dnn: add layer normalization for vision transformers
* add layer norm onnx parser, impl and tests
* add onnx graph simplifier for layer norm expanded
* handle the case when constants are of type Initializer
* add test case for layer norm expanded with initializers
* use CV_Assert & CV_CheckType in place of CV_Assert_N; use forward_fallback for OCL_FP16
* use const ref / ref in parameters of invoker::run; extract inner const if from nested loop; use size_t in place of ull
* template hasBias
* remove trailing whitespace
* use pointer parameter with null check; move normSize division & mean_square division outside of loop; use std::max to ensure positive value before std::sqrt
* refactor implementation, optimize parallel_for
* disable layer norm expanded
* remove the removal of layer norm optional outputs
Switch to new OpenVINO API after 2022.1 release
* Pass Layer_Test_Convolution_DLDT.Accuracy/0 test
* Pass test Test_Caffe_layers.Softmax
* Failed 136 tests
* Fix Concat. Failed 120 tests
* Custom nGraph ops. 19 failed tests
* Set and get properties from Core
* Read model from buffer
* Change MaxPooling layer output names. Restore reshape
* Cosmetic changes
* Cosmetic changes
* Override getOutputsInfo
* Fixes for OpenVINO < 2022.1
* Async inference for 2021.4 and less
* Compile model with config
* Fix serialize for 2022.1
* Asynchronous inference with 2022.1
* Handle 1d outputs
* Work with model with dynamic output shape
* Fixes with 1d output for old API
* Control outputs by nGraph function for all OpenVINO versions
* Refer inputs in PrePostProcessor by indices
* Fix cycled dependency between InfEngineNgraphNode and InfEngineNgraphNet.
Add InferRequest callback only for async inference. Do not capture InferRequest object.
* Fix tests thresholds
* Fix HETERO:GPU,CPU plugin issues with unsupported layer
This change replaces references to a number of deprecated NumPy
type aliases (np.bool, np.int, np.float, np.complex, np.object,
np.str) with their recommended replacement (bool, int, float,
complex, object, str).
Those types were deprecated in 1.20 and are removed in 1.24,
cf https://github.com/numpy/numpy/pull/22607.
* cann backend impl v1
* cann backend impl v2: use opencv parsers to build models for cann
* adjust fc according to the new transA and transB
* put cann net in cann backend node and reuse forwardLayer
* use fork() to create a child process and compile cann model
* remove legacy code
* remove debug code
* fall bcak to CPU backend if there is one layer not supoorted by CANN backend
* fix netInput forward
DNN: reduce the memory used in convolution layer
* reduce the memory in winograd and disabel the test when usage memory is larger than 2gb.
* remove VERY_LOG tag
DNN: let Quant and Dequant of ONNX_importer support the Constant input.
* let Quant and Dequant support the Constant input.
* fix negative value of axis.