Commit Graph

84 Commits

Author SHA1 Message Date
Oleg Pipikin
6da2ddcf0e Fix for OpenVINO 2024.0
Remove support OpenVINO lower than 2022.1 release
Remove legacy InferenceEngine wrappers
2024-03-18 15:05:50 +04:00
Alexander Alekhin
efc9837df1
Merge pull request #24892 from opencv-pushbot:gitee/alalek/dnn_avoid_16s_usage
DNN: avoid CV_16S usage for FP16 #24892

**Merge after**: #24918

TODO:
- [x] measure performance changes
- [x] optimize convertTo for OpenCL: #24918

12700K iGPU:

|Name of Test|0|1|1 vs 0 (x-factor)|
|---|:-:|:-:|:-:|
|AlexNet::DNNTestNetwork::OCV/OCL_FP16|7.441|7.480|0.99|
|CRNN::DNNTestNetwork::OCV/OCL_FP16|10.776|10.736|1.00|
|DenseNet_121::DNNTestNetwork::OCV/OCL_FP16|52.762|52.833|1.00|
|EAST_text_detection::DNNTestNetwork::OCV/OCL_FP16|60.694|60.721|1.00|
|EfficientNet::DNNTestNetwork::OCV/OCL_FP16|33.373|33.173|1.01|
|FastNeuralStyle_eccv16::DNNTestNetwork::OCV/OCL_FP16|81.840|81.724|1.00|
|GoogLeNet::DNNTestNetwork::OCV/OCL_FP16|20.965|20.927|1.00|
|Inception_5h::DNNTestNetwork::OCV/OCL_FP16|22.204|22.173|1.00|
|Inception_v2_SSD_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|47.115|47.460|0.99|
|MPHand::DNNTestNetwork::OCV/OCL_FP16|6.760|6.670|1.01|
|MPPalm::DNNTestNetwork::OCV/OCL_FP16|10.188|10.171|1.00|
|MPPose::DNNTestNetwork::OCV/OCL_FP16|12.510|12.561|1.00|
|MobileNet_SSD_Caffe::DNNTestNetwork::OCV/OCL_FP16|17.290|17.072|1.01|
|MobileNet_SSD_v1_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|19.473|19.306|1.01|
|MobileNet_SSD_v2_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|22.874|23.404|0.98|
|OpenFace::DNNTestNetwork::OCV/OCL_FP16|9.568|9.517|1.01|
|OpenPose_pose_mpi_faster_4_stages::DNNTestNetwork::OCV/OCL_FP16|539.899|539.845|1.00|
|PPHumanSeg::DNNTestNetwork::OCV/OCL_FP16|18.015|18.769|0.96|
|PPOCRv3::DNNTestNetwork::OCV/OCL_FP16|63.122|63.540|0.99|
|ResNet_50::DNNTestNetwork::OCV/OCL_FP16|34.947|34.925|1.00|
|SFace::DNNTestNetwork::OCV/OCL_FP16|10.249|10.206|1.00|
|SSD::DNNTestNetwork::OCV/OCL_FP16|213.068|213.108|1.00|
|SqueezeNet_v1_1::DNNTestNetwork::OCV/OCL_FP16|4.867|4.878|1.00|
|VIT_B_32::DNNTestNetwork::OCV/OCL_FP16|200.563|190.788|1.05|
|VitTrack::DNNTestNetwork::OCV/OCL_FP16|7.528|7.173|1.05|
|YOLOX::DNNTestNetwork::OCV/OCL_FP16|132.858|132.701|1.00|
|YOLOv3::DNNTestNetwork::OCV/OCL_FP16|209.559|208.809|1.00|
|YOLOv4::DNNTestNetwork::OCV/OCL_FP16|221.357|220.924|1.00|
|YOLOv4_tiny::DNNTestNetwork::OCV/OCL_FP16|24.446|24.382|1.00|
|YOLOv5::DNNTestNetwork::OCV/OCL_FP16|43.922|44.080|1.00|
|YOLOv8::DNNTestNetwork::OCV/OCL_FP16|64.159|63.842|1.00|
|YuNet::DNNTestNetwork::OCV/OCL_FP16|10.177|10.231|0.99|
|opencv_face_detector::DNNTestNetwork::OCV/OCL_FP16|15.121|15.445|0.98|

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2024-01-26 16:34:17 +03:00
fengyuentau
83acb656f1 integrate bias handling in ocl kernel 2024-01-11 11:15:17 +08:00
Liutong HAN
a287605c3e Clean up the Universal Intrinsic API. 2023-10-13 19:23:30 +08:00
Dmitry Kurtaev
178fdbbda8
Merge pull request #24196 from dkurt:ov_backend_cleanups
Use ngraph::Output in OpenVINO backend wrapper #24196

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/24102

* Use `ngraph::Output<ngraph::Node>>` insead of `std::shared_ptr<ngraph::Node>` as a backend wrapper. It lets access to multi-output nodes: 588ddf1b18/modules/dnn/src/net_openvino.cpp (L501-L504)
* All layers can be customizable with OpenVINO >= 2022.1. nGraph reference code used for default layer implementation does not required CPU plugin also (might be tested by commenting CPU plugin at `/opt/intel/openvino/runtime/lib/intel64/plugins.xml`).
* Correct inference if only intermediate blobs requested.


See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-05 18:08:28 +03:00
Dmitry Kurtaev
4b8aeb1129
Merge pull request #24039 from dkurt:tflite_test_backends
TFLite models on different backends (tests and improvements) #24039

### Pull Request Readiness Checklist

* MaxUnpooling with OpenVINO
* Fully connected with transposed inputs/weights with OpenVINO
* Enable backends tests for TFLite (related to https://github.com/opencv/opencv/issues/23992#issuecomment-1640691722)
* Increase existing tests thresholds

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-08-04 11:28:51 +03:00
Dmitry Kurtaev
96f23e3da1
Merge pull request #24080 from dkurt:dnn_cuda_layers
Resolve uncovered CUDA dnn layer #24080

### Pull Request Readiness Checklist

* Gelu activation layer on CUDA
* Try to relax GEMM from ONNX

resolves https://github.com/opencv/opencv/issues/24064

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-08-03 09:13:42 +03:00
Zihao Mu
5025f29378
speed up vulkan dnn, and support ios and apple m1 chip. (#23349) 2023-05-18 20:02:27 +03:00
Yuantao Feng
3c1fcd5deb
Merge pull request #23401 from fengyuentau:fix_cann_layer_support
dnn: Support more operators in CANN backend #23401

This PR adds the support of following layers:

- [x] Sub
- [x] PRelu
- [x] DeConv
- [x] Also warn users if backend is switched back to default if some of the layers are not supported.
- [ ] [Dropped] LSTM: some hacks (adding layers) were introduced which makes it even harder to build the graph for CANN backend.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-20 10:18:35 +03:00
Yuantao Feng
b94e13c8ae
Merge pull request #23319 from fengyuentau:fix_zoo_issue_136
Related issue: https://github.com/opencv/opencv_zoo/issues/136

Features added:

- Support operators with multiple output: ONNX Split.
- Support Slice without steps.

Bugs fixed:

- Wrong settings in ClipByValue (Relu6).
- Wrong calculation of pads in convolution layer (It is wrong generally but only fixed specifically for CANN for now).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-03-13 21:46:33 +03:00
wanli
4718a4bf81 make GEMM can be supported with transA and transB in CUDA 2023-01-31 15:14:17 +08:00
Yuantao Feng
a2b3acfc6e
dnn: add the CANN backend (#22634)
* cann backend impl v1

* cann backend impl v2: use opencv parsers to build models for cann

* adjust fc according to the new transA and transB

* put cann net in cann backend node and reuse forwardLayer

* use fork() to create a child process and compile cann model

* remove legacy code

* remove debug code

* fall bcak to CPU backend if there is one layer not supoorted by CANN backend

* fix netInput forward
2022-12-21 09:04:41 +03:00
Alexander Alekhin
cdbb893b27 dnn: disable OpenCL code path in MatMul processing
- this mode is not supported by 22828
2022-12-20 09:46:48 +00:00
zoom
4891818114 make MatMul support 3D or 4D with broadcast 2022-12-15 10:36:08 +08:00
zihaomu
0d56524b72 gemm support transA and transB, and first input is constance. 2022-11-29 17:13:36 +08:00
wxsheng
4154bd0667
Add Loongson Advanced SIMD Extension support: -DCPU_BASELINE=LASX
* Add Loongson Advanced SIMD Extension support: -DCPU_BASELINE=LASX
* Add resize.lasx.cpp for Loongson SIMD acceleration
* Add imgwarp.lasx.cpp for Loongson SIMD acceleration
* Add LASX acceleration support for dnn/conv
* Add CV_PAUSE(v) for Loongarch
* Set LASX by default on Loongarch64
* LoongArch: tune test threshold for Core/HAL.mat_decomp/15

Co-authored-by: shengwenxue <shengwenxue@loongson.cn>
2022-09-10 09:39:43 +03:00
Zihao Mu
a80fcacd90
Merge pull request #21372 from zihaomu:dnn_quantize_per_tensor
Add per_tensor_quantize to int8 quantize

* add per_tensor_quantize to dnn int8 module.

* change api flag from perTensor to perChannel, and recognize quantize type and onnx importer.

* change the default to hpp
2022-07-05 19:14:42 +03:00
Zihao Mu
7b582b71ba
Merge pull request #21036 from fengyuentau:timvx_backend_support
dnn: TIM-VX NPU backend support

* Add TimVX NPU backend for DNN module.

* use official branch from tim-vx repo; fix detecting viv sdk

Co-authored-by: fytao <yuantao.feng@outlook.com>
2022-03-31 21:42:11 +00:00
Alexander Alekhin
19926e2979 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2022-02-11 17:32:37 +00:00
Alexander Alekhin
effce0573b dnn: drop legacy Inference Engine NN builder API 2022-02-10 11:55:24 +00:00
Alexander Alekhin
8b4fa2605e Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2021-12-03 12:32:49 +00:00
Andrew Ryrie
ea7d4be3f8
Merge pull request #20658 from smbz:lstm_optimisation
* dnn: LSTM optimisation

This uses the AVX-optimised fastGEMM1T for matrix multiplications where available, instead of the standard cv::gemm.

fastGEMM1T is already used by the fully-connected layer.  This commit involves two minor modifications:
 - Use unaligned access.  I don't believe this involves any performance hit in on modern CPUs (Nehalem and Bulldozer onwards) in the case where the address is actually aligned.
 - Allow for weight matrices where the number of columns is not a multiple of 8.

I have not enabled AVX-512 as I don't have an AVX-512 CPU to test on.

* Fix warning about initialisation order

* Remove C++11 syntax

* Fix build when AVX(2) is not available

In this case the CV_TRY_X macros are defined to 0, rather than being undefined.

* Minor changes as requested:

 - Don't check hardware support for AVX(2) when dispatch is disabled for these
 - Add braces

* Fix out-of-bounds access in fully connected layer

The old tail handling in fastGEMM1T implicitly rounded vecsize up to the next multiple of 8, and the fully connected layer implements padding up to the next multiple of 8 to cope with this.  The new tail handling does not round the vecsize upwards like this but it does require that the vecsize is at least 8.  To adapt to the new tail handling, the fully connected layer now rounds vecsize itself at the same time as adding the padding(which makes more sense anyway).

This also means that the fully connected layer always passes a vecsize of at least 8 to fastGEMM1T, which fixes the out-of-bounds access problems.

* Improve tail mask handling

 - Use static array for generating tail masks (as requested)
 - Apply tail mask to the weights as well as the input vectors to prevent spurious propagation of NaNs/Infs

* Revert whitespace change

* Improve readability of conditions for using AVX

* dnn(lstm): minor coding style changes, replaced left aligned load
2021-11-29 21:43:00 +00:00
Hanxi Guo
1fcf7ba5bc
Merge pull request #20406 from MarkGHX:gsoc_2021_webnn
[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN

* Add WebNN backend for OpenCV DNN Module

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Add WebNN head files into OpenCV 3rd partiy files

Create webnn.hpp

update cmake

Complete README and add OpenCVDetectWebNN.cmake file

add webnn.cpp

Modify webnn.cpp

Can successfully compile the codes for creating a MLContext

Update webnn.cpp

Update README.md

Update README.md

Update README.md

Update README.md

Update cmake files and

update README.md

Update OpenCVDetectWebNN.cmake and README.md

Update OpenCVDetectWebNN.cmake

Fix OpenCVDetectWebNN.cmake and update README.md

Add source webnn_cpp.cpp and libary libwebnn_proc.so

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

update dnn.cpp

update op_webnn

update op_webnn

Update op_webnn.hpp

update op_webnn.cpp & hpp

Update op_webnn.hpp

Update op_webnn

update the skeleton

Update op_webnn.cpp

Update op_webnn

Update op_webnn.cpp

Update op_webnn.cpp

Update op_webnn.hpp

update op_webnn

update op_webnn

Solved the problems of released variables.

Fixed the bugs in op_webnn.cpp

Implement op_webnn

Implement Relu by WebNN API

Update dnn.cpp for better test

Update elementwise_layers.cpp

Implement ReLU6

Update elementwise_layers.cpp

Implement SoftMax using WebNN API

Implement Reshape by WebNN API

Implement PermuteLayer by WebNN API

Implement PoolingLayer using WebNN API

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Implement poolingLayer by WebNN API and add more detailed logs

Update dnn.cpp

Update dnn.cpp

Remove redundant codes and add more logs for poolingLayer

Add more logs in the pooling layer implementation

Fix the indent issue and resolve the compiling issue

Fix the build problems

Fix the build issue

FIx the build issue

Update dnn.cpp

Update dnn.cpp

* Fix the build issue

* Implement BatchNorm Layer by WebNN API

* Update convolution_layer.cpp

This is a temporary file for Conv2d layer implementation

* Integrate some general functions into op_webnn.cpp&hpp

* Update const_layer.cpp

* Update convolution_layer.cpp

Still have some bugs that should be fixed.

* Update conv2d layer and fc layer

still have some problems to be fixed.

* update constLayer, conv layer, fc layer

There are still some bugs to be fixed.

* Fix the build issue

* Update concat_layer.cpp

Still have some bugs to be fixed.

* Update conv2d layer, fully connected layer and const layer

* Update convolution_layer.cpp

* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)

* Delete bib19450.aux

* Add WebNN backend for OpenCV DNN Module

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Add WebNN head files into OpenCV 3rd partiy files

Create webnn.hpp

update cmake

Complete README and add OpenCVDetectWebNN.cmake file

add webnn.cpp

Modify webnn.cpp

Can successfully compile the codes for creating a MLContext

Update webnn.cpp

Update README.md

Update README.md

Update README.md

Update README.md

Update cmake files and

update README.md

Update OpenCVDetectWebNN.cmake and README.md

Update OpenCVDetectWebNN.cmake

Fix OpenCVDetectWebNN.cmake and update README.md

Add source webnn_cpp.cpp and libary libwebnn_proc.so

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

update dnn.cpp

update op_webnn

update op_webnn

Update op_webnn.hpp

update op_webnn.cpp & hpp

Update op_webnn.hpp

Update op_webnn

update the skeleton

Update op_webnn.cpp

Update op_webnn

Update op_webnn.cpp

Update op_webnn.cpp

Update op_webnn.hpp

update op_webnn

update op_webnn

Solved the problems of released variables.

Fixed the bugs in op_webnn.cpp

Implement op_webnn

Implement Relu by WebNN API

Update dnn.cpp for better test

Update elementwise_layers.cpp

Implement ReLU6

Update elementwise_layers.cpp

Implement SoftMax using WebNN API

Implement Reshape by WebNN API

Implement PermuteLayer by WebNN API

Implement PoolingLayer using WebNN API

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Implement poolingLayer by WebNN API and add more detailed logs

Update dnn.cpp

Update dnn.cpp

Remove redundant codes and add more logs for poolingLayer

Add more logs in the pooling layer implementation

Fix the indent issue and resolve the compiling issue

Fix the build problems

Fix the build issue

FIx the build issue

Update dnn.cpp

Update dnn.cpp

* Fix the build issue

* Implement BatchNorm Layer by WebNN API

* Update convolution_layer.cpp

This is a temporary file for Conv2d layer implementation

* Integrate some general functions into op_webnn.cpp&hpp

* Update const_layer.cpp

* Update convolution_layer.cpp

Still have some bugs that should be fixed.

* Update conv2d layer and fc layer

still have some problems to be fixed.

* update constLayer, conv layer, fc layer

There are still some bugs to be fixed.

* Update conv2d layer, fully connected layer and const layer

* Update convolution_layer.cpp

* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)

* Update dnn.cpp

* Fix Error in dnn.cpp

* Resolve duplication in conditions in convolution_layer.cpp

* Fixed the issues in the comments

* Fix building issue

* Update tutorial

* Fixed comments

* Address the comments

* Update CMakeLists.txt

* Offer more accurate perf test on native

* Add better perf tests for both native and web

* Modify per tests for better results

* Use more latest version of Electron

* Support latest WebNN Clamp op

* Add definition of HAVE_WEBNN macro

* Support group convolution

* Implement Scale_layer using WebNN

* Add Softmax option for native classification example

* Fix comments

* Fix comments
2021-11-23 21:15:31 +00:00
SamFC10
fa90e14b06 int8 layers and 8-bit quantization support 2021-08-19 09:56:47 +05:30
HAN Liutong
aaca4987c9
Merge pull request #20287 from hanliutong:dev-rvv-0.10
Optimization of DNN using native RISC-V vector intrinsics.

* Use RVV to optimize fastGEMM (FP32) in DNN.

* Use RVV to optimize fastGEMM1T in DNN.

* Use RVV to optimize fastConv in DNN.

* Use RVV to optimize fastDepthwiseConv in DNN.

* Vectorize tails using vl.

* Use "vl" instead of scalar to handle small block in fastConv.

* Fix memory access out of bound in "fastGEMM1T".

* Remove setvl.

* Remove useless initialization.

* Use loop unrolling to handle tail part instead of switch.
2021-08-11 01:16:03 +03:00
YashasSamaga
32df5faa25 add MatMulOp 2021-05-22 01:01:29 +05:30
Alexander Alekhin
6b474c4051 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2021-02-06 00:44:11 +00:00
Alexander Alekhin
83aa711346 dnn: rename clamp() => normalize_axis() 2021-02-04 08:13:55 +00:00
Alexander Alekhin
de385009ae Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-12-09 18:09:00 +00:00
Alexander Alekhin
00f36a3149 dnn: prefer to use v_fma() instead of v_c += v_a * v_b 2020-12-05 11:51:03 +00:00
Alexander Alekhin
b45273eccb Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-08-14 19:45:45 +00:00
Liubov Batanina
ad63d24dba
Merge pull request #18096 from l-bat:update_onnx_importer
* Added ReduceSum to ONNX importer

* Fix comments

* Fix Mul
2020-08-14 16:49:42 +00:00
Alexander Alekhin
fa25faa2d2 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-08-06 14:15:52 +00:00
Dmitry Kurtaev
cf8f65d806 Do not use size_t for nGraph layers 2020-08-02 20:50:44 +03:00
Alexander Alekhin
b8579f12be Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-04-08 10:19:09 +00:00
Liubov Batanina
734771418e
Merge pull request #16840 from l-bat:matmul_inputs
* Supported FullyConnected layer with two inputs

* Skipped test

* Fix conditions

* Added OpenCL support

* Supported ReduceMean3D

* Supported Expand layer

* Fix warning

* Added Normalize subgraph

* refactoring

* Used addLayer

* Fix check

* Used addLayer

* Skip failed test

* Added normalize1 subgraph

* Fix comments
2020-04-07 14:12:18 +00:00
Alexander Alekhin
124bf8339f dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 08:07:54 +00:00
Alexander Alekhin
29d214474f dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 07:45:09 +00:00
Alexander Alekhin
4b0132ed7a Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-12-02 16:26:52 +03:00
Lubov Batanina
7523c777c5 Merge pull request #15537 from l-bat:ngraph
* Support nGraph

* Fix resize
2019-12-02 16:16:06 +03:00
Yashas Samaga B L
613c12e590 Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module

* stub cuda4dnn design

* minor fixes for tests and doxygen

* add csl public api directory to module headers

* add low-level CSL components

* add high-level CSL components

* integrate csl::Tensor into backbone code

* switch to CPU iff unsupported; otherwise, fail on error

* add fully connected layer

* add softmax layer

* add activation layers

* support arbitary rank TensorDescriptor

* pass input wrappers to `initCUDA()`

* add 1d/2d/3d-convolution

* add pooling layer

* reorganize and refactor code

* fixes for gcc, clang and doxygen; remove cxx14/17 code

* add blank_layer

* add LRN layer

* add rounding modes for pooling layer

* split tensor.hpp into tensor.hpp and tensor_ops.hpp

* add concat layer

* add scale layer

* add batch normalization layer

* split math.cu into activations.cu and math.hpp

* add eltwise layer

* add flatten layer

* add tensor transform api

* add asymmetric padding support for convolution layer

* add reshape layer

* fix rebase issues

* add permute layer

* add padding support for concat layer

* refactor and reorganize code

* add normalize layer

* optimize bias addition in scale layer

* add prior box layer

* fix and optimize normalize layer

* add asymmetric padding support for pooling layer

* add event API

* improve pooling performance for some padding scenarios

* avoid over-allocation of compute resources to kernels

* improve prior box performance

* enable layer fusion

* add const layer

* add resize layer

* add slice layer

* add padding layer

* add deconvolution layer

* fix channelwise  ReLU initialization

* add vector traits

* add vectorized versions of relu, clipped_relu, power

* add vectorized concat kernels

* improve concat_with_offsets performance

* vectorize scale and bias kernels

* add support for multi-billion element tensors

* vectorize prior box kernels

* fix address alignment check

* improve bias addition performance of conv/deconv/fc layers

* restructure code for supporting multiple targets

* add DNN_TARGET_CUDA_FP64

* add DNN_TARGET_FP16

* improve vectorization

* add region layer

* improve tensor API, add dynamic ranks

1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
  - size_range: computes the combined size of for a given axis range
  - tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability

* fix parametric relu activation

* add squeeze/unsqueeze tensor API

* add reorg layer

* optimize permute and enable 2d permute

* enable 1d and 2d slice

* add split layer

* add shuffle channel layer

* allow tensors of different ranks in reshape primitive

* patch SliceOp to allow Crop Layer

* allow extra shape inputs in reshape layer

* use `std::move_backward` instead of `std::move` for insert in resizable_static_array

* improve workspace management

* add spatial LRN

* add nms (cpu) to region layer

* add max pooling with argmax ( and a fix to limits.hpp)

* add max unpooling layer

* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA

* update supportBackend to be more rigorous

* remove stray include from preventing non-cuda build

* include op_cuda.hpp outside condition #if

* refactoring, fixes and many optimizations

* drop DNN_TARGET_CUDA_FP64

* fix gcc errors

* increase max. tensor rank limit to six

* add Interp layer

* drop custom layers; use BackendNode

* vectorize activation kernels

* fixes for gcc

* remove wrong assertion

* fix broken assertion in unpooling primitive

* fix build errors in non-CUDA build

* completely remove workspace from public API

* fix permute layer

* enable accuracy and perf. tests for DNN_TARGET_CUDA

* add asynchronous forward

* vectorize eltwise ops

* vectorize fill kernel

* fixes for gcc

* remove CSL headers from public API

* remove csl header source group from cmake

* update min. cudnn version in cmake

* add numerically stable FP32 log1pexp

* refactor code

* add FP16 specialization to cudnn based tensor addition

* vectorize scale1 and bias1 + minor refactoring

* fix doxygen build

* fix invalid alignment assertion

* clear backend wrappers before allocateLayers

* ignore memory lock failures

* do not allocate internal blobs

* integrate NVTX

* add numerically stable half precision log1pexp

* fix indentation, following coding style,  improve docs

* remove accidental modification of IE code

* Revert "add asynchronous forward"

This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.

* [cmake] throw error for unsupported CC versions

* fix rebase issues

* add more docs, refactor code, fix bugs

* minor refactoring and fixes

* resolve warnings/errors from clang

* remove haveCUDA() checks from supportBackend()

* remove NVTX integration

* changes based on review comments

* avoid exception when no CUDA device is present

* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00
Lubov Batanina
90eb529bc4 Merge pull request #15395 from l-bat:fully_connected
* Fix IE FullyConnected layer

* Fix MyriadX
2019-08-29 10:52:02 +03:00
Dmitry Kurtaev
eba696a41e Merge pull request #14792 from dkurt:dnn_ie_min_version_r5
* Remove Inference Engine 2018R3 and 2018R4

* Fix 2018R5
2019-06-14 18:17:02 +03:00
Dmitry Kurtaev
ca5976e3d4 Fix IE backend considering future changes. 2019-02-18 19:26:04 +03:00
Dmitry Kurtaev
f0ddf302b2 Move Inference Engine to new API 2019-01-17 14:28:48 +03:00
Alexander Alekhin
f2bec05e6d Merge pull request #12913 from dkurt:dnn_fix_ie_hyperparams 2018-11-16 18:36:12 +00:00
Dmitry Kurtaev
b5c54e447c Extra hyperparameters for Intel's Inference Engine layers 2018-11-15 20:06:37 +03:00
Alexander Alekhin
96c71dd3d2 dnn: reduce set of ignored warnings 2018-11-15 13:15:59 +03:00
Alexander Alekhin
9d02d42afe dnn(ocl4dnn): don't use getUMat()
especially in CPU only processing
2018-10-05 15:24:51 +03:00
Dmitry Kurtaev
24ab751547 Merge pull request #12565 from dkurt:dnn_non_intel_gpu
* Remove isIntel check from deep learning layers

* Remove fp16->fp32 fallbacks where it's not necessary

* Fix Kernel::run to prevent localsize > globalsize
2018-09-26 16:27:00 +03:00