Zihao Mu
1e2ceca4df
add enableWinograd API for Net.
2022-10-09 09:33:07 +08:00
Zihao Mu
bb64db98d8
Further optimization of Conv2D, fused Conv_Add_Activation, bring latest code from ficus OpConv.fx. ( #22401 )
2022-08-26 12:57:25 +03:00
Alexander Alekhin
13a995cc1d
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2022-04-02 19:45:44 +00:00
Alexander Alekhin
4d927e73f1
dnn(test): update OpenVINO tests 2022.1.0
2022-04-02 17:42:53 +00:00
Alexander Alekhin
8b4fa2605e
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2021-12-03 12:32:49 +00:00
Alexander Alekhin
bd396e1fd5
dnn(test): re-enable tests which works with OpenVINO 2021.4.x (3.4)
2021-12-02 11:30:45 +00:00
Alexander Alekhin
57ee14d62d
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2021-11-27 16:50:55 +00:00
Alexander Alekhin
985aa0423d
dnn(test): update InferenceEngine tests
2021-11-26 18:46:26 +00:00
Alexander Alekhin
8fad85edda
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2021-07-01 10:52:31 +00:00
Alexander Alekhin
6797fd65a5
dnn(test): update tests for OpenVINO 2021.4
2021-06-30 22:30:15 +00:00
Alexander Alekhin
35eaacd1db
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2021-03-27 15:35:16 +00:00
Alexander Alekhin
26ea4760ad
Merge pull request #19774 from aarongreig:aaron/dnn/oclTestAccuracyThresholds
2021-03-25 16:58:07 +00:00
Aaron Greig
f59917bea1
Introduce relaxed accuracy thresholds for CL target in some dnn tests.
...
Partially addresses #9821
2021-03-25 10:58:23 +00:00
Alexander Alekhin
b62d015285
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2021-03-24 18:58:46 +00:00
Alexander Alekhin
e56e4876e7
dnn(test): update tests for OpenVINO 2021.3
2021-03-24 14:50:42 +00:00
YashasSamaga
0f8ab0557e
enable fusion tests, update thresholds and fix missed eltwise fusions
2020-11-21 17:35:20 +05:30
Alexander Alekhin
1b443219ed
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-10-09 20:09:26 +00:00
Alexander Alekhin
6da05f7086
dnn(test): update tests for OpenVINO 2021.1
2020-10-08 10:22:31 +00:00
Alexander Alekhin
295afd5882
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-09-28 21:33:29 +00:00
Tomoaki Teshima
48368dc9a1
loosen threshold for Mali
2020-09-27 00:37:52 +09:00
Alexander Alekhin
45d073f889
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-02-26 20:09:03 +03:00
Dmitry Kurtaev
d8dea7896b
Merge pull request #16628 from dkurt:dnn_ngraph_custom_layers
...
* Custom layers with nGraph
* nGraph: multiple outputs from nodes
2020-02-26 17:51:18 +03:00
Alexander Alekhin
aa2777ed61
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-02-10 19:40:29 +03:00
Alexander Alekhin
8ecfb59930
dnn(test): skip failed ngraph tests
2020-02-07 22:43:40 +00:00
Alexander Alekhin
4cb9faf6c9
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-01-14 17:04:22 +03:00
Dmitry Kurtaev
8f1e36f7c1
Disable some tests for Myriad target of nGraph
...
Add lightweight IE hardware targets checks
nGraph: Concat with paddings
Enable more nGraph tests
Restore FP32->FP16 for GPU plugin of IE
try to fix buildbot
Use lightweight IE targets check only starts from R4
2020-01-13 15:35:47 +03:00
Yashas Samaga B L
1fac1421e5
Merge pull request #16010 from YashasSamaga:cuda4dnn-fp16-tests
...
* enable tests for DNN_TARGET_CUDA_FP16
* disable deconvolution tests
* disable shortcut tests
* fix typos and some minor changes
* dnn(test): skip CUDA FP16 test too (run_pool_max)
2019-12-20 16:36:32 +03:00
Alexander Alekhin
4b0132ed7a
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-12-02 16:26:52 +03:00
Lubov Batanina
7523c777c5
Merge pull request #15537 from l-bat:ngraph
...
* Support nGraph
* Fix resize
2019-12-02 16:16:06 +03:00
Yashas Samaga B L
613c12e590
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
...
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00
Dmitry Kurtaev
e35fd463e7
Enable ENet with Inference Engine backend on CPU
2019-10-04 18:10:11 +03:00
Dmitry Kurtaev
6193e403e7
Enable some tests for 2019R2
2019-08-07 09:07:53 +03:00
Alexander Alekhin
894f208de3
dnn(test): replace SkipTestException with tags
2019-06-23 13:12:23 +00:00
Alexander Alekhin
13a782c039
test: fix usage of findDataFile()
...
misused 'optional' mode
2019-06-20 18:20:14 +03:00
Dmitry Kurtaev
eba696a41e
Merge pull request #14792 from dkurt:dnn_ie_min_version_r5
...
* Remove Inference Engine 2018R3 and 2018R4
* Fix 2018R5
2019-06-14 18:17:02 +03:00
Dmitry Kurtaev
9c0af1f675
Enable more deconvolution layer configurations with IE backend
2019-06-03 08:15:52 +03:00
Alexander Alekhin
e0841f3d6e
dnn(test-tags): add time / memory tags
2019-04-08 19:18:25 +00:00
Lubov Batanina
7d3d6bc4e2
Merge pull request #13932 from l-bat:MyriadX_master_dldt
...
* Fix precision in tests for MyriadX
* Fix ONNX tests
* Add output range in ONNX tests
* Skip tests on Myriad OpenVINO 2018R5
* Add detect MyriadX
* Add detect MyriadX on OpenVINO R5
* Skip tests on Myriad next version of OpenVINO
* dnn(ie): VPU type from environment variable
* dnn(test): validate VPU type
* dnn(test): update DLIE test skip conditions
2019-03-29 16:42:58 +03:00
Alexander Nesterov
74574dfae4
Added optimization fuse
2019-03-05 18:12:03 -01:00
Dmitry Kurtaev
ed710eaa1c
Make Inference Engine R3 as a minimal supported version
2019-02-21 09:32:26 +03:00
Liubov Batanina
183c0fcab1
Changed condition for resize and lrn layers
2019-02-14 13:11:14 +03:00
Liubov Batanina
6b4becfd03
Enabled tests on IE backend
2019-02-11 12:39:28 +03:00
Dmitry Kurtaev
f0ddf302b2
Move Inference Engine to new API
2019-01-17 14:28:48 +03:00
Alexander Alekhin
14633bc857
Merge pull request #13497 from dkurt:dnn_torch_bn_train
2018-12-21 14:29:10 +00:00
Dmitry Kurtaev
840c892abd
Batch normalization in training phase from Torch
2018-12-21 14:36:55 +03:00
Dmitry Kurtaev
59ce1d80a5
Fix dnn tests for Inference Engine R5
2018-12-21 12:33:30 +03:00
Dmitry Kurtaev
53f6198f27
Minor fixes in IE backend tests
2018-12-10 20:08:13 +03:00
Dmitry Kurtaev
b5c54e447c
Extra hyperparameters for Intel's Inference Engine layers
2018-11-15 20:06:37 +03:00
Dmitry Kurtaev
e7015f6ae8
Fix ENet test
2018-10-19 17:43:26 +03:00
Dmitry Kurtaev
58ac3e09da
Change default value of crop argument of blobFromImage from true to false
2018-09-12 19:02:58 +03:00