Alexander Alekhin
afe9993376
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-07-28 17:25:20 +00:00
Sinitsina
0ac2f0e04c
mish_functor_update
2020-07-23 09:02:00 +03:00
Alexander Alekhin
c81d785ada
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-06-23 19:15:47 +00:00
Dmitry Kurtaev
1491934d17
Optimize Mish for CPU backend
2020-06-22 23:27:47 +03:00
Alexander Alekhin
124bf8339f
dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
...
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 08:07:54 +00:00
Alexander Alekhin
29d214474f
dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
...
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 07:45:09 +00:00
Alexander Alekhin
f3237fdc6e
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-02-14 19:54:59 +03:00
Dmitry Kurtaev
9a4cafa319
Resolve #14566
2020-02-14 00:21:38 +03:00
Alexander Alekhin
92b9888837
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-12-12 13:02:19 +03:00
Liubov Batanina
660a709840
Support Swish and Mish activations
2019-12-06 11:27:59 +03:00
Alexander Alekhin
4b0132ed7a
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-12-02 16:26:52 +03:00
Lubov Batanina
7523c777c5
Merge pull request #15537 from l-bat:ngraph
...
* Support nGraph
* Fix resize
2019-12-02 16:16:06 +03:00
Manjunath Bhat
78c5e41c23
Merge pull request #15808 from thebhatman:Mish_swish
...
* Added Swish and Mish activations
* Fixed whitespace errors
* Kernel implementation done
* Added function for launching kernel
* Changed type of 1.0
* Attempt to add test for Swish and Mish
* Resolving type mismatch for log
* exp from device
* Use log1pexp instead of adding 1
* Added openCL kernels
2019-12-02 00:06:17 +03:00
thebhatman
8a18d132fc
Port Swish and Mish layers
2019-12-01 11:55:39 +03:00
Yashas Samaga B L
613c12e590
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
...
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00
Alexander Alekhin
174b4ce29d
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-08-05 18:11:43 +00:00
Dmitry Kurtaev
77d4e3e8d2
Fix 2019R2 tests
2019-07-27 13:30:15 +03:00
Alexander Alekhin
b95e93c20a
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-06-26 20:19:04 +00:00
Alexander Alekhin
24790e4061
Merge pull request #14899 from alalek:dnn_fix_bnll_layer
...
* dnn: fix BNLLLayer implementation
details: https://github.com/BVLC/caffe/blame/1.0/src/caffe/layers/bnll_layer.cpp#L17
* dnn: enable OCV/OpenCL BNLL layer
2019-06-26 23:04:26 +03:00
Alexander Alekhin
66d7956e67
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-06-15 16:25:11 +00:00
Dmitry Kurtaev
eba696a41e
Merge pull request #14792 from dkurt:dnn_ie_min_version_r5
...
* Remove Inference Engine 2018R3 and 2018R4
* Fix 2018R5
2019-06-14 18:17:02 +03:00
Alexander Alekhin
4635356435
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-04-13 20:00:54 +00:00
Dmitry Kurtaev
a2bbfa1db5
Enable some tests for Inference Engine 2019R1
2019-04-12 15:21:42 +03:00
Alexander Alekhin
8bde6aea4b
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-02-19 19:49:13 +00:00
Dmitry Kurtaev
ca5976e3d4
Fix IE backend considering future changes.
2019-02-18 19:26:04 +03:00
Alexander Alekhin
631b246881
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-01-22 18:00:34 +00:00
Dmitry Kurtaev
f0ddf302b2
Move Inference Engine to new API
2019-01-17 14:28:48 +03:00
Alexander Alekhin
8f4e5c2fb8
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2018-11-26 15:37:45 +03:00
Dmitry Kurtaev
84ce2cc211
Enable some dnn tests according to the new Intel's Inference Engine release (R4)
2018-11-26 13:02:24 +03:00
Alexander Alekhin
8409aa9eba
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2018-11-14 19:41:09 +00:00
catree
10b482ff1e
Fix code and missing intrin header. Remove useless header.
2018-11-14 19:00:59 +01:00
WuZhiwen
6e3ea8b49d
Merge pull request #12703 from wzw-intel:vkcom
...
* dnn: Add a Vulkan based backend
This commit adds a new backend "DNN_BACKEND_VKCOM" and a
new target "DNN_TARGET_VULKAN". VKCOM means vulkan based
computation library.
This backend uses Vulkan API and SPIR-V shaders to do
the inference computation for layers. The layer types
that implemented in DNN_BACKEND_VKCOM include:
Conv, Concat, ReLU, LRN, PriorBox, Softmax, MaxPooling,
AvePooling, Permute
This is just a beginning work for Vulkan in OpenCV DNN,
more layer types will be supported and performance
tuning is on the way.
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* dnn/vulkan: Add FindVulkan.cmake to detect Vulkan SDK
In order to build dnn with Vulkan support, need installing
Vulkan SDK and setting environment variable "VULKAN_SDK" and
add "-DWITH_VULKAN=ON" to cmake command.
You can download Vulkan SDK from:
https://vulkan.lunarg.com/sdk/home#linux
For how to install, see
https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
https://vulkan.lunarg.com/doc/sdk/latest/windows/getting_started.html
https://vulkan.lunarg.com/doc/sdk/latest/mac/getting_started.html
respectively for linux, windows and mac.
To run the vulkan backend, also need installing mesa driver.
On Ubuntu, use this command 'sudo apt-get install mesa-vulkan-drivers'
To test, use command '$BUILD_DIR/bin/opencv_test_dnn --gtest_filter=*VkCom*'
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* dnn/Vulkan: dynamically load Vulkan runtime
No compile-time dependency on Vulkan library.
If Vulkan runtime is unavailable, fallback to CPU path.
Use environment "OPENCL_VULKAN_RUNTIME" to specify path to your
own vulkan runtime library.
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* dnn/Vulkan: Add a python script to compile GLSL shaders to SPIR-V shaders
The SPIR-V shaders are in format of text-based 32-bit hexadecimal
numbers, and inserted into .cpp files as unsigned int32 array.
* dnn/Vulkan: Put Vulkan headers into 3rdparty directory and some other fixes
Vulkan header files are copied from
https://github.com/KhronosGroup/Vulkan-Docs/tree/master/include/vulkan
to 3rdparty/include
Fix the Copyright declaration issue.
Refine OpenCVDetectVulkan.cmake
* dnn/Vulkan: Add vulkan backend tests into existing ones.
Also fixed some test failures.
- Don't use bool variable as uniform for shader
- Fix dispathed group number beyond max issue
- Bypass "group > 1" convolution. This should be support in future.
* dnn/Vulkan: Fix multiple initialization in one thread.
2018-10-29 17:51:26 +03:00
Alexander Alekhin
9d02d42afe
dnn(ocl4dnn): don't use getUMat()
...
especially in CPU only processing
2018-10-05 15:24:51 +03:00
Dmitry Kurtaev
d486204a0d
Merge pull request #12264 from dkurt:dnn_remove_forward_method
...
* Remove a forward method in dnn::Layer
* Add a test
* Fix tests
* Mark multiple dnn::Layer::finalize methods as deprecated
* Replace back dnn's inputBlobs to vector of pointers
* Remove Layer::forward_fallback from CV_OCL_RUN scopes
2018-09-06 13:26:47 +03:00
Dmitry Kurtaev
50bceea038
Include preprocessing nodes to object detection TensorFlow networks ( #12211 )
...
* Include preprocessing nodes to object detection TensorFlow networks
* Enable more fusion
* faster_rcnn_resnet50_coco_2018_01_28 test
2018-08-31 15:41:56 +03:00
Dmitry Kurtaev
3e027df583
Enable more deep learning tests using Intel's Inference Engine backend
2018-08-27 18:37:35 +03:00
Dmitry Kurtaev
2c291bc2fb
Enable FastNeuralStyle and OpenFace networks with IE backend
2018-06-09 15:57:12 +03:00
Dmitry Kurtaev
b781ac7346
Make Intel's Inference Engine backend is default if no preferable backend is specified.
2018-06-04 18:31:46 +03:00
Dmitry Kurtaev
f96f934426
Update Intel's Inference Engine deep learning backend ( #11587 )
...
* Update Intel's Inference Engine deep learning backend
* Remove cpu_extension dependency
* Update Darknet accuracy tests
2018-05-31 14:05:21 +03:00
Tomoaki Teshima
2e9e71ab9e
make ocl4dnn available to run on other platform than Intel GPU
2018-05-29 19:18:10 +09:00
Li Peng
3dd916882a
fp16 ocl support for googlenet
...
Signed-off-by: Li Peng <peng.li@intel.com>
2018-05-16 22:45:02 +08:00
zuoshaobo
4ff6a1bc7b
Merge pull request #11425 from zuoshaobo:relu_negative_slope
...
* FIX INF_ENGINE RELU ERROR
* set slope to variable
* tab in indentwq
2018-05-03 13:36:49 +03:00
Alexander Alekhin
1060c0f439
dnn: apply CV_OVERRIDE/CV_FINAL
2018-03-28 18:43:27 +03:00
Alexander Alekhin
6c051a55e5
cmake: don't add include <module>/src directory to avoid conflicts
...
during opencv_world builds
2018-03-19 11:14:15 +03:00
Alexander Alekhin
1b83bc48a1
dnn: make OpenCL DNN code optional
2018-03-01 12:12:40 +03:00
Li Peng
2863f950d6
ReLU6 layer ocl support
...
include relu6 ocl kernel and layer fusion support
Signed-off-by: Li Peng <peng.li@intel.com>
2018-02-20 15:11:09 +08:00
Dmitry Kurtaev
7fe97376c2
MobileNet-SSD from TensorFlow 1.3 and Inception-V2-SSD using Inference Engine backend
2018-02-09 13:45:45 +03:00
Dmitry Kurtaev
10e1de74d2
Intel Inference Engine deep learning backend ( #10608 )
...
* Intel Inference Engine deep learning backend.
* OpenFace network using Inference Engine backend
2018-02-06 11:57:35 +03:00
Li Peng
7bc017601f
Power, Tanh and Channels ReLU layer ocl support
...
Signed-off-by: Li Peng <peng.li@intel.com>
2018-01-17 17:11:27 +08:00
Li Peng
8f99083726
Add new layer forward interface
...
Add layer forward interface with InputArrayOfArrays and
OutputArrayOfArrays parameters, it allows UMat buffer to be
processed and transferred in the layers.
Signed-off-by: Li Peng <peng.li@intel.com>
2017-11-09 15:59:39 +08:00