this changes made depend on "terfendail" review
2019-10-07 22:01:35 +03:00
Suleyman TURKMEN
c0489963bb
Update copy.cpp 2019-10-07 11:59:52 +03:00
Alexander Alekhin
98fc098216 Merge pull request #15646 from alalek:fix_avx512_detection 2019-10-05 15:30:09 +00:00
Alexander Alekhin
22d0c57a1c Merge pull request #15602 from alalek:core_softfloat_ubsan_shift 2019-10-05 15:27:35 +00:00
Alexander Alekhin
bdc097495a fix avx512 detection
- renamed Cascade Lake AVX512_CEL => AVX512_CLX (align with Intel SDE tool)
- fixed CLX instruction sets (no IFMA/VBMI)
- added flag to bypass CPU baseline check: OPENCV_SKIP_CPU_BASELINE_CHECK
2019-10-05 11:03:57 +00:00
Alexander Alekhin
77346d7286 core: workaround transform() inplace calls 2019-10-01 16:52:14 +03:00
Alexander Alekhin
ed9bca969c core: fix UBSAN in softfloat 2019-09-27 16:29:50 +03:00
Alexander Alekhin
677b94c92e Merge pull request #15579 from alalek:ocl_use_host_mem_ptr_flag 2019-09-25 15:12:59 +00:00
Alexander Alekhin
eacadf0e73 core(ocl): add flag OPENCV_OPENCL_ENABLE_MEM_USE_HOST_PTR
to control CL_MEM_USE_HOST_PTR usage
2019-09-25 15:12:36 +03:00
Wenzhao Xiang
c2096771cb Merge pull request #15371 from Wenzhao-Xiang:gsoc_2019
[GSoC 2019] Improve the performance of JavaScript version of OpenCV (OpenCV.js)

* [GSoC 2019]

Improve the performance of JavaScript version of OpenCV (OpenCV.js):
1. Create the base of OpenCV.js performance test:
     This perf test is based on benchmark.js(https://benchmarkjs.com). And first add `cvtColor`, `Resize`, `Threshold` into it.
2. Optimize the OpenCV.js performance by WASM threads:
     This optimization is based on Web Worker API and SharedArrayBuffer, so it can be only used in browser.
3. Optimize the OpenCV.js performance by WASM SIMD:
     Add WASM SIMD backend for OpenCV Universal Intrinsics. It's experimental as WASM SIMD is still in development.

* [GSoC2019] 

1. use short license header
2. fix documentation node issue
3. remove the unused `hasSIMD128()` api

* [GSoC2019]

1. fix emscripten define
2. use fallback function for f16

* [GSoC2019]

Fix rebase issue
2019-09-24 16:30:42 +03:00
mipsopen-fwu
b1ea91d8bd Merge pull request #15422 from mipsopen-fwu:msa-dev
* Added MSA implementations for mips platforms. Intrinsics for MSA and build scripts for MIPS platforms are added.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Removed some unused code in mips.toolchain.cmake.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Added comments for mips toolchain configuration and disabled compiling warnings for libpng.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Fixed the build error of unsupported opcode 'pause' when mips isa_rev is less than 2.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* 1. Removed FP16 related item in MSA option defines in OpenCVCompilerOptimizations.cmake.
2. Use CV_CPU_COMPILE_MSA instead of __mips_msa for MSA feature check in cv_cpu_dispatch.h.
3. Removed hasSIMD128() in intrin_msa.hpp.
4. Define CPU_MSA as 150.
Signed-off-by: Fei Wu <fwu@wavecomp.com>

* 1. Removed unnecessary CV_SIMD128_64F guarding in intrin_msa.hpp.
2. Removed unnecessary CV_MSA related code block in dotProd_8u().

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* 1. Defined CPU_MSA_FLAGS_ON as "-mmsa".
2. Removed CV_SIMD128_64F guardings in intrin_msa.hpp.

Signed-off-by: Fei Wu <fwu@wavecomp.com>

* Removed unused msa_mlal_u16() and msa_mlal_s16 from msa_macros.h.

Signed-off-by: Fei Wu <fwu@wavecomp.com>
2019-09-20 19:52:48 +03:00
Alexander Alekhin
0a13633411 Merge pull request #15444 from alalek:ocl_fix_fft_kernel 2019-09-04 16:25:34 +00:00
Alexander Alekhin
8bd2720c28 core(ocl): fix fft kernel compilation
- error: variables in the local address space can only be declared in the outermost scope of a kernel function
2019-09-03 15:46:53 +03:00
David Carlier
6769ee3748 OpenCL: FreeBSD build fix 2019-09-02 18:30:53 +01:00
Alexander Alekhin
048ddbf9ee Merge pull request #15339 from pmur:dotprod-32s-vsx 2019-08-31 11:16:04 +00:00
Alexander Alekhin
2a6527e751 Merge pull request #15402 from ChipKerchner:normUnroll 2019-08-31 11:10:05 +00:00
ChipKerchner
288e6f9c07 –Improve vectorization in the 'norm' functions 2019-08-27 12:15:19 -05:00
Alexander Alekhin
8b1fe8f6e0 core: fix stat SIMD code 2019-08-22 16:37:26 +03:00
Paul E. Murphy
33fb253a66 core: vectorize dotProd_32s
Use 4x FMA chains to sum on SIMD 128 FP64 targets. On
x86 this showed about 1.4x improvement.

For PPC, do a full multiply (32x32->64b), convert to DP
then accumulate. This may be slightly less precise for
some inputs. But is 1.5x faster than the above which
is about 1.5x than the FMA above for ~2.5x speedup.
2019-08-20 15:28:36 -05:00
luz.paz
fcc7d8dd4e Fix modules/ typos
Found using `codespell -q 3 -S ./3rdparty -L activ,amin,ang,atleast,childs,dof,endwhile,halfs,hist,iff,nd,od,uint`

backporting of commit: ec43292e1e
2019-08-16 17:34:29 +03:00
Hugo Lindström
935067ee05 Merge pull request #15265 from hugolm84:wince-armv7-supports-neon
* WINCE 8.0 requires ARMv7 Thumb2 and thus have NEON instructions

* Only add NEON if on _ARM_
2019-08-09 18:01:37 +03:00
Victor Romero
987bb2ca61 Fix build for UWP
backport of commit: f18cbd036a
2019-08-05 17:19:36 +03:00
Alexander Alekhin
ba934ff1ce Merge pull request #15202 from hugolm84:support_build_shared_for_wince 2019-08-02 15:34:02 +00:00
Hugo Lindström
03fe1cb7fc Support building shared libraries on WINCE. 2019-08-01 15:28:04 +02:00
Maksim Shabunin
6d5ac67681 Restored IPP call reduction 2019-07-31 15:41:22 +03:00