Commit Graph

2358 Commits

Author SHA1 Message Date
Abduragim Shtanchaev
5319772a56
Merge pull request #25205 from Abdurrahheem:ash/0D-split-test
0D test for split layer #25205

This PR introduces parametrized `0/1D` input support test for `Split` layer.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-03-26 15:13:41 +03:00
Yuantao Feng
accf200408
Merge pull request #25238 from fengyuentau:optimized_const
dnn: avoid const layer forwarding in layer norm layer and attention layer #25238

While profiling ViTs with dnn, I found `ConstLayer` can take a proportion of the inference time, which is weird. This comes from the data copy during the inference of `ConstLayer`. There is a chance that we can improve the efficiency of data copying but the easiest and most convenient way is to avoid `ConstLayer`. This PR change the way how we handle constants in layer normalization layer and attention layer, which is storing in the layer blobs instead of making constant layers for them.

Checklists:

- [x] Backend compatibility in layer normalization layer.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-03-26 15:09:51 +03:00
alexlyulkov
f0323fdd1e
Merge pull request #25218 from alexlyulkov:al/int64-tile
Allowed int types in Tile and Reduce layers #25218

Allowed any Mat type in Tile layer.
Allowed int64 type in Reduce layer.

ONNX tests with int32 and int64 inputs will be added later in a separate PR


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-03-26 14:00:35 +03:00
Alexander Smorkalov
a33de44b0b
Merge pull request #25212 from alexlyulkov:al/dnn-int64-scatter
Added int64 values support to scatter, scatterND and maxunpool layers
2024-03-26 13:52:28 +03:00
Alexander Smorkalov
fc34554475
Merge pull request #25184 from dkurt:avoid_extra_memset
Avoid extra memset
2024-03-25 13:07:49 +03:00
Yuantao Feng
025e7602b9
Merge pull request #25166 from fengyuentau:fix_cann_gemm
dnn (CANN): Fix incorrect shape of 1d bias in Gemm #25166

Gemm layer was refactored some time ago. Users found that the mobilenet example in https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend does not work because of incorrect shape set for 1d bias in Gemm. This PR resolves this issue.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-03-25 09:47:28 +03:00
Dmitry Kurtaev
0b6c9a2123
Merge pull request #25181 from dkurt:release_conv_weights
Release convolution weightsMat after usage #25181

### Pull Request Readiness Checklist

related (but not resolved): https://github.com/opencv/opencv/issues/24134

Minor memory footprint improvement. Also, adds a test for VmHWM.

RAM top memory usage (-230MB)

| YOLOv3 (237MB file) |   4.x   |    PR   |
|---------------------|---------|---------|
| no winograd         | 808 MB  | 581 MB  |
| winograd            | 1985 MB | 1750 MB |

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-03-25 09:03:28 +03:00
alexlyulkov
f8319de976
Added int support to CumSum layer (#25214)
* Added int support to CumSum layer

* Allowed int types in CumSum layer

---------

Co-authored-by: Alexander Lyulkov <alexander.lyulkov@opencv.ai>
2024-03-22 04:35:43 +03:00
Abduragim Shtanchaev
d188319b82
0D test for Reshape layer (#25206)
* reshape test for 0D

* fix comments according to PR
2024-03-22 03:59:08 +03:00
alexlyulkov
aa9e80b07b
Added native int64 indices support to gather layer (#25211)
Co-authored-by: Alexander Lyulkov <alexander.lyulkov@opencv.ai>
2024-03-22 03:43:20 +03:00
alexlyulkov
f2cf3c8890
Added int support to flatten, permute, reshape, slice layers (#25236)
Co-authored-by: Alexander Lyulkov <alexander.lyulkov@opencv.ai>
2024-03-22 03:39:42 +03:00
Oleg Pipikin
6da2ddcf0e Fix for OpenVINO 2024.0
Remove support OpenVINO lower than 2022.1 release
Remove legacy InferenceEngine wrappers
2024-03-18 15:05:50 +04:00
Alexander Lyulkov
d2d6869a26 Added int64 values support to scatter, scatterND and maxunpool layers 2024-03-13 15:40:07 +03:00
alexlyulkov
85cc02f4de
Allowed int64 constants in ONNX parser (#25148)
* Removed automatic int64 to int32 conversion in ONNX parser

* Fixed wrong rebase code

* added tests, minor fixes

* fixed Cast layer

* Fixed Cast layer for fp16 backend

* Fixed Cast layer for fp16 backend

* Fixed Cast layer for fp16 backend

* Allowed uint32, int64, uint64 types in OpenCL

* Fixed Cast layer for fp16 backend

* Use randu in test_int

---------

Co-authored-by: Alexander Lyulkov <alexander.lyulkov@opencv.ai>
2024-03-13 11:48:23 +03:00
Dmitry Kurtaev
6a370ba9e7 Avoid extra memset in convolution initialization 2024-03-08 10:46:07 +03:00
Dmitry Kurtaev
98aed21dd4 Avoid copy of ONNX graph during import 2024-03-05 18:22:46 +03:00
Alexander Smorkalov
c6776ec136
Merge pull request #25159 from Kumataro:trial_to_fix_cv_check_24411
dnn: fix to iteration variable scope
2024-03-05 16:01:25 +03:00
Kumataro
216c6c3da1 dnn: fix to iteration variable scope 2024-03-05 18:33:56 +09:00
Maksim Shabunin
8cbdd0c833
Merge pull request #25075 from mshabunin:cleanup-imgproc-1
C-API cleanup: apps, imgproc_c and some constants #25075

Merge with https://github.com/opencv/opencv_contrib/pull/3642

* Removed obsolete apps - traincascade and createsamples (please use older OpenCV versions if you need them). These apps relied heavily on C-API
* removed all mentions of imgproc C-API headers (imgproc_c.h, types_c.h) - they were empty, included core C-API headers
* replaced usage of several C constants with C++ ones (error codes, norm modes, RNG modes, PCA modes, ...) - most part of this PR (split into two parts - all modules and calib+3d - for easier backporting)
* removed imgproc C-API headers (as separate commit, so that other changes could be backported to 4.x)

Most of these changes can be backported to 4.x.
2024-03-05 12:18:31 +03:00
Alexander Smorkalov
daa8f7dfc6 Partially back-port #25075 to 4.x 2024-03-05 12:15:39 +03:00
Laurent Berger
5fe3933346
Merge pull request #25120 from LaurentBerger:I25103
Fixed ReduceMean layer behaviour #25120

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

a93c31e3c9/onnxruntime/core/providers/cpu/reduction/reduction_ops.cc (L433-L443)
2024-03-04 09:36:53 +03:00
alexlyulkov
1d1faaabef
Merge pull request #24411 from alexlyulkov:al/dnn-type-inference
Added int32, int64 support and type inference to dnn #24411

**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**

- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.

Added  int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)

Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)

**CURRENT PROBLEMS**:
-  ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.

**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)

**DISABLED TESTS**:
- RAFT model

**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)

**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
2024-03-01 17:07:38 +03:00
CSBVision
e8582f2cf8 Update net_impl.cpp
See issue #25112
2024-03-01 14:56:00 +01:00
Alexander Smorkalov
010772b492 Extracted 1d test cases to reduce conflicts with 4.x. 2024-02-29 12:02:00 +03:00
Alexander Smorkalov
92b940792a
Merge pull request #25117 from Abdurrahheem:ash/scale-layer-1D-test
Scale layer 1d test
2024-02-29 11:32:13 +03:00
Alexander Smorkalov
a22130fbfa Merge branch 4.x 2024-02-28 18:49:05 +03:00
Yuantao Feng
5aa5c39210
Merge pull request #25076 from fengyuentau:improve_attention
dnn: try improving performance of Attention layer #25076

Checklist:

- [x] Use `Mat` over `Mat::zeros` for temporary buffer in forward
- [x] Use layer internal buffer over temporary Mat buffer
- [x] Try a single fastGemmBatch on the Q/K/V calculation

Performance:

Performance test case is `Layer_Attention.VisionTransformer/0`, which has input of shape {1, 197, 768}, weight of shape {768, 2304} and bias {2304}.

Data is in millisecond.

| | macOS 14.2.1, Apple M1 | Ubuntu 22.04.2, Intel i7 12700K |
| - | - | - |
| Current | 10.96 | 1.58 |
| w/ Mat | 6.27 | 1.41 |
| w/ Internals | 5.87 | 1.38 |
| w/ fastGemmBatch | 6.12 | 2.14 |


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-02-28 16:47:08 +03:00
Abdurrahheem
161c402f02 seperated working scale layer 1d test. 2024-02-28 13:04:48 +04:00
Laurent Berger
3c712cf77d
Merge pull request #25100 from LaurentBerger:I25077
Fix issue #25077 #25100

Fixes https://github.com/opencv/opencv/issues/25077

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-02-27 14:15:11 +03:00
Abduragim Shtanchaev
093ed08892
Merge pull request #24977 from Abdurrahheem:ash/primitive_1d_tests
Primitive 1D Tests #24977

This PR is designed to add tests for 1D inputs for layer, which is required after introducing 1d support in 5.x. Currently tests are written for following layers: 

- [x] `Add`, `Sub`
- [x]  `Product`, `Div`
- [x]  `Min`, `Max`
- [x] `Argmin`, `Argmax`
- [x] `Gather` 

This list is to be extended for more layer such `gemm`, `conv` etc.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-02-21 17:37:49 +03:00
Alexander Smorkalov
f084a229b4 Merge branch 4.x 2024-02-19 09:06:26 +03:00
Yuantao Feng
d4fd5157fa
Merge pull request #24980 from fengyuentau:on-fly-quantization-removal
dnn cleanup: On-fly-quantization removal #2498

On-fly-quantization is first introduced via https://github.com/opencv/opencv/pull/20228.
We decided to remove it but keep int8 layers implementation because on-fly-quantization
is less practical given the fact that there has been so many dedicated tools for model
quantization.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-02-16 18:21:45 +03:00
Dhanwanth1803
12aa0fe898
Merge pull request #24985 from Dhanwanth1803:hardswish
Fixes #24974 support HardSwishInt8 #24985

As given very clearly in the issue #24974 I made the required 2 changes to implement HardSwish Layer in INT8. Requesting comments.

resolves https://github.com/opencv/opencv/issues/24974

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

Co-authored-by: Dhanwanth1803 <dhanwanthvarala@gmail,com>
2024-02-16 18:19:29 +03:00
Alexander Smorkalov
fa3f1822ae
Merge pull request #24993 from asmorkalov:as/FastNeuralStyle_eccv16_CUDA
Relax test requirements for CUDA in DNNTestNetwork.FastNeuraStyle_eccv16
2024-02-12 16:37:57 +03:00
Alexander Smorkalov
5ce0acce40 Relax test requirements for CUDA in DNNTestNetwork.FastNeuraStyle_eccv16 2024-02-12 14:47:37 +03:00
Alexander Smorkalov
3a55f50133 Merge branch 4.x 2024-02-12 14:20:35 +03:00
Alexander Smorkalov
4b35b2f968
Merge pull request #24973 from asmorkalov:as/fix_weigths_proto_mess
Fix proto and weights mess in dnn performance tests
2024-02-07 11:10:32 +03:00
Alexander Smorkalov
77af137285 Fix proto and weights mess in dnn performance tests. 2024-02-07 09:16:09 +03:00
fengyuentau
fcaa8ce3c2 fix incorrect steps and elemsize when dtype changes 2024-02-06 16:27:25 +08:00
Haosonn
87f749277d
Merge pull request #24768 from Haosonn:pre-pr-2
Vulkan backend for NaryEltwiseLayer in DNN module #24768

We improve Vulkan backend for ``NaryEltwiseLayer`` in DNN module by:

- add a basic framework for Vulkan backend in ``NaryEltwiseLayer``
- add a compute shader for binary forwarding (an imitation of what has been done in native OpenCV backend including broadcasting and eltwise-operation)
- typo fixed:
  - Wrong info output in ``context.cpp``

Currently, our implementation (or all layers supporting Vulkan backend) runs pretty slow on discrete GPUs basically due to IO cost in function ``copyToHost``, and we are going to fix that by

- find out the best ``VkMemoryProperty`` for various discrete GPUs

- prevent ``copyToHost`` in middle layers during forwarding, (i.e keep data in GPU memory)
### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

Co-authored-by: IskXCr <IskXCr@outlook.com>
2024-01-29 18:41:49 +03:00
Alexander Alekhin
efc9837df1
Merge pull request #24892 from opencv-pushbot:gitee/alalek/dnn_avoid_16s_usage
DNN: avoid CV_16S usage for FP16 #24892

**Merge after**: #24918

TODO:
- [x] measure performance changes
- [x] optimize convertTo for OpenCL: #24918

12700K iGPU:

|Name of Test|0|1|1 vs 0 (x-factor)|
|---|:-:|:-:|:-:|
|AlexNet::DNNTestNetwork::OCV/OCL_FP16|7.441|7.480|0.99|
|CRNN::DNNTestNetwork::OCV/OCL_FP16|10.776|10.736|1.00|
|DenseNet_121::DNNTestNetwork::OCV/OCL_FP16|52.762|52.833|1.00|
|EAST_text_detection::DNNTestNetwork::OCV/OCL_FP16|60.694|60.721|1.00|
|EfficientNet::DNNTestNetwork::OCV/OCL_FP16|33.373|33.173|1.01|
|FastNeuralStyle_eccv16::DNNTestNetwork::OCV/OCL_FP16|81.840|81.724|1.00|
|GoogLeNet::DNNTestNetwork::OCV/OCL_FP16|20.965|20.927|1.00|
|Inception_5h::DNNTestNetwork::OCV/OCL_FP16|22.204|22.173|1.00|
|Inception_v2_SSD_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|47.115|47.460|0.99|
|MPHand::DNNTestNetwork::OCV/OCL_FP16|6.760|6.670|1.01|
|MPPalm::DNNTestNetwork::OCV/OCL_FP16|10.188|10.171|1.00|
|MPPose::DNNTestNetwork::OCV/OCL_FP16|12.510|12.561|1.00|
|MobileNet_SSD_Caffe::DNNTestNetwork::OCV/OCL_FP16|17.290|17.072|1.01|
|MobileNet_SSD_v1_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|19.473|19.306|1.01|
|MobileNet_SSD_v2_TensorFlow::DNNTestNetwork::OCV/OCL_FP16|22.874|23.404|0.98|
|OpenFace::DNNTestNetwork::OCV/OCL_FP16|9.568|9.517|1.01|
|OpenPose_pose_mpi_faster_4_stages::DNNTestNetwork::OCV/OCL_FP16|539.899|539.845|1.00|
|PPHumanSeg::DNNTestNetwork::OCV/OCL_FP16|18.015|18.769|0.96|
|PPOCRv3::DNNTestNetwork::OCV/OCL_FP16|63.122|63.540|0.99|
|ResNet_50::DNNTestNetwork::OCV/OCL_FP16|34.947|34.925|1.00|
|SFace::DNNTestNetwork::OCV/OCL_FP16|10.249|10.206|1.00|
|SSD::DNNTestNetwork::OCV/OCL_FP16|213.068|213.108|1.00|
|SqueezeNet_v1_1::DNNTestNetwork::OCV/OCL_FP16|4.867|4.878|1.00|
|VIT_B_32::DNNTestNetwork::OCV/OCL_FP16|200.563|190.788|1.05|
|VitTrack::DNNTestNetwork::OCV/OCL_FP16|7.528|7.173|1.05|
|YOLOX::DNNTestNetwork::OCV/OCL_FP16|132.858|132.701|1.00|
|YOLOv3::DNNTestNetwork::OCV/OCL_FP16|209.559|208.809|1.00|
|YOLOv4::DNNTestNetwork::OCV/OCL_FP16|221.357|220.924|1.00|
|YOLOv4_tiny::DNNTestNetwork::OCV/OCL_FP16|24.446|24.382|1.00|
|YOLOv5::DNNTestNetwork::OCV/OCL_FP16|43.922|44.080|1.00|
|YOLOv8::DNNTestNetwork::OCV/OCL_FP16|64.159|63.842|1.00|
|YuNet::DNNTestNetwork::OCV/OCL_FP16|10.177|10.231|0.99|
|opencv_face_detector::DNNTestNetwork::OCV/OCL_FP16|15.121|15.445|0.98|

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2024-01-26 16:34:17 +03:00
Yuantao Feng
37156a4719
Merge pull request #24925 from fengyuentau:loongarch_handle_warnings
Handle warnings in loongson-related code #24925

See https://github.com/fengyuentau/opencv/actions/runs/7665377694/job/20891162958#step:14:16

Warnings needs to be handled before we add the loongson server to our CI.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-26 13:38:00 +03:00
Alexander Smorkalov
decf6538a2 Merge branch 4.x 2024-01-23 17:06:52 +03:00
Alexander Smorkalov
d6424233f0
Merge pull request #24906 from Abdurrahheem:ash/fix_einsum_inner
Einsum Layer Inner Product Issue Solution
2024-01-23 09:26:22 +03:00
Abduragim
0e6b7f1656 fix 1D handling issue in inner product 2024-01-22 20:10:34 +04:00
Alexander Smorkalov
775210e701 Relax test requirements for OpenCL in test DNNTestNetwork.FastNeuralStyle_eccv16. 2024-01-22 17:11:41 +03:00
Alexander Smorkalov
c739117a7c Merge branch 4.x 2024-01-19 17:32:22 +03:00
Sean McBride
e64857c561
Merge pull request #23736 from seanm:c++11-simplifications
Removed all pre-C++11 code, workarounds, and branches #23736

This removes a bunch of pre-C++11 workrarounds that are no longer necessary as C++11 is now required.
It is a nice clean up and simplification.

* No longer unconditionally #include <array> in cvdef.h, include explicitly where needed
* Removed deprecated CV_NODISCARD, already unused in the codebase
* Removed some pre-C++11 workarounds, and simplified some backwards compat defines
* Removed CV_CXX_STD_ARRAY
* Removed CV_CXX_MOVE_SEMANTICS and CV_CXX_MOVE
* Removed all tests of CV_CXX11, now assume it's always true. This allowed removing a lot of dead code.
* Updated some documentation consequently.
* Removed all tests of CV_CXX11, now assume it's always true
* Fixed links.

---------

Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
2024-01-19 16:53:08 +03:00
fengyuentau
d269de0a03 initial commit 2024-01-18 11:17:50 +08:00
Alexander Smorkalov
d1e4bd8543
Merge pull request #24809 from Abdurrahheem:ash/yolo-nas-test
Added test for YOLO NAS
2024-01-17 20:36:15 +03:00
Alexander Smorkalov
ac4c0bffac
Merge pull request #24813 from fengyuentau:speedup_scatter
dnn: improve scatter and scatterND speed with multi-threading
2024-01-17 17:16:50 +03:00
Abduragim
d30bf1bc3c added test for yolo nas 2024-01-17 13:01:43 +03:00
Alexander Smorkalov
84bb1cda4e
Merge pull request #24865 from asmorkalov:as/dnn_concat_assert
Normalize axis parameter in DNN Concat to handle negative values
2024-01-16 14:39:28 +03:00
Alexander Smorkalov
26cf82a56c Normalize axis parameter in DNN Concat to handle negative values. 2024-01-16 12:22:22 +03:00
Alexander Smorkalov
99c86bb40c
Merge pull request #24556 from plctlab:rvp
Optimization based on RISC-V P Packed SIMD Extension v0.5.2
2024-01-16 11:36:31 +03:00
Alexander Smorkalov
68dc02e302
Merge pull request #24858 from Dhanwanth1803:avx-fix
Use AVX2 overload instread on AVX in AVX2 scope
2024-01-16 09:14:31 +03:00
Dhanwanth1803
a289eba357 Fixes #24677 2024-01-13 09:56:56 +05:30
Stefan Dragnev
2791bb7062
Merge pull request #24773 from tailsu:sd/pathlike
python: accept path-like objects wherever file names are expected #24773

Merry Christmas, all 🎄

Implements #15731

Support is enabled for all arguments named `filename` or `filepath` (case-insensitive), or annotated with `CV_WRAP_FILE_PATH`.

Support is based on `PyOS_FSPath`, which is available in Python 3.6+. When running on older Python versions the arguments must have a `str` value as before.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-12 16:23:05 +03:00
jimmylaw21
a7fa1e6f4b
Merge pull request #24610 from jimmylaw21:dnn-onnx-add-group-norm-layer
dnn onnx: add group norm layer #24610

dnn onnx: add group norm layer

Todo:

- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
2024-01-12 15:13:26 +03:00
Alexander Smorkalov
97c418ab86
Merge pull request #24840 from fengyuentau:ocl_innerproduct
dnn (opencl): integrate bias handling in the inner product opencl kernel
2024-01-12 15:10:16 +03:00
Abduragim Shtanchaev
c923c59833
Merge pull request #24812 from Abdurrahheem:ash/einsum_bachedGemm
Replace interactive batched Matrix Multiply. #24812

This PR replaces iterative batch matrix multiplication which `FastGemmBatch` in Einsum layer.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-12 14:23:43 +03:00
Yuantao Feng
e7ccff9805
Merge pull request #24834 from fengyuentau:cuda_naryeltwise_broadcast
dnn (cuda): support broadcasting if a.rank() != b.rank() #24834

Inspired by https://github.com/opencv/opencv/pull/24786. This PR keeps the fusion of `NaryEltwise` and `Concat` while addressed the data missing problem via supporting broadcasting if a.rank() != b.rank().

Resolves https://github.com/opencv/opencv/issues/23977
Resolves https://github.com/opencv/opencv/issues/24606
Resolves https://github.com/opencv/opencv/issues/24635
Resolves https://github.com/opencv/opencv/issues/24721 

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-11 10:04:46 +03:00
fengyuentau
83acb656f1 integrate bias handling in ocl kernel 2024-01-11 11:15:17 +08:00
Yuantao Feng
7fb336322d
Merge pull request #24808 from fengyuentau:fix_layernorm
dnn: no layer norm fusion if axes.back() is not the axis of last dimension #24808

Merge with https://github.com/opencv/opencv_extra/pull/1137

Resolves https://github.com/opencv/opencv/issues/24797

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-10 13:01:00 +03:00
Yuantao Feng
c955564cb3
Merge pull request #24765 from fengyuentau:mod_operator
dnn onnx: add mod #24765

Resolves https://github.com/opencv/opencv/issues/23174

TODO:

- [x] enable some conformance tests
- [x] add backends
    - [x] CANN
    - [x] OpenVINO
    - [x] CUDA

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-01-09 19:00:17 +03:00
Abduragim
6c28d7140a 1d support for einsum 2024-01-08 21:34:47 +03:00
fengyuentau
13127365e2 better comment 2024-01-08 11:55:06 +08:00
Yuantao Feng
b7d70613e4 fix failed assertion in debug build 2024-01-05 18:33:01 +00:00
fengyuentau
2ed97b9ef3 multi-threaded scatterND and refactor perf 2024-01-05 18:15:59 +08:00
fengyuentau
2997b4c5fe pretty format 2024-01-05 18:15:27 +08:00
fengyuentau
63cde0b90d multi-threaded scatter and refactor perf 2024-01-05 17:24:09 +08:00
Abduragim Shtanchaev
3b26e183cb changed weights of yolov7 2023-12-28 23:03:47 +03:00
cudawarped
7d681cf80d build: first class cuda support 2023-12-26 09:39:18 +03:00
Alexander Smorkalov
62f1a7410d
Merge pull request #24766 from asmorkalov:update_version_4.9.0-pre
pre: OpenCV 4.9.0 (version++)
2023-12-25 16:04:53 +03:00
Alexander Smorkalov
b407c58b96 pre: OpenCV 4.9.0 (version++). 2023-12-25 15:20:10 +03:00
Yuantao Feng
f978c99523
Merge pull request #24753 from fengyuentau:einsum_importer
dnn onnx: support constaint inputs in einsum importer #24753 

Merge with https://github.com/opencv/opencv_extra/pull/1132.

Resolves https://github.com/opencv/opencv/issues/24697

Credits to @LaurentBerger.

---

This is a workaround. I suggest to get input shapes and calculate the output shapes in `getMemoryShapes` so as to keep the best compatibility. It is not always robust getting shapes during the importer stage and we should avoid that as much as possible.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-25 14:42:05 +03:00
Alexander Alekhin
f49b26182b dnn(test): skip very long debug tests, reduce test time 2023-12-25 08:44:06 +00:00
Alexander Alekhin
96b894e0e1 Merge pull request #24761 from opencv-pushbot:gitee/alalek/test_skip_update_win32 2023-12-25 08:27:30 +00:00
Alexander Alekhin
f8502d45f9 dnn(test): skip tests on 32-bit Windows 2023-12-25 07:23:45 +00:00
Alexander Smorkalov
953dddd26b
Merge pull request #24747 from asmorkalov:as/tune_vitb_cuda
Increate Vit_b test threshold a bit for CUDA FP16.
2023-12-22 17:04:46 +03:00
Dmitry Kurtaev
938bc4d503 [CUDA] Hotfix Scale with 1 parameter 2023-12-22 15:49:27 +03:00
Dhanwanth1803
027aee8ad4
Merge pull request #24384 from Dhanwanth1803:feat-crop
Fixes #22747. Support [crop] configuration for DarkNet #24384

Request for comments. This is my first PR. 

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1112

resolves https://github.com/opencv/opencv/issues/22747

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-12-22 14:55:01 +03:00
Alexander Smorkalov
53cd921ab4 Increate Vit_b test threshold a bit for CUDA FP16. 2023-12-22 13:37:44 +03:00
Vadim Pisarevsky
853e5dfcdf
Merge pull request #24709 from vpisarev:winograd_mode
Try to enable Winograd by default in FP32 mode and disable it by default in FP16 mode #24709

Hopefully, it will resolve regressions since 4.8.1 (see also https://github.com/opencv/opencv/pull/24587)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-12-22 09:22:31 +03:00
Alexander Smorkalov
35e2ef8019
Merge pull request #24740 from opencv-pushbot:gitee/alalek/ocl_fix_kernel_compilation
ocl: fix kernels compilation
2023-12-22 09:20:47 +03:00
Alexander Smorkalov
f5d8245801
Merge pull request #24736 from opencv-pushbot:gitee/alalek/issue_24734
dnn(ocl): don't try KERNEL_TYPE_GEMM_LIKE with kernel_w > 16
2023-12-21 20:01:01 +03:00
Alexander Alekhin
3340c71a2a ocl: fix kernels compilation 2023-12-21 14:29:23 +00:00
Alexander Alekhin
c9bb92d58b dnn(test): tune FP16 test tolerance 2023-12-21 13:39:05 +00:00
Alexander Alekhin
99c94d3d83 dnn(ocl): don't try KERNEL_TYPE_GEMM_LIKE with kernel_w > 16
- OpenCL kernel code doesn't support that
2023-12-21 13:30:57 +00:00
llh721113
a30c987f87 feat: RVP052 Optimization for DNN int8layers 2023-12-21 14:51:41 +08:00
Yuantao Feng
0521a3a384
Merge pull request #24476 from fengyuentau:attention_layer
dnn: add attention layer #24476

Resolves #24609

Merge with: https://github.com/opencv/opencv_extra/pull/1128.

Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention.

TODO:
- [x] benchmark (before this PR vs. with this PR vs. ORT).
- [x] Layer fusion: Take care Slice with end=INT64_MAX.
- [x] Layer fusion: match more potential attention (VIT) patterns.
    - [x] Single-head attention is supported.
- [x] Test AttentionSubgraph fusion.
- [x] Add acc tests for VIT_B_32 and VitTrack
- [x] Add perf tests for VIT_B_32 and VitTrack

## Benchmarks

Platform: Macbook Air M1.

### Attention Subgraph

Input scale: [1, 197, 768].

|                        | mean (ms) | median (ms) | min (ms) |
| ---------------------- | --------- | ----------- | -------- |
| w/ Attention (this PR) | 3.75      | 3.68        | 3.22     |
| w/o Attention          | 9.06      | 9.01        | 8.24     |
| ORT (python)           | 4.32      | 2.63        | 2.50     |

### ViTs

All data in millisecond (ms).

| ViTs     | With Attention | Without Attention | ORT    |
| -------- | -------------- | ----------------- | ------ |
| vit_b_16 | 302.77         | 365.35            | 109.70 |
| vit_b_32 | 89.92          | 116.22            | 30.36  |
| vit_l_16 | 1593.32        | 1730.74           | 419.92 |
| vit_l_32 | 468.11         | 577.41            | 134.12 |
| VitTrack | 3.80           | 3.87              | 2.25   |

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-20 19:35:07 +03:00
Laurent Berger
3e6dcdc0a4
Merge pull request #24539 from LaurentBerger:blobrecttoimage
Add blobrecttoimage #24539

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/14659

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #14659
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-19 20:00:04 +03:00
Yuantao Feng
fa5ed62a66
Merge pull request #24694 from fengyuentau:matmul_refactor
dnn: refactor ONNX MatMul with fastGemm #24694

Done:
- [x] add backends
    - [x] CUDA
    - [x] OpenVINO
    - [x] CANN
    - [x] OpenCL
    - [x] Vulkan
- [x] add perf tests
- [x] const B case

### Benchmark

Tests are done on M1. All data is in milliseconds (ms).

| Configuration | MatMul (Prepacked) | MatMul | InnerProduct |
| - | - | - | - |
| A=[12, 197, 197], B=[12, 197, 64], trans_a=0, trans_b=0 | **0.39** | 0.41 | 1.33 |
| A=[12, 197, 64], B=[12, 64, 197], trans_a=0, trans_b=0  | **0.42** | 0.42 | 1.17 |
| A=[12, 50, 64], B=[12, 64, 50], trans_a=0, trans_b=0    | **0.13** | 0.15 | 0.33 |
| A=[12, 50, 50], B=[12, 50, 64], trans_a=0, trans_b=0    | **0.11** | 0.13 | 0.22 |
| A=[16, 197, 197], B=[16, 197, 64], trans_a=0, trans_b=0 | **0.46** | 0.54 | 1.46 |
| A=[16, 197, 64], B=[16, 64, 197], trans_a=0, trans_b=0  | **0.46** | 0.95 | 1.74 |
| A=[16, 50, 64], B=[16, 64, 50], trans_a=0, trans_b=0    | **0.18** | 0.32 | 0.43 |
| A=[16, 50, 50], B=[16, 50, 64], trans_a=0, trans_b=0    | **0.15** | 0.25 | 0.25 |

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-19 19:36:41 +03:00
Wanli
6ae1709c6a
Merge pull request #24613 from WanliZhong:softmax_default_axis
Make default axis of softmax in onnx "-1" without opset option #24613

Try to solve problem: https://github.com/opencv/opencv/pull/24476#discussion_r1404821158

**ONNX**
`opset <= 11` use 1
`else` use -1

**TensorFlow**
`TF version = 2.x` use -1
`else` use 1

**Darknet, Caffe, Torch**
use 1 by definition
2023-12-15 10:41:42 +03:00
Wanli
9bbc890d96
Merge pull request #24681 from WanliZhong:err_armv8
Fixed armv8 compilation warnings #24681 

Fixes the following warning on  armv8:
```
warning: dereferencing type-punned pointer will break strict-aliasing rules [-Wstrict-aliasing]
```
Buildbot: https://pullrequest.opencv.org/buildbot/builders/4_x_ARMv8-lin
2023-12-12 15:38:07 +03:00
Wanli
6ee71fee88
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test
Classify and extend convolution and depthwise performance tests #24547

This PR aims to:
1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added)

2. Classify the existing convolution performance test to below cases
    - CONV_1x1
    - CONV_3x3_S1_D1 (winograd)
    - CONV
    - DEPTHWISE

3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned):
(i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved.
(ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]`
(iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... `

> **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt)


**Performance test result on Apple M2**

**Test result details**:  [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md)

**Additional test result details with FP16**:  [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip)


**Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 
1. `CONV_1x1_S1_D1` dropped significant with small or large input shape.
2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. 

---

**Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads.

**Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md)
**Brief summary for 4.8.1 vs 4.5.5**: 
1. `CONV_5x5_S1_D1` dropped significant. 
2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape.

---

TODO:
- [x] Perform tests on arm with each opencv version
- [x] Perform tests on x86 with each opencv version
- [x] Split each test classification with single test config
- [x] test enable fp16
2023-12-11 21:35:33 +03:00
Abduragim Shtanchaev
d3dd2e463c
Merge pull request #24611 from Abdurrahheem:ash/add_yolov6_test
Add test for YoloX Yolo v6 and Yolo v8 #24611

This PR adds test for YOLOv6 model (which was absent before)
The onnx weights for the test are located in this PR [ #1126](https://github.com/opencv/opencv_extra/pull/1126)

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-11 16:42:51 +03:00
Dmitry Kurtaev
ac4b26a561 Replace Slice optional inputs removal to adjustment 2023-12-08 23:29:52 +03:00
Yuantao Feng
a2edf4d929
Merge pull request #24647 from fengyuentau:cuda_sub
dnn cuda: support Sub #24647

Related https://github.com/opencv/opencv/issues/24606#issuecomment-1837390257

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-06 13:46:24 +03:00
Yuantao Feng
f5ec92e4ca
Merge pull request #24655 from fengyuentau:graph_simplifier_optional_input
dnn onnx graph simplifier: handle optional inputs of Slice #24655

Resolves https://github.com/opencv/opencv/issues/24609

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-12-06 13:43:54 +03:00