C-API cleanup: apps, imgproc_c and some constants #25075
Merge with https://github.com/opencv/opencv_contrib/pull/3642
* Removed obsolete apps - traincascade and createsamples (please use older OpenCV versions if you need them). These apps relied heavily on C-API
* removed all mentions of imgproc C-API headers (imgproc_c.h, types_c.h) - they were empty, included core C-API headers
* replaced usage of several C constants with C++ ones (error codes, norm modes, RNG modes, PCA modes, ...) - most part of this PR (split into two parts - all modules and calib+3d - for easier backporting)
* removed imgproc C-API headers (as separate commit, so that other changes could be backported to 4.x)
Most of these changes can be backported to 4.x.
Fixed ReduceMean layer behaviour #25120
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
a93c31e3c9/onnxruntime/core/providers/cpu/reduction/reduction_ops.cc (L433-L443)
Added int32, int64 support and type inference to dnn #24411
**Added a type inference to dnn similar to the shape inference, added int32 and int64 support.**
- Added getTypes method for layers that calculates layer outputs types and internals types from inputs types (Similar to getMemoryShapes). By default outputs and internals types = input[0] type
- Added type inference pipeline similar to shape inference pipeline. LayersShapes struct (that is used in shape inference pipeline) now contains both shapes and types
- All layers output blobs are now allocated using the calculated types from the type inference.
- Inputs and constants with int32 and int64 types are not automatically converted into float32 now.
- Added int32 and int64 support for all the layers with indexing and for all the layers required in tests.
Added int32 and int64 support for CUDA:
- Added host<->device data moving for int32 and int64
- Added int32 and int64 support for several layers (just slightly modified CUDA C++ templates)
Passed all the accuracy tests on CPU, OCL, OCL_FP16, CUDA, CUDA_FP16. (except RAFT model)
**CURRENT PROBLEMS**:
- ONNX parser always converts int64 constants and layers attributes to int32, so some models with int64 constants doesn't work (e.g. RAFT). The solution is to disable int64->int32 conversion and fix attributes reading in a lot of ONNX layers parsers (https://github.com/opencv/opencv/issues/25102)
- I didn't add type inference and int support to VULCAN, so it doesn't work at all now.
- Some layers don't support int yet, so some unknown models may not work.
**CURRENT WORKAROUNDS**:
- CPU arg_layer indides are implemented in int32 followed by a int32->int64 conversion (the master branch has the same workaround with int32->float conversion)
- CPU and OCL pooling_layer indices are implemented in float followed by a float->int64 conversion
- CPU gather_layer indices are implemented in int32, so int64 indices are converted to int32 (the master branch has the same workaround with float->int32 conversion)
**DISABLED TESTS**:
- RAFT model
**REMOVED TESTS**:
- Greater_input_dtype_int64 (because it doesn't fit ONNX rules, the whole test is just comparing float tensor with int constant)
**TODO IN NEXT PULL REQUESTS**:
- Add int64 support for ONNX parser
- Add int support for more layers
- Add int support for OCL (currently int layers just run on CPU)
- Add int tests
- Add int support for other backends
dnn: try improving performance of Attention layer #25076
Checklist:
- [x] Use `Mat` over `Mat::zeros` for temporary buffer in forward
- [x] Use layer internal buffer over temporary Mat buffer
- [x] Try a single fastGemmBatch on the Q/K/V calculation
Performance:
Performance test case is `Layer_Attention.VisionTransformer/0`, which has input of shape {1, 197, 768}, weight of shape {768, 2304} and bias {2304}.
Data is in millisecond.
| | macOS 14.2.1, Apple M1 | Ubuntu 22.04.2, Intel i7 12700K |
| - | - | - |
| Current | 10.96 | 1.58 |
| w/ Mat | 6.27 | 1.41 |
| w/ Internals | 5.87 | 1.38 |
| w/ fastGemmBatch | 6.12 | 2.14 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix issue #25077#25100
Fixes https://github.com/opencv/opencv/issues/25077
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Primitive 1D Tests #24977
This PR is designed to add tests for 1D inputs for layer, which is required after introducing 1d support in 5.x. Currently tests are written for following layers:
- [x] `Add`, `Sub`
- [x] `Product`, `Div`
- [x] `Min`, `Max`
- [x] `Argmin`, `Argmax`
- [x] `Gather`
This list is to be extended for more layer such `gemm`, `conv` etc.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn cleanup: On-fly-quantization removal #2498
On-fly-quantization is first introduced via https://github.com/opencv/opencv/pull/20228.
We decided to remove it but keep int8 layers implementation because on-fly-quantization
is less practical given the fact that there has been so many dedicated tools for model
quantization.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixes#24974 support HardSwishInt8 #24985
As given very clearly in the issue #24974 I made the required 2 changes to implement HardSwish Layer in INT8. Requesting comments.
resolves https://github.com/opencv/opencv/issues/24974
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: Dhanwanth1803 <dhanwanthvarala@gmail,com>
Vulkan backend for NaryEltwiseLayer in DNN module #24768
We improve Vulkan backend for ``NaryEltwiseLayer`` in DNN module by:
- add a basic framework for Vulkan backend in ``NaryEltwiseLayer``
- add a compute shader for binary forwarding (an imitation of what has been done in native OpenCV backend including broadcasting and eltwise-operation)
- typo fixed:
- Wrong info output in ``context.cpp``
Currently, our implementation (or all layers supporting Vulkan backend) runs pretty slow on discrete GPUs basically due to IO cost in function ``copyToHost``, and we are going to fix that by
- find out the best ``VkMemoryProperty`` for various discrete GPUs
- prevent ``copyToHost`` in middle layers during forwarding, (i.e keep data in GPU memory)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: IskXCr <IskXCr@outlook.com>
Handle warnings in loongson-related code #24925
See https://github.com/fengyuentau/opencv/actions/runs/7665377694/job/20891162958#step:14:16
Warnings needs to be handled before we add the loongson server to our CI.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Removed all pre-C++11 code, workarounds, and branches #23736
This removes a bunch of pre-C++11 workrarounds that are no longer necessary as C++11 is now required.
It is a nice clean up and simplification.
* No longer unconditionally #include <array> in cvdef.h, include explicitly where needed
* Removed deprecated CV_NODISCARD, already unused in the codebase
* Removed some pre-C++11 workarounds, and simplified some backwards compat defines
* Removed CV_CXX_STD_ARRAY
* Removed CV_CXX_MOVE_SEMANTICS and CV_CXX_MOVE
* Removed all tests of CV_CXX11, now assume it's always true. This allowed removing a lot of dead code.
* Updated some documentation consequently.
* Removed all tests of CV_CXX11, now assume it's always true
* Fixed links.
---------
Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
python: accept path-like objects wherever file names are expected #24773
Merry Christmas, all 🎄
Implements #15731
Support is enabled for all arguments named `filename` or `filepath` (case-insensitive), or annotated with `CV_WRAP_FILE_PATH`.
Support is based on `PyOS_FSPath`, which is available in Python 3.6+. When running on older Python versions the arguments must have a `str` value as before.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn onnx: add group norm layer #24610
dnn onnx: add group norm layer
Todo:
- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
Replace interactive batched Matrix Multiply. #24812
This PR replaces iterative batch matrix multiplication which `FastGemmBatch` in Einsum layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: no layer norm fusion if axes.back() is not the axis of last dimension #24808
Merge with https://github.com/opencv/opencv_extra/pull/1137
Resolves https://github.com/opencv/opencv/issues/24797
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn onnx: add mod #24765
Resolves https://github.com/opencv/opencv/issues/23174
TODO:
- [x] enable some conformance tests
- [x] add backends
- [x] CANN
- [x] OpenVINO
- [x] CUDA
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn onnx: support constaint inputs in einsum importer #24753
Merge with https://github.com/opencv/opencv_extra/pull/1132.
Resolves https://github.com/opencv/opencv/issues/24697
Credits to @LaurentBerger.
---
This is a workaround. I suggest to get input shapes and calculate the output shapes in `getMemoryShapes` so as to keep the best compatibility. It is not always robust getting shapes during the importer stage and we should avoid that as much as possible.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixes#22747. Support [crop] configuration for DarkNet #24384
Request for comments. This is my first PR.
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1112
resolves https://github.com/opencv/opencv/issues/22747
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Try to enable Winograd by default in FP32 mode and disable it by default in FP16 mode #24709
Hopefully, it will resolve regressions since 4.8.1 (see also https://github.com/opencv/opencv/pull/24587)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: add attention layer #24476Resolves#24609
Merge with: https://github.com/opencv/opencv_extra/pull/1128.
Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention.
TODO:
- [x] benchmark (before this PR vs. with this PR vs. ORT).
- [x] Layer fusion: Take care Slice with end=INT64_MAX.
- [x] Layer fusion: match more potential attention (VIT) patterns.
- [x] Single-head attention is supported.
- [x] Test AttentionSubgraph fusion.
- [x] Add acc tests for VIT_B_32 and VitTrack
- [x] Add perf tests for VIT_B_32 and VitTrack
## Benchmarks
Platform: Macbook Air M1.
### Attention Subgraph
Input scale: [1, 197, 768].
| | mean (ms) | median (ms) | min (ms) |
| ---------------------- | --------- | ----------- | -------- |
| w/ Attention (this PR) | 3.75 | 3.68 | 3.22 |
| w/o Attention | 9.06 | 9.01 | 8.24 |
| ORT (python) | 4.32 | 2.63 | 2.50 |
### ViTs
All data in millisecond (ms).
| ViTs | With Attention | Without Attention | ORT |
| -------- | -------------- | ----------------- | ------ |
| vit_b_16 | 302.77 | 365.35 | 109.70 |
| vit_b_32 | 89.92 | 116.22 | 30.36 |
| vit_l_16 | 1593.32 | 1730.74 | 419.92 |
| vit_l_32 | 468.11 | 577.41 | 134.12 |
| VitTrack | 3.80 | 3.87 | 2.25 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add blobrecttoimage #24539
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/14659
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #14659
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: refactor ONNX MatMul with fastGemm #24694
Done:
- [x] add backends
- [x] CUDA
- [x] OpenVINO
- [x] CANN
- [x] OpenCL
- [x] Vulkan
- [x] add perf tests
- [x] const B case
### Benchmark
Tests are done on M1. All data is in milliseconds (ms).
| Configuration | MatMul (Prepacked) | MatMul | InnerProduct |
| - | - | - | - |
| A=[12, 197, 197], B=[12, 197, 64], trans_a=0, trans_b=0 | **0.39** | 0.41 | 1.33 |
| A=[12, 197, 64], B=[12, 64, 197], trans_a=0, trans_b=0 | **0.42** | 0.42 | 1.17 |
| A=[12, 50, 64], B=[12, 64, 50], trans_a=0, trans_b=0 | **0.13** | 0.15 | 0.33 |
| A=[12, 50, 50], B=[12, 50, 64], trans_a=0, trans_b=0 | **0.11** | 0.13 | 0.22 |
| A=[16, 197, 197], B=[16, 197, 64], trans_a=0, trans_b=0 | **0.46** | 0.54 | 1.46 |
| A=[16, 197, 64], B=[16, 64, 197], trans_a=0, trans_b=0 | **0.46** | 0.95 | 1.74 |
| A=[16, 50, 64], B=[16, 64, 50], trans_a=0, trans_b=0 | **0.18** | 0.32 | 0.43 |
| A=[16, 50, 50], B=[16, 50, 64], trans_a=0, trans_b=0 | **0.15** | 0.25 | 0.25 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Make default axis of softmax in onnx "-1" without opset option #24613
Try to solve problem: https://github.com/opencv/opencv/pull/24476#discussion_r1404821158
**ONNX**
`opset <= 11` use 1
`else` use -1
**TensorFlow**
`TF version = 2.x` use -1
`else` use 1
**Darknet, Caffe, Torch**
use 1 by definition
Classify and extend convolution and depthwise performance tests #24547
This PR aims to:
1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added)
2. Classify the existing convolution performance test to below cases
- CONV_1x1
- CONV_3x3_S1_D1 (winograd)
- CONV
- DEPTHWISE
3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned):
(i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved.
(ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]`
(iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... `
> **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt)
**Performance test result on Apple M2**
**Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md)
**Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip)
**Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**:
1. `CONV_1x1_S1_D1` dropped significant with small or large input shape.
2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0.
---
**Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads.
**Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md)
**Brief summary for 4.8.1 vs 4.5.5**:
1. `CONV_5x5_S1_D1` dropped significant.
2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape.
---
TODO:
- [x] Perform tests on arm with each opencv version
- [x] Perform tests on x86 with each opencv version
- [x] Split each test classification with single test config
- [x] test enable fp16
Add test for YoloX Yolo v6 and Yolo v8 #24611
This PR adds test for YOLOv6 model (which was absent before)
The onnx weights for the test are located in this PR [ #1126](https://github.com/opencv/opencv_extra/pull/1126)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn cuda: support Sub #24647
Related https://github.com/opencv/opencv/issues/24606#issuecomment-1837390257
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn onnx graph simplifier: handle optional inputs of Slice #24655
Resolves https://github.com/opencv/opencv/issues/24609
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add support for custom padding in DNN preprocessing #24569
This PR add functionality for specifying value in padding.
It is required in many preprocessing pipelines in DNNs such as Yolox object detection model
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix graph fusion with commutative ops #24577
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/24568
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1125
TODO:
- [x] replace recursive function to sequential
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add yolov5n to tests #24553
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ X] I agree to contribute to the project under Apache 2 License.
- [ X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ X] The PR is proposed to the proper branch
- [ X] There is a reference to the original bug report and related work
- [ X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ X] The feature is well documented and sample code can be built with the project CMake
dnn: add openvino, opencl and cuda backends for layer normalization layer #24552
Merge after https://github.com/opencv/opencv/pull/24544.
Todo:
- [x] openvino
- [x] opencl
- [x] cuda
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* add Winograd FP16 implementation
* fixed dispatching of FP16 code paths in dnn; use dynamic dispatcher only when NEON_FP16 is enabled in the build and the feature is present in the host CPU at runtime
* fixed some warnings
* hopefully fixed winograd on x64 (and maybe other platforms)
---------
Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
dnn test: move layer norm tests into conformance tests #24544
Merge with https://github.com/opencv/opencv_extra/pull/1122
## Motivation
Some ONNX operators, such as `LayerNormalization`, `BatchNormalization` and so on, produce outputs for training (mean, stdev). So they have reference outputs of conformance tests for those training outputs as well. However, when it comes to inference, we do not need and produce those outputs for training here in dnn. Hence, output size does not match if we use dnn to infer those conformance models. This has become the barrier if we want to test these operators using their conformance tests.
<!--
| Operator | Inference needed | Outputs (required - total) | Optional outputs for training? |
| ----------------------- | ----------------------------------- | -------------------------- | ------------------------------ |
| BatchNormalization | Yes | 1 - 3 | Yes |
| Dropout | Maybe, can be eliminated via fusion | 1 - 2 | Yes |
| GRU | Yes | 0 - 2 | No |
| LSTM | Yes | 0 - 3 | No |
| LayerNormalization | Yes | 1 - 3 | Yes |
| MaxPool | Yes | 1 - 2 | Yes |
| RNN | Yes | 0 - 2 | No |
| SoftmaxCrossEntropyLoss | No | 1 - 2 | -- |
-->
**I checked all ONNX operators with optional outputs. Turns out there are only `BatchNormalization`, `Dropout`, `LayerNormalization` and `MaxPool` has optional outputs for training. All except `LayerNormalization` have models set for training mode and eval mode. Blame ONNX for that.**
## Solution
In this pull request, we remove graph outputs if the graph looks like the following:
```
[X] [Scale] [Bias] [X] [Scale] [Bias]
\ | / this patch \ | /
LayerNormalization -----------> LayerNormalization
/ | \ |
[Y] [Mean] [Stdev] [Y]
```
We can update conformance tests and turn on some cases as well if extending to more layers.
Notes:
1. This workaround does not solve expanded function operators if they are fused into a single operator, such as `$onnx/onnx/backend/test/data/node/test_layer_normalization_2d_axis1_expanded`, but they can be run without fusion. Note that either dnn or onnxruntime does not fuse those expanded function operators.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fast gemm for einsum #24509
## This PR adds performance tests for Einsum Layer with FastGemm. See below results of performance test on different inputs
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Enable softmax layer vectorization on RISC-V RVV #24510
Related: https://github.com/opencv/opencv/pull/24466
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake