Commit Graph

64 Commits

Author SHA1 Message Date
Alexander Alekhin
ee743afebe dnn(ocl): don't use getUMat() for long live objects 2018-07-20 17:53:55 +03:00
Vadim Pisarevsky
523b6f32ba Merge pull request #11867 from dkurt:dnn_ie_layers 2018-07-06 13:13:20 +00:00
Dmitry Kurtaev
019c2f2115 Enable more deep learning tests 2018-07-05 14:23:15 +03:00
Alexander Alekhin
b09a4a98d4 opencv: Use cv::AutoBuffer<>::data() 2018-07-04 19:11:29 +03:00
Dmitry Kurtaev
2c291bc2fb Enable FastNeuralStyle and OpenFace networks with IE backend 2018-06-09 15:57:12 +03:00
rockzhan
1187a7fa34 Merge pull request #11649 from rockzhan:dnn_dw_prelu
dnn: Fix output mismatch when forward dnn model contain [depthwise conv(group=1) + bn + prelu]  (#11649)

* this can make sure [depthwise conv(group=1) + bn + prelu] output not shift

* add TEST to show the output mismatch in [DWconv+Prelu]

* fix typo

* change loading image to init cvMat directly

* build runtime model, without loading external model

* remove whitespace

* change way to create a cvmat

* add bias_term, add target output

* fix [dwconv + prelu] value mismatch when no optimizations

* fix Test error when change output channels

* add parametric test

* change num_output to group value

* change conv code and change test back
2018-06-07 13:45:54 +00:00
Vadim Pisarevsky
3cbd2e2764 Merge pull request #11650 from dkurt:dnn_default_backend 2018-06-06 09:30:39 +00:00
Dmitry Kurtaev
b781ac7346 Make Intel's Inference Engine backend is default if no preferable backend is specified. 2018-06-04 18:31:46 +03:00
Kuang Fangjun
9ae28415ec fix doc. 2018-06-03 17:44:24 +08:00
Alexander Alekhin
44572fac44 Merge pull request #11557 from tomoaki0705:relaxIntelOnlyOCL4DNN 2018-05-29 15:25:22 +00:00
Tomoaki Teshima
2e9e71ab9e make ocl4dnn available to run on other platform than Intel GPU 2018-05-29 19:18:10 +09:00
Maksim Shabunin
895e10c317 dnn: fixed IE support on Windows 2018-05-23 12:46:14 +03:00
Li Peng
3dd916882a fp16 ocl support for googlenet
Signed-off-by: Li Peng <peng.li@intel.com>
2018-05-16 22:45:02 +08:00
Dmitry Kurtaev
c99c3e761e Fuse multipliers but not convolution layers weights 2018-05-10 19:24:38 +03:00
Dmitry Kurtaev
66ce8cd7ea Fix bugs found by valgrind 2018-04-17 17:53:51 +03:00
Dmitry Kurtaev
709cf5d038 OpenCL GPU target for Inference Engine deep learning backend
Enable FP16 GPU target for DL Inference Engine backend.
2018-04-09 17:21:35 +03:00
Alexander Alekhin
1060c0f439 dnn: apply CV_OVERRIDE/CV_FINAL 2018-03-28 18:43:27 +03:00
Alexander Alekhin
6c051a55e5 cmake: don't add include <module>/src directory to avoid conflicts
during opencv_world builds
2018-03-19 11:14:15 +03:00
Alexander Alekhin
5b868ccd82 Merge pull request #10992 from dkurt:dnn_opencl_tests 2018-03-09 10:06:40 +00:00
Dmitry Kurtaev
0f01b40dd5 Reset OpenCL kernels if batch size changes 2018-03-07 17:06:59 +03:00
Alexander Alekhin
514f4193db Merge pull request #10959 from alalek:cmake_ocl4dnn 2018-03-07 10:26:14 +00:00
Alexander Alekhin
1b83bc48a1 dnn: make OpenCL DNN code optional 2018-03-01 12:12:40 +03:00
Wu Zhiwen
ef937dd676 ocl4dnn: Fix SAME padding mode for convolve
Signed-off-by: Wu, Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
2018-02-28 21:02:41 +08:00
Li Peng
608968aa83 Deconvolution ocl fix
Signed-off-by: Li Peng <peng.li@intel.com>
2018-02-23 18:31:30 +08:00
Li Peng
c524f669c7 Fallback for "SAME" padMode in ocl convolution and pooling
It fixes tensorflow ocl testcase of MobileNetSSD and Inception_v2_SSD

Signed-off-by: Li Peng <peng.li@intel.com>
2018-02-22 21:17:59 +08:00
Li Peng
2863f950d6 ReLU6 layer ocl support
include relu6 ocl kernel and layer fusion support

Signed-off-by: Li Peng <peng.li@intel.com>
2018-02-20 15:11:09 +08:00
Alexander Alekhin
cff79609c8 Merge pull request #10854 from pengli:dnn 2018-02-14 12:49:53 +00:00
Vadim Pisarevsky
6dfd7e3da2 Merge pull request #10850 from dkurt:dnn_tf_deconv_tests 2018-02-14 10:35:14 +00:00
Li Peng
5992c46606 add fallback case for ocl convolution
The ocl convolution doesn't support tensorflow padMode well.
Add fallback check if we meet this situation, it could fix the
tensorflow MobileNet SSD failure.

Signed-off-by: Li Peng <peng.li@intel.com>
2018-02-14 00:04:38 +08:00
Dmitry Kurtaev
514e6df460 Refactored deep learning layers fusion 2018-02-13 14:35:58 +03:00
Dmitry Kurtaev
a6baedd02c Fix deconvolution layer. Add batch norm layer with mean-variance normalization from TensorFlow. 2018-02-13 11:00:27 +03:00
Dmitry Kurtaev
10e1de74d2 Intel Inference Engine deep learning backend (#10608)
* Intel Inference Engine deep learning backend.

* OpenFace network using Inference Engine backend
2018-02-06 11:57:35 +03:00
Li Peng
e15928b49e convolution and tanh layer fusion
Signed-off-by: Li Peng <peng.li@intel.com>
2018-01-25 17:45:33 +08:00
Li Peng
2124361ff7 ocl support for Deconvolution layer
Signed-off-by: Li Peng <peng.li@intel.com>
2018-01-18 23:40:22 +08:00
Dmitry Kurtaev
1f4fdfd599 Untrainable version of Scale layer from Caffe 2018-01-13 10:35:29 +03:00
Dmitry Kurtaev
64a9e92390 Merge pull request #10466 from dkurt:reduce_umat_try_2
* UMat blobs are wrapped

* Replace getUMat and getMat at OpenCLBackendWrapper
2018-01-10 21:50:54 +03:00
Alexander Alekhin
7d67d60fb1 cmake(opt): AVX512_SKX 2017-12-29 07:18:11 +00:00
Alexander Alekhin
898ca38257 cmake: AVX512 -> AVX_512F 2017-12-28 15:20:27 +00:00
Arjan van de Ven
2938860b3f Provide a few AVX512 optimized functions for the DNN module
This patch adds AVX512 optimized fastConv as well as the hookups
needed to get these called in the convolution_layer.

AVX512 fastConv is code-identical on a C level to the AVX2 one,
but is measurably faster due to AVX512 having more registers available
to cache results in.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
2017-12-26 16:00:17 +00:00
Maksim Shabunin
1033f2b1bd Fixed 3 issues found by static analysis 2017-12-15 17:29:26 +03:00
Dmitry Kurtaev
ef0650179b Fix conv/deconv/fc layers FLOPS computation 2017-12-07 11:42:04 +03:00
Wu Zhiwen
45d11dde57 dnn(ocl4dnn): add fusion support for Power activation and eltwise add
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
2017-11-20 14:58:53 +08:00
Li Peng
8f99083726 Add new layer forward interface
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.

Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00
Wu Zhiwen
2d8f2c2aea dnn(ocl4dnn): add fusion support
ocl4dnn supports following fusion styles:
Conv + [BN] + [Scale] + [ReLU/PReLU]

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
2017-10-16 19:18:36 +08:00
Dmitry Kurtaev
e268606e26 Grayscale colorization model (https://github.com/richzhang/colorization) test. 2017-10-06 09:33:41 +03:00
pengli
e340ff9c3a Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module  (#9114)

* import libdnn code

Signed-off-by: Li Peng <peng.li@intel.com>

* add convolution layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add pooling layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add softmax layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add lrn layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add innerproduct layer ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* add HAVE_OPENCL macro

Signed-off-by: Li Peng <peng.li@intel.com>

* fix for convolution ocl

Signed-off-by: Li Peng <peng.li@intel.com>

* enable getUMat() for multi-dimension Mat

Signed-off-by: Li Peng <peng.li@intel.com>

* use getUMat for ocl acceleration

Signed-off-by: Li Peng <peng.li@intel.com>

* use CV_OCL_RUN macro

Signed-off-by: Li Peng <peng.li@intel.com>

* set OPENCL target when it is available

and disable fuseLayer for OCL target for the time being

Signed-off-by: Li Peng <peng.li@intel.com>

* fix innerproduct accuracy test

Signed-off-by: Li Peng <peng.li@intel.com>

* remove trailing space

Signed-off-by: Li Peng <peng.li@intel.com>

* Fixed tensorflow demo bug.

Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.

libdnn don't calculate output dimension anymore and just use one
passed in by config.

* split gemm ocl file

split it into gemm_buffer.cl and gemm_image.cl

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix compile failure

Signed-off-by: Li Peng <peng.li@intel.com>

* check env flag for auto tuning

Signed-off-by: Li Peng <peng.li@intel.com>

* switch to new ocl kernels for softmax layer

Signed-off-by: Li Peng <peng.li@intel.com>

* update softmax layer

on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.

Signed-off-by: Li Peng <peng.li@intel.com>

* fallback to cpu path for fc layer with multi output

Signed-off-by: Li Peng <peng.li@intel.com>

* update output message

Signed-off-by: Li Peng <peng.li@intel.com>

* update fully connected layer

fallback to gemm API if libdnn return false

Signed-off-by: Li Peng <peng.li@intel.com>

* Add ReLU OCL implementation

* disable layer fusion for now

Signed-off-by: Li Peng <peng.li@intel.com>

* Add OCL implementation for concat layer

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>

* libdnn: update license and copyrights

Also refine libdnn coding style

Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>

* DNN: Don't link OpenCL library explicitly

* DNN: Make default preferableTarget to DNN_TARGET_CPU

User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.

Also don't fusion when using DNN_TARGET_OPENCL

* DNN: refine coding style

* Add getOpenCLErrorString

* DNN: Use int32_t/uint32_t instread of alias

* Use namespace ocl4dnn to include libdnn things

* remove extra copyTo in softmax ocl path

Signed-off-by: Li Peng <peng.li@intel.com>

* update ReLU layer ocl path

Signed-off-by: Li Peng <peng.li@intel.com>

* Add prefer target property for layer class

It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.

Signed-off-by: Li Peng <peng.li@intel.com>

* Add cl_event based timer for cv::ocl

* Rename libdnn to ocl4dnn

Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>

* use UMat for ocl4dnn internal buffer

Remove allocateMemory which use clCreateBuffer directly

Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>

* enable buffer gemm in ocl4dnn innerproduct

Signed-off-by: Li Peng <peng.li@intel.com>

* replace int_tp globally for ocl4dnn kernels.

Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>

* create UMat for layer params

Signed-off-by: Li Peng <peng.li@intel.com>

* update sign ocl kernel

Signed-off-by: Li Peng <peng.li@intel.com>

* update image based gemm of inner product layer

Signed-off-by: Li Peng <peng.li@intel.com>

* remove buffer gemm of inner product layer

call cv::gemm API instead

Signed-off-by: Li Peng <peng.li@intel.com>

* change ocl4dnn forward parameter to UMat

Signed-off-by: Li Peng <peng.li@intel.com>

* Refine auto-tuning mechanism.

- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
  for fine-tuned kernel configuration.
  e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
  the cache directory will be /home/tmp/spatialkernels/ on Linux.

- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
  auto-tuning.

- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
  for OpenCL command queue. This fix basic kernel get wrong running
  time, i.e. 0ms.

- If creating cache directory failed, disable auto-tuning.

* Detect and create cache dir on windows

Signed-off-by: Li Peng <peng.li@intel.com>

* Refine gemm like convolution kernel.

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix redundant swizzleWeights calling when use cached kernel config.

* Fix "out of resource" bug when auto-tuning too many kernels.

* replace cl_mem with UMat in ocl4dnnConvSpatial class

* OCL4DNN: reduce the tuning kernel candidate.

This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.

Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>

* replace cl_mem with umat in ocl4dnn convolution

Signed-off-by: Li Peng <peng.li@intel.com>

* remove weight_image_ of ocl4dnn inner product

Actually it is unused in the computation

Signed-off-by: Li Peng <peng.li@intel.com>

* Various fixes for ocl4dnn

1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device

Signed-off-by: Li Peng <peng.li@intel.com>

* add build option for log softmax

Signed-off-by: Li Peng <peng.li@intel.com>

* remove unused ocl kernels in ocl4dnn

Signed-off-by: Li Peng <peng.li@intel.com>

* replace ocl4dnnSet with opencv setTo

Signed-off-by: Li Peng <peng.li@intel.com>

* replace ALIGN with cv::alignSize

Signed-off-by: Li Peng <peng.li@intel.com>

* check kernel build options

Signed-off-by: Li Peng <peng.li@intel.com>

* Handle program compilation fail properly.

* Use std::numeric_limits<float>::infinity() for large float number

* check ocl4dnn kernel compilation result

Signed-off-by: Li Peng <peng.li@intel.com>

* remove unused ctx_id

Signed-off-by: Li Peng <peng.li@intel.com>

* change clEnqueueNDRangeKernel to kernel.run()

Signed-off-by: Li Peng <peng.li@intel.com>

* change cl_mem to UMat in image based gemm

Signed-off-by: Li Peng <peng.li@intel.com>

* check intel subgroup support for lrn and pooling layer

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix convolution bug if group is greater than 1

Signed-off-by: Li Peng <peng.li@intel.com>

* Set default layer preferableTarget to be DNN_TARGET_CPU

Signed-off-by: Li Peng <peng.li@intel.com>

* Add ocl perf test for convolution

Signed-off-by: Li Peng <peng.li@intel.com>

* Add more ocl accuracy test

Signed-off-by: Li Peng <peng.li@intel.com>

* replace cl_image with ocl::Image2D

Signed-off-by: Li Peng <peng.li@intel.com>

* Fix build failure in elementwise layer

Signed-off-by: Li Peng <peng.li@intel.com>

* use getUMat() to get blob data

Signed-off-by: Li Peng <peng.li@intel.com>

* replace cl_mem handle with ocl::KernelArg

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(build): don't use C++11, OPENCL_LIBRARIES fix

* dnn(ocl4dnn): remove unused OpenCL kernels

* dnn(ocl4dnn): extract OpenCL code into .cl files

* dnn(ocl4dnn): refine auto-tuning

Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.

Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50

If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.

* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups

* dnn(ocl4dnn): fix perf test

OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.

* use ocl::KernelArg as much as possible

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): fix bias bug for gemm like kernel

* dnn(ocl4dnn): wrap cl_mem into UMat

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): Refine signature of kernel config

- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
  24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.

* dnn(ocl4dnn): swap width/height in configuration

* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only

* core: make configuration helper functions accessible from non-core modules

* dnn(ocl4dnn): update kernel auto-tuning behavior

Avoid unwanted creation of directories

* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash

* dnn(ocl4dnn): remove redundant code

* dnn(ocl4dnn): Add more clear message for simd size dismatch.

* dnn(ocl4dnn): add const to const argument

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel

* dnn(ocl4dnn): drop unused tuneLocalSize()

* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method

* dnn(ocl4dnn): sanitize file names used for cache

* dnn(perf): enable Network tests with OpenCL

* dnn(ocl4dnn/conv): drop computeGlobalSize()

* dnn(ocl4dnn/conv): drop unused fields

* dnn(ocl4dnn/conv): simplify ctor

* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL

* dnn(ocl4dnn/conv): drop unsupported double / untested half types

* dnn(ocl4dnn/conv): drop unused variable

* dnn(ocl4dnn/conv): alignSize/divUp

* dnn(ocl4dnn/conv): use enum values

* dnn(ocl4dnn): drop unused innerproduct variable

Signed-off-by: Li Peng <peng.li@intel.com>

* dnn(ocl4dnn): add an generic function to check cl option support

* dnn(ocl4dnn): run softmax subgroup version kernel first

Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 15:38:00 +03:00
Dmitry Kurtaev
6e593cd1f0 Swap dimensions of deconvolution kernel 2017-09-27 22:38:34 +03:00
Vadim Pisarevsky
41b23fde9f Merge pull request #9524 from dkurt:dnn_torch_openface 2017-09-15 12:38:12 +00:00
Dmitry Kurtaev
7dc6b1d7d4 Layers for OpenFace face recognition network 2017-09-14 09:11:31 +03:00
Dmitry Kurtaev
58b890b9f7 Dilated convolution import from TensorFlow 2017-09-13 18:44:14 +03:00