Commit Graph

5543 Commits

Author SHA1 Message Date
Vincent Rabaud
f8aa2896a1
Merge pull request #25024 from vrabaud:neon
Replace legacy __ARM_NEON__ by __ARM_NEON #25024

Even ACLE 1.1 referes to __ARM_NEON
https://developer.arm.com/documentation/ihi0053/b/?lang=en

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-02-20 11:29:23 +03:00
Adrian Kretz
3473b8a653 Generate invertible covariance matrix 2024-02-18 20:09:53 +01:00
Alexander Smorkalov
52be0b64fb Fixed possible out-of-bound access in cv::Mat output formatter. 2024-02-13 17:34:40 +03:00
Alexander Smorkalov
3a55f50133 Merge branch 4.x 2024-02-12 14:20:35 +03:00
Vadim Pisarevsky
1d18aba587
Extended several core functions to support new types (#24962)
* started adding support for new types (16f, 16bf, 32u, 64u, 64s) to arithmetic functions

* fixed several tests; refactored and extended sum(), extended inRange().

* extended countNonZero(), mean(), meanStdDev(), minMaxIdx(), norm() and sum() to support new types (F16, BF16, U32, U64, S64)

* put missing CV_DEPTH_MAX to some function dispatcher tables
* extended findnonzero, hasnonzero with the new types support

* extended mixChannels() to support new types

* minor fix

* fixed a few compile errors on Linux and a few failures in core tests

* fixed a few more warnings and test failures

* trying to fix the remaining warnings and test failures. The test `MulTestGPU.MathOpTest` was disabled - not clear whether to set tolerance - it's not bit-exact operation, as possibly assumed by the test, due to the use of scale and possibly limited accuracy of the intermediate floating-point calculations.

* found that in the current snapshot G-API produces incorrect results in Mul, Div and AddWeighted (at least when using OpenCL on Windows x64 or MacOS x64). Disabled the respective tests.
2024-02-11 10:42:41 +03:00
ryanking13
422d519703 Enable file system on Emscripten 2024-01-31 11:28:59 -08:00
Alexander Smorkalov
73acf08844
Merge pull request #24919 from asmorkalov:as/python_Rect2f_Point3i
Add python bindings for Rect2f and Point3i
2024-01-29 17:36:30 +03:00
Alexander Smorkalov
54b7cafd2a
Merge pull request #24936 from mshabunin:fix-rvv07-scale64f
RISC-V: fix scale64f performance for RVV 0.7
2024-01-29 17:32:51 +03:00
Maksim Shabunin
65784dddeb RISC-V: fix scale64f for RVV 0.7 2024-01-29 01:24:44 +03:00
Maksim Shabunin
2ea2483bec RISC-V: fix mul 8/16 bit for RVV 0.7 2024-01-27 22:41:26 +03:00
Yuantao Feng
37156a4719
Merge pull request #24925 from fengyuentau:loongarch_handle_warnings
Handle warnings in loongson-related code #24925

See https://github.com/fengyuentau/opencv/actions/runs/7665377694/job/20891162958#step:14:16

Warnings needs to be handled before we add the loongson server to our CI.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-26 13:38:00 +03:00
Alexander Alekhin
40533dbf69
Merge pull request #24918 from opencv-pushbot:gitee/alalek/core_convertfp16_replacement
core(OpenCL): optimize convertTo() with CV_16F (convertFp16() replacement) #24918

relates #24909
relates #24917
relates #24892

Performance changes:

- [x] 12700K (1 thread) + Intel iGPU

|Name of Test|noOCL|convertFp16|convertTo BASE|convertTo PATCH|
|---|:-:|:-:|:-:|:-:|
|ConvertFP16FP32MatMat::OCL_Core|3.130|3.152|3.127|3.136|
|ConvertFP16FP32MatUMat::OCL_Core|3.030|3.996|3.007|2.671|
|ConvertFP16FP32UMatMat::OCL_Core|3.010|3.101|3.056|2.854|
|ConvertFP16FP32UMatUMat::OCL_Core|3.016|3.298|2.072|2.061|
|ConvertFP32FP16MatMat::OCL_Core|2.697|2.652|2.723|2.721|
|ConvertFP32FP16MatUMat::OCL_Core|2.752|4.268|2.662|2.947|
|ConvertFP32FP16UMatMat::OCL_Core|2.706|2.601|2.603|2.528|
|ConvertFP32FP16UMatUMat::OCL_Core|2.704|3.215|1.999|1.988|

Patched version is not worse than convertFp16 and convertTo baseline (except MatUMat 32->16, baseline uses CPU code+dst buffer map).
There are still gaps against noOpenCL(CPU only) mode due to T-API implementation issues (unnecessary synchronization).


- [x] 12700K + AMD dGPU

|Name of Test|noOCL|convertFp16 dGPU|convertTo BASE dGPU|convertTo PATCH dGPU|
|---|:-:|:-:|:-:|:-:|
|ConvertFP16FP32MatMat::OCL_Core|3.130|3.133|3.172|3.087|
|ConvertFP16FP32MatUMat::OCL_Core|3.030|1.713|9.559|1.729|
|ConvertFP16FP32UMatMat::OCL_Core|3.010|6.515|6.309|4.452|
|ConvertFP16FP32UMatUMat::OCL_Core|3.016|0.242|23.597|0.170|
|ConvertFP32FP16MatMat::OCL_Core|2.697|2.641|2.713|2.689|
|ConvertFP32FP16MatUMat::OCL_Core|2.752|4.076|6.483|4.191|
|ConvertFP32FP16UMatMat::OCL_Core|2.706|9.042|16.481|1.834|
|ConvertFP32FP16UMatUMat::OCL_Core|2.704|0.229|15.730|0.176|

convertTo-baseline can't compile OpenCL kernel for FP16 properly - FIXED.
dGPU has much more power, so results are x16-17 better than single cpu core. 
Patched version is not worse than convertFp16 and convertTo baseline.
There are still gaps against noOpenCL(CPU only) mode due to T-API implementation issues (unnecessary synchronization) and required memory transfers.

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2024-01-26 12:56:52 +03:00
Alexander Smorkalov
ae21368eb9
Merge pull request #24832 from AryanNanda17:Aryan#22177
Resolved issue number #22177
2024-01-26 10:42:47 +03:00
Alexander Smorkalov
cb92974914 Test for Rect2f in Python. 2024-01-25 18:35:03 +03:00
Alexander Smorkalov
decf6538a2 Merge branch 4.x 2024-01-23 17:06:52 +03:00
Alexander Smorkalov
4e2c7221f2 Fixed type cast warning in CV_ELEM_SIZE1 for cv::Mat::type. 2024-01-22 12:08:55 +03:00
Alexander Smorkalov
c739117a7c Merge branch 4.x 2024-01-19 17:32:22 +03:00
Sean McBride
e64857c561
Merge pull request #23736 from seanm:c++11-simplifications
Removed all pre-C++11 code, workarounds, and branches #23736

This removes a bunch of pre-C++11 workrarounds that are no longer necessary as C++11 is now required.
It is a nice clean up and simplification.

* No longer unconditionally #include <array> in cvdef.h, include explicitly where needed
* Removed deprecated CV_NODISCARD, already unused in the codebase
* Removed some pre-C++11 workarounds, and simplified some backwards compat defines
* Removed CV_CXX_STD_ARRAY
* Removed CV_CXX_MOVE_SEMANTICS and CV_CXX_MOVE
* Removed all tests of CV_CXX11, now assume it's always true. This allowed removing a lot of dead code.
* Updated some documentation consequently.
* Removed all tests of CV_CXX11, now assume it's always true
* Fixed links.

---------

Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
2024-01-19 16:53:08 +03:00
Alexander Smorkalov
d066c44bce
Merge pull request #24841 from mshabunin:rvv-071-update
RISC-V: updated intrin_rvv071.hpp to work with modern toolchain 2.8.0
2024-01-19 08:11:08 +03:00
Maksim Shabunin
6b77f50269 RISC-V: use non-saturating 64-bit add in intrin_rvv071.hpp 2024-01-17 20:34:12 +03:00
Maksim Shabunin
224b9ee33f RISC-V: updated intrin_rvv071.hpp to work with modern toolchain 2.8.0
- intrinsics implementation (071) reworked to use modern RVV intrinsics syntax
- cmake toolchain file (071) now allows selecting from predefined configurations

Co-authored-by: Fang Sun <fangsun@linux.alibaba.com>
2024-01-17 20:34:12 +03:00
Zhuo Zhang
37b02d170f fix qnx-sdp-700 build
based on https://github.com/opencv/opencv/pull/24864
2024-01-17 21:49:13 +08:00
Zhuo Zhang
b04de14fbb Fix QNX build
Based on https://github.com/opencv/opencv/issues/24567
2024-01-16 13:51:22 +08:00
Stefan Dragnev
2791bb7062
Merge pull request #24773 from tailsu:sd/pathlike
python: accept path-like objects wherever file names are expected #24773

Merry Christmas, all 🎄

Implements #15731

Support is enabled for all arguments named `filename` or `filepath` (case-insensitive), or annotated with `CV_WRAP_FILE_PATH`.

Support is based on `PyOS_FSPath`, which is available in Python 3.6+. When running on older Python versions the arguments must have a `str` value as before.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2024-01-12 16:23:05 +03:00
Aryan
9b402cfa59 Resolved issue number #22177 2024-01-09 01:23:26 +05:30
Brad Smith
3b287770b9 Corrections for FreeBSD ARM support
FreeBSD does not have the /proc file system. FreeBSD was added to the code path
for aarch64 before the use of the /proc file system with f7b4b750d8
but then /proc usage was added not long after with b3269b08a1
2024-01-06 20:09:36 -05:00
Alexander Smorkalov
91ec3c0af2
Merge pull request #24815 from brad0:openbsd_x86_build
Fix building on OpenBSD X86
2024-01-06 21:20:56 +03:00
Alexander Smorkalov
22a8fa0730
Merge pull request #24798 from Rageking8:correct-invalid-error-directive
Correct invalid error directive
2024-01-06 12:05:07 +03:00
Brad Smith
34a871c855 Fix building on OpenBSD X86 2024-01-06 01:41:02 -05:00
cudawarped
19527d79d6 core: address clang warnings 2024-01-02 08:33:55 +02:00
Rageking8
7f2c14fc4f
Correct invalid error directive 2023-12-29 21:34:16 +08:00
Alexander Alekhin
2e3ccb4e8e Merge tag '4.9.0' 2023-12-28 09:29:33 +00:00
Alexander Smorkalov
dad8af6b17 Release 4.9.0. 2023-12-27 19:46:55 +03:00
Alexander Alekhin
49a0877b8c docs: exclude test entites from bindings utils 2023-12-27 06:46:20 +00:00
cudawarped
7d681cf80d build: first class cuda support 2023-12-26 09:39:18 +03:00
Alexander Smorkalov
b407c58b96 pre: OpenCV 4.9.0 (version++). 2023-12-25 15:20:10 +03:00
Kumataro
dba7186378
Merge pull request #24271 from Kumataro:fix24163
Fix to convert float32 to int32/uint32 with rounding to nearest (ties to even). #24271

Fix https://github.com/opencv/opencv/issues/24163

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake

(carotene is BSD)
2023-12-25 12:17:17 +03:00
Maksim Shabunin
adde942e34 OCL: fix incompatibility with Mali ruintime 2023-12-21 00:30:44 +03:00
Giles Payne
3d9cb5329c
Merge pull request #24136 from komakai:visionos_support
Add experimental support for Apple VisionOS platform #24136

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch

This is dependent on cmake support for VisionOs which is currently in progress.
Creating PR now to test that there are no regressions in iOS and macOS builds
2023-12-20 15:35:10 +03:00
Alexander Smorkalov
408730b7ab
Merge pull request #24618 from vrabaud:compilation
Fix compilation on some 32-bit windows
2023-12-01 09:10:30 +03:00
Alexander Smorkalov
3893936243
Merge pull request #24565 from CNClareChen:4.x
Change the lsx to baseline features.
2023-11-30 15:27:49 +03:00
Alexander Smorkalov
e20250139a
Merge pull request #24582 from hanliutong:rvv-lut
Optimize the v_lut* functions for RISC-V Vector(RVV).
2023-11-30 10:59:51 +03:00
Vincent Rabaud
0812659e92 Fix compilation on some 32-bit windows
I do not have more info on the platform as it is internal.

Without this fix, the error is:
core/src/arithm.simd.hpp:868:1: error: too few arguments provided to function-like macro invocation
  868 | DEFINE_SIMD_ALL(cmp)
      | ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:93:5: note: expanded from macro 'DEFINE_SIMD_ALL'
   93 |     DEFINE_SIMD_NSAT(fun, __VA_ARGS__)
      |     ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:89:5: note: expanded from macro 'DEFINE_SIMD_NSAT'
   89 |     DEFINE_SIMD_F64(fun, __VA_ARGS__)
      |     ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:77:9: note: expanded from macro 'DEFINE_SIMD_F64'
   77 |         DEFINE_NOSIMD(__CV_CAT(fun, 64f), double, __VA_ARGS__)
      |         ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:47:56: note: expanded from macro 'DEFINE_NOSIMD'
   47 |         DEFINE_NOSIMD_FUN(fun_name, c_type, __VA_ARGS__)
      |                                                        ^
./third_party/OpenCV/public/modules/./core/src/arithm.simd.hpp:860:9: note: macro 'DEFINE_NOSIMD_FUN' defined here
  860 | #define DEFINE_NOSIMD_FUN(fun, _T1, _Tvec, ...)     \
2023-11-29 16:27:11 +01:00
Philip Allgaier
9bb0a8d9e9
Fix comment typo in matx.hpp 2023-11-28 08:26:40 +01:00
Kumataro
bae435a5a7
Merge pull request #24578 from Kumataro:fix_verify_unsupported_new_mat_depth
Fix verify unsupported new mat depth for nonzero/minmax/lut #24578

`cv::LUI()`, `cv::minMaxLoc()`, `cv::minMaxIdx()`, `cv::countNonZero()`, `cv::findNonZero()` and `cv::hasNonZero()` uses depth-based function table. However, it is too short for `CV_16BF`, `CV_Bool`, `CV_64U`, `CV_64S` and `CV_32U` and it may occur out-boundary-access. This patch fix it. And If necessary, when someone extends these functions to support, please relax this test.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-23 12:15:58 +03:00
Liutong HAN
ce0516282a Optimize the v_lut for RVV. 2023-11-23 15:06:04 +08:00
Hao Chen
c19adb4953 Change the lsx to baseline features.
This patch change lsx to baseline feature, and lasx to dispatch
feature. Additionally, the runtime detection methods for lasx and
lsx have been modified.
2023-11-21 11:51:22 +08:00
zihaomu
b913e73d04
DNN: add the Winograd fp16 support (#23654)
* add Winograd FP16 implementation

* fixed dispatching of FP16 code paths in dnn; use dynamic dispatcher only when NEON_FP16 is enabled in the build and the feature is present in the host CPU at runtime

* fixed some warnings

* hopefully fixed winograd on x64 (and maybe other platforms)

---------

Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
2023-11-20 13:45:37 +03:00
Rostislav Vasilikhin
53aad98a1a
Merge pull request #23098 from savuor:nanMask
finiteMask() and doubles for patchNaNs() #23098

Related to #22826
Connected PR in extra: [#1037@extra](https://github.com/opencv/opencv_extra/pull/1037)

### TODOs:
- [ ] Vectorize `finiteMask()` for 64FC3 and 64FC4

### Changes

This PR:
* adds a new function `finiteMask()`
* extends `patchNaNs()` by CV_64F support
* moves `patchNaNs()` and `finiteMask()` to a separate file

**NOTE:** now the function is called `finiteMask()` as discussed with the OpenCV core team

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-09 10:32:47 +03:00
Alexander Smorkalov
34f34f6227 Merge branch 4.x 2023-11-08 14:39:48 +03:00
Alexander Smorkalov
8df76fe0cb Exclude RVV UI internals from Doxygen documentation. 2023-11-08 14:22:05 +03:00
Vincent Rabaud
832f738db0
Merge pull request #24495 from vrabaud:fast_math_compile
Get the SSE2 condition match the emmintrin.h inclusion condition. #24495

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-07 09:06:28 +03:00
Alexander Smorkalov
fe4d518d85
Merge pull request #24485 from hanliutong:rvv-opt
Optimize the Implementation of RVV Universal Intrinsic.
2023-11-03 12:31:10 +03:00
Rostislav Vasilikhin
ea47cb3ffe
Merge pull request #24480 from savuor:backport_patch_nans
Backport to 4.x: patchNaNs() SIMD acceleration #24480

backport from #23098
connected PR in extra: [#1118@extra](https://github.com/opencv/opencv_extra/pull/1118)

### This PR contains:
* new SIMD code for `patchNaNs()`
* CPU perf test

<details>
<summary>Performance comparison</summary>

Geometric mean (ms)

|Name of Test|noopt|sse2|avx2|sse2 vs noopt (x-factor)|avx2 vs noopt (x-factor)|
|---|:-:|:-:|:-:|:-:|:-:|
|PatchNaNs::OCL_PatchNaNsFixture::(640x480, 32FC1)|0.019|0.017|0.018|1.11|1.07|
|PatchNaNs::OCL_PatchNaNsFixture::(640x480, 32FC4)|0.037|0.037|0.033|1.00|1.10|
|PatchNaNs::OCL_PatchNaNsFixture::(1280x720, 32FC1)|0.032|0.032|0.033|0.99|0.98|
|PatchNaNs::OCL_PatchNaNsFixture::(1280x720, 32FC4)|0.072|0.072|0.070|1.00|1.03|
|PatchNaNs::OCL_PatchNaNsFixture::(1920x1080, 32FC1)|0.051|0.051|0.050|1.00|1.01|
|PatchNaNs::OCL_PatchNaNsFixture::(1920x1080, 32FC4)|0.137|0.138|0.128|0.99|1.06|
|PatchNaNs::OCL_PatchNaNsFixture::(3840x2160, 32FC1)|0.137|0.128|0.129|1.07|1.06|
|PatchNaNs::OCL_PatchNaNsFixture::(3840x2160, 32FC4)|0.450|0.450|0.448|1.00|1.01|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC1)|0.149|0.029|0.020|5.13|7.44|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC2)|0.304|0.058|0.040|5.25|7.65|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC3)|0.448|0.086|0.059|5.22|7.55|
|PatchNaNs::PatchNaNsFixture::(640x480, 32FC4)|0.601|0.133|0.083|4.51|7.23|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC1)|0.451|0.093|0.060|4.83|7.52|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC2)|0.892|0.184|0.126|4.85|7.06|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC3)|1.345|0.311|0.230|4.32|5.84|
|PatchNaNs::PatchNaNsFixture::(1280x720, 32FC4)|1.831|0.546|0.436|3.35|4.20|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC1)|1.017|0.250|0.160|4.06|6.35|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC2)|2.077|0.646|0.605|3.21|3.43|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC3)|3.134|1.053|0.961|2.97|3.26|
|PatchNaNs::PatchNaNsFixture::(1920x1080, 32FC4)|4.222|1.436|1.288|2.94|3.28|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC1)|4.225|1.401|1.277|3.01|3.31|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC2)|8.310|2.953|2.635|2.81|3.15|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC3)|12.396|4.455|4.252|2.78|2.92|
|PatchNaNs::PatchNaNsFixture::(3840x2160, 32FC4)|17.174|5.831|5.824|2.95|2.95|

</details>

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-03 08:58:07 +03:00
Liutong HAN
451ee3991e Use local variable. 2023-11-03 10:21:13 +08:00
Giles Payne
617d7ff575
Merge pull request #24454 from komakai:refactorObjcRange
Refactor ObjectiveC Range class #24454

### Pull Request Readiness Checklist

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch

Fix for build issue in #24405
2023-10-27 14:31:41 +03:00
Kumataro
1911c63826
fix: supress GCC13 warnings (#24434)
* fix: supress GCC13 warnings

* fix for review and compile-warning on MacOS
2023-10-26 09:00:58 +03:00
Alexander Smorkalov
97620c053f Merge branch 4.x 2023-10-23 11:53:04 +03:00
CNClareChen
d142a796d8
Merge pull request #23929 from CNClareChen:4.x
* Optimize some function with lasx.

Optimize some function with lasx. #23929

This patch optimizes some lasx functions and reduces the runtime of opencv_test_core from 662,238ms to 633603ms on the 3A5000 platform.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-20 14:20:09 +03:00
Alexander Smorkalov
1c0ca41b6e
Merge pull request #24371 from hanliutong:clean-up
Clean up the obsolete API of Universal Intrinsic
2023-10-20 12:50:26 +03:00
Vadim Pisarevsky
ba4d6c859d
added detection & dispatching of some modern NEON instructions (NEON_FP16, NEON_BF16) (#24420)
* added more or less cross-platform (based on POSIX signal() semantics) method to detect various NEON extensions, such as FP16 SIMD arithmetics, BF16 SIMD arithmetics, SIMD dotprod etc. It could be propagated to other instruction sets if necessary.

* hopefully fixed compile errors

* continue to fix CI

* another attempt to fix build on Linux aarch64

* * reverted to the original method to detect special arm neon instructions without signal()
* renamed FP16_SIMD & BF16_SIMD to NEON_FP16 and NEON_BF16, respectively

* removed extra whitespaces
2023-10-18 22:06:20 +03:00
Yuantao Feng
d789cb459c
Merge pull request #24231 from fengyuentau:halide_cleanup_5.x
dnn: cleanup of halide backend for 5.x #24231

Merge with https://github.com/opencv/opencv_extra/pull/1092.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-10-13 16:53:18 +03:00
Liutong HAN
a287605c3e Clean up the Universal Intrinsic API. 2023-10-13 19:23:30 +08:00
Alexander Smorkalov
7e17f01b7b
Merge pull request #24368 from mshabunin:rvv-clang-17
RISC-V: added v0.12 intrinsics compatibility header
2023-10-12 10:28:54 +03:00
Maksim Shabunin
8edf37903d RISC-V: added v0.12 intrinsics compatibility header 2023-10-06 20:16:57 +03:00
Sean McBride
5fb3869775
Merge pull request #23109 from seanm:misc-warnings
* Fixed clang -Wnewline-eof warnings
* Fixed all trivial clang -Wextra-semi and -Wc++98-compat-extra-semi warnings
* Removed trailing semi from various macros
* Fixed various -Wunused-macros warnings
* Fixed some trivial -Wdocumentation warnings
* Fixed some -Wdocumentation-deprecated-sync warnings
* Fixed incorrect indentation
* Suppressed some clang warnings in 3rd party code
* Fixed QRCodeEncoder::Params documentation.

---------

Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
2023-10-06 13:33:21 +03:00
jvuillaumier
24fd39538e
Merge pull request #24233 from jvuillaumier:rotate_flip_hal_hooks
Add HAL implementation hooks to cv::flip() and cv::rotate() functions from core module #24233

Hello,

This change proposes the addition of HAL hooks for cv::flip() and cv::rotate() functions from OpenCV core module.
Flip and rotation are functions commonly available from 2D hardware accelerators. This is convenient provision to enable custom optimized implementation of image flip/rotation on systems embedding such accelerator.

Thank you

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-10-06 12:31:53 +03:00
HAN Liutong
07bf9cb013
Merge pull request #24325 from hanliutong:rewrite
Rewrite Universal Intrinsic code: float related part #24325

The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro: rewrite them by using the new Universal Intrinsic API.

The series of PRs is listed below:
#23885 First patch, an example
#23980 Core module
#24058 ImgProc module, part 1
#24132 ImgProc module, part 2
#24166 ImgProc module, part 3
#24301 Features2d and calib3d module
#24324 Gapi module

This patch (hopefully) is the last one in the series. 

This patch mainly involves 3 parts
1. Add some modifications related to float (CV_SIMD_64F)
2. Use `#if (CV_SIMD || CV_SIMD_SCALABLE)` instead of `#if CV_SIMD || CV_SIMD_SCALABLE`, 
    then we can get the `CV_SIMD` module that is not enabled for `CV_SIMD_SCALABLE` by looking for `if CV_SIMD`
3. Summary of `CV_SIMD` blocks that remains unmodified: Updated comments
    - Some blocks will cause test fail when enable for RVV, marked as `TODO: enable for CV_SIMD_SCALABLE, ....`
    - Some blocks can not be rewrited directly. (Not commented in the source code, just listed here)
      - ./modules/core/src/mathfuncs_core.simd.hpp (Vector type wrapped in class/struct)
      - ./modules/imgproc/src/color_lab.cpp (Array of vector type)
      - ./modules/imgproc/src/color_rgb.simd.hpp (Array of vector type)
      - ./modules/imgproc/src/sumpixels.simd.hpp (fixed length algorithm, strongly ralated with `CV_SIMD_WIDTH`)
      These algorithms will need to be redesigned to accommodate scalable backends.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-10-05 17:57:25 +03:00
Maksim Shabunin
1bccc14e05
Merge pull request #24343 from mshabunin:fix-test-writes
Fix tests writing to current work dir #24343

Several tests were writing files in the current work directory and did not clean up after test. Moved all temporary files to the `/tmp` dir and added a cleanup code.
2023-10-03 16:34:25 +03:00
Alexander Smorkalov
163d544ecf Merge branch 4.x 2023-10-02 10:17:23 +03:00
Alexander Smorkalov
2af5815d47 Fail Java test suite, execution, if one of test failed. 2023-10-01 18:31:04 +03:00
casualwinds
7b399c4248
Merge pull request #24280 from casualwind:parallel_opt
Optimization for parallelization when large core number #24280

**Problem description:**
When the number of cores is large, OpenCV’s thread library may reduce performance when processing parallel jobs.

**The reason for this problem:**
When the number of cores (the thread pool initialized the threads, whose number is as same as the number of cores) is large, the main thread will spend too much time on waking up unnecessary threads.
When a parallel job needs to be executed, the main thread will wake up all threads in sequence, and then wait for the signal for the  job completion after waking up all threads. When the number of threads is larger than the parallel number of a job slices, there will be a situation where the main thread wakes up the threads in sequence and the awakened threads have completed the job, but the main thread is still waking up the other threads. The threads woken up by the main thread after this have nothing to do, and the broadcasts made by the waking threads take a lot of time, which reduce the performance.

**Solution:**
Reduce the time for the process of main thread waking up the worker threads through the following two methods:

•	The number of threads awakened by the main thread should be adjusted according to the parallel number of a job slices. If the number of threads is greater than the number of the parallel number of job slices, the total number of threads awakened should be reduced.
•	In the process of waking up threads in sequence, if the main thread finds that all parallel job slices have been allocated, it will jump out of the loop in time and wait for the signal for the job completion.

**Performance Test:**
The tests were run in the manner described by https://github.com/opencv/opencv/wiki/HowToUsePerfTests.
At core number =  160, There are big performance gain in some cases.

Take the following cases in the video module as examples:

OpticalFlowPyrLK_self::Path_Idx_Cn_NPoints_WSize_Deriv::("cv/optflow/frames/VGA_%02d.png", 2, 1, (9, 9), 11, true)
Performance improves 191%:0.185405ms ->0.0636496ms
perf::DenseOpticalFlow_VariationalRefinement::(320x240, 10, 10)
Performance improves 112%:23.88938ms -> 11.2562ms  
Among all the modules, the performance improvement is greatest on module video, and there are also certain improvements on other modules.

At core number = 160, the times labeled below are the geometric mean of the average time of all cases for one module. The optimization is available on each module.

overall | time(ms) |   |   |   |   |   |   |  
-- | -- | -- | -- | -- | -- | -- | -- | --
module   name | gapi | dnn | features2d | objdetect | core | imgproc | stitching | video
original | 0.185 | 1.586 | 9.998 | 11.846 | 0.205 | 0.215 | 164.409 | 0.803
optimized | 0.174 | 1.353 | 9.535 | 11.105 | 0.199 | 0.185 | 153.972 | 0.489
Performance   improves | 6% | 17% | 5% | 7% | 3% | 16% | 7% | 64%

Meanwhile, It is found that adjusting the order of test cases will have an impact on some test cases. For example, we used option --gtest-shuffle to run opencv_perf_gapi, the performance of TestPerformance::CmpWithScalarPerfTestFluid/CmpWithScalarPerfTest::(compare_f, CMP_GE, 1920x1080, 32FC1, { gapi.kernel_package })  case had 30% changes compared to the case without shuffle. I would like to ask if you have also encountered such a situation and could you share your experience?

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-09-27 16:21:20 +03:00
Maksim Shabunin
c3a37d0fcb RISC-V: fix compilation in RVV scalable mode 2023-09-22 21:08:33 +03:00
Vadim Pisarevsky
416bf3253d
attempt to add 0d/1d mat support to OpenCV (#23473)
* attempt to add 0d/1d mat support to OpenCV

* revised the patch; now 1D mat is treated as 1xN 2D mat rather than Nx1.

* a step towards 'green' tests

* another little step towards 'green' tests

* calib test failures seem to be fixed now

* more fixes _core & _dnn

* another step towards green ci; even 0D mat's (a.k.a. scalars) are now partly supported!

* * fixed strange bug in aruco/charuco detector, not sure why it did not work
* also fixed a few remaining failures (hopefully) in dnn & core

* disabled failing GAPI tests - too complex to dig into this compiler pipeline

* hopefully fixed java tests

* trying to fix some more tests

* quick followup fix

* continue to fix test failures and warnings

* quick followup fix

* trying to fix some more tests

* partly fixed support for 0D/scalar UMat's

* use updated parseReduce() from upstream

* trying to fix the remaining test failures

* fixed [ch]aruco tests in Python

* still trying to fix tests

* revert "fix" in dnn's CUDA tensor

* trying to fix dnn+CUDA test failures

* fixed 1D umat creation

* hopefully fixed remaining cuda test failures

* removed training whitespaces
2023-09-21 18:24:38 +03:00
Dmitry Kurtaev
d78637102c Skip test cases in case of SkipTestException in SetUp 2023-09-20 13:27:06 +03:00
Kumataro
b870ad46bf
Merge pull request #24074 from Kumataro/fix24057
Python: support tuple src for cv::add()/subtract()/... #24074

fix https://github.com/opencv/opencv/issues/24057

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ x The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-19 10:32:47 +03:00
HAN Liutong
f617fbe166
Merge pull request #24132 from hanliutong:rewrite-imgproc2
Rewrite Universal Intrinsic code by using new API: ImgProc module Part 2 #24132

The goal of this series of PRs is to modify the SIMD code blocks guarded by CV_SIMD macro in the opencv/modules/imgproc folder: rewrite them by using the new Universal Intrinsic API.

This is the second part of the modification to the Imgproc module ( Part 1: #24058 ), And I tested this patch on RVV (QEMU) and AVX devices, `opencv_test_imgproc` is passed.

The patch is partially auto-generated by using the [rewriter](https://github.com/hanliutong/rewriter).

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-09-19 08:52:42 +03:00
Alexander Smorkalov
8f2e6640e3
Merge pull request #24288 from tailsu:sd/emscripten-3.1.45-fixes
build fixes for emscripten 3.1.45
2023-09-19 08:09:18 +03:00
Stefan Dragnev
9b5a719d80 build fixes for emscripten 3.1.45 2023-09-18 15:38:31 +02:00
Dmitry Kurtaev
6bc369fc56
Merge pull request #24250 from dkurt:ts_fixture_constructor_skip_2
Skip test on SkipTestException at fixture's constructor (version 2) #24250

### Pull Request Readiness Checklist

Another version of https://github.com/opencv/opencv/pull/24186 (reverted by https://github.com/opencv/opencv/pull/24223). Current implementation cannot handle skip exception at `static void SetUpTestCase` but works on `virtual void SetUp`.

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-18 10:23:24 +03:00
Vincent Rabaud
3880d059b3
Merge pull request #24260 from vrabaud:ubsan
Fix undefined behavior arithmetic in copyMakeBorder and adjustROI. #24260

This is due to the undefined: negative int multiplied by size_t pointer increment.

To test, compile with:
```
mkdir build
cd build
cmake ../ -DCMAKE_C_FLAGS_INIT="-fsanitize=undefined" -DCMAKE_CXX_FLAGS_INIT="-fsanitize=undefined" -DCMAKE_C_COMPILER="/usr/bin/clang" -DCMAKE_CXX_COMPILER="/usr/bin/clang++" -DCMAKE_SHARED_LINKER_FLAGS="-fsanitize=undefined -lubsan"
```
And run:
```
make -j opencv_test_core && ./bin/opencv_test_core --gtest_filter=*UndefinedBehavior*
```

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-09-14 15:16:28 +03:00
Alexander Smorkalov
fdab565711 Merge branch 4.x 2023-09-13 14:49:25 +03:00
Yuriy Chernyshov
eb20bb3b23 Add missing sanitizer interface include 2023-09-13 12:15:34 +03:00
Alexander Smorkalov
0367a12b92 Check that cv::merge input matrices are not empty. 2023-09-08 12:36:46 +03:00
Yuriy Chernyshov
8a415c881a Add missing std namespace qualifiers 2023-09-06 13:46:39 +03:00
Yuriy Chernyshov
494d201fda Add missing <sstream> includes 2023-09-05 22:04:26 +03:00
Alexander Smorkalov
cca4ee2e46 Revert PR 24186 as it force skip tests. 2023-09-05 14:35:37 +03:00
Kumataro
72bb8bb73c core: arm64: v_round() works with round to nearest, ties to even. 2023-09-04 10:27:55 +03:00
Yuantao Feng
a308dfca98
core: add broadcast (#23965)
* add broadcast_to with tests

* change name

* fix test

* fix implicit type conversion

* replace type of shape with InputArray

* add perf test

* add perf tests which takes care of axis

* v2 from ficus expand

* rename to broadcast

* use randu in place of declare

* doc improvement; smaller scale in perf

* capture get_index by reference
2023-08-30 09:53:59 +03:00
Dmitry Kurtaev
588ddf1b18
Merge pull request #24186 from dkurt:ts_fixture_constructor_skip
Skip test on SkipTestException at fixture's constructor

* Skip test on SkipTestException at fixture's constructor

* Add warning supression

* Skip Python tests if no test file found

* Skip instances of test fixture with exception at SetUpTestCase

* Skip test with exception at SetUp method

* Try remove warning disable

* Add CV_NORETURN

* Remove FAIL assertion

* Use findDataFile to throw Skip exception

* Throw exception conditionally
2023-08-25 14:53:34 +03:00
Kumataro
81cc89a3ce
Merge pull request #24179 from Kumataro:fix24145
* core:add OPENCV_IPP_MEAN/MINMAX/SUM option to enable IPP optimizations

* fix: to use guard HAVE_IPP and ocv_append_source_file_compile_definitions() macro.

* support OPENCV_IPP_ENABLE_ALL

* add document for OPENCV_IPP_ENABLE_ALL

* fix OPENCV_IPP_ENABLE_ALL comment
2023-08-23 22:53:11 +03:00
Sean McBride
d792ebc5d2 Fixed buffer overrun; removed the last two uses of sprintf
Fixed an off-by-1 buffer resize, the space for the null termination was forgotten.

Prefer snprintf, which can never overflow (if given the right size).

In one case I cheated and used strcpy, because I cannot figure out the buffer size at that point in the code.
2023-08-16 20:04:17 -04:00
Alexander Smorkalov
747b7cab6c
Merge pull request #23734 from seanm:unaligned-copy
Fixed invalid cast and unaligned memory access
2023-08-11 15:23:08 +03:00
Alexander Smorkalov
232c67bf76
Merge pull request #24140 from sthibaul:4.x
Fix GNU/Hurd build
2023-08-11 12:32:22 +03:00
HAN Liutong
0dd7769bb1
Merge pull request #23980 from hanliutong:rewrite-core
Rewrite Universal Intrinsic code by using new API: Core module. #23980

The goal of this PR is to match and modify all SIMD code blocks guarded by `CV_SIMD` macro in the `opencv/modules/core` folder and rewrite them by using the new Universal Intrinsic API.

The patch is almost auto-generated by using the [rewriter](https://github.com/hanliutong/rewriter), related PR #23885.

Most of the files have been rewritten, but I marked this PR as draft because, the `CV_SIMD` macro also exists in the following files, and the reasons why they are not rewrited are:

1. ~~code design for fixed-size SIMD (v_int16x8, v_float32x4, etc.), need to manually rewrite.~~ Rewrited
- ./modules/core/src/stat.simd.hpp
- ./modules/core/src/matrix_transform.cpp
- ./modules/core/src/matmul.simd.hpp

2. Vector types are wrapped in other class/struct, that are not supported by the compiler in variable-length backends. Can not be rewrited directly.
- ./modules/core/src/mathfuncs_core.simd.hpp 
```cpp
struct v_atan_f32
{
    explicit v_atan_f32(const float& scale)
    {
...
    }

    v_float32 compute(const v_float32& y, const v_float32& x)
    {
...
    }

...
    v_float32 val90; // sizeless type can not used in a class
    v_float32 val180;
    v_float32 val360;
    v_float32 s;
};
```

3. The API interface does not support/does not match

- ./modules/core/src/norm.cpp 
Use `v_popcount`, ~~waiting for #23966~~ Fixed
- ./modules/core/src/has_non_zero.simd.hpp
Use illegal Universal Intrinsic API: For float type, there is no logical operation `|`. Further discussion needed

```cpp
/** @brief Bitwise OR

Only for integer types. */
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n> operator|(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
template<typename _Tp, int n> CV_INLINE v_reg<_Tp, n>& operator|=(v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b);
```

```cpp
#if CV_SIMD
    typedef v_float32 v_type;
    const v_type v_zero = vx_setzero_f32();
    constexpr const int unrollCount = 8;
    int step = v_type::nlanes * unrollCount;
    int len0 = len & -step;
    const float* srcSimdEnd = src+len0;

    int countSIMD = static_cast<int>((srcSimdEnd-src)/step);
    while(!res && countSIMD--)
    {
        v_type v0 = vx_load(src);
        src += v_type::nlanes;
        v_type v1 = vx_load(src);
        src += v_type::nlanes;
....
        src += v_type::nlanes;
        v0 |= v1; //Illegal ?
....
        //res = v_check_any(((v0 | v4) != v_zero));//beware : (NaN != 0) returns "false" since != is mapped to _CMP_NEQ_OQ and not _CMP_NEQ_UQ
        res = !v_check_all(((v0 | v4) == v_zero));
    }

    v_cleanup();
#endif
```

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-08-11 08:33:33 +03:00
Samuel Thibault
82de5b3a67 Fix GNU/Hurd build
It has the usual Unix filesystem operations.
2023-08-10 22:43:46 +02:00
Alexander Smorkalov
2311c14582 Fix v_pack_store alignment issue on Windows 32-bit. 2023-08-08 14:10:29 +03:00
Vadim Pisarevsky
518486ed3d
Added new data types to cv::Mat & UMat (#23865)
* started working on adding 32u, 64u, 64s, bool and 16bf types to OpenCV

* core & imgproc tests seem to pass

* fixed a few compile errors and test failures on macOS x86

* hopefully fixed some compile problems and test failures

* fixed some more warnings and test failures

* trying to fix small deviations in perf_core & perf_imgproc by revering randf_64f to exact version used before

* trying to fix behavior of the new OpenCV with old plugins; there is (quite strong) assumption that video capture would give us frames with depth == CV_8U (0) or CV_16U (2). If depth is > 7 then it means that the plugin is built with the old OpenCV. It needs to be recompiled, of course and then this hack can be removed.

* try to repair the case when target arch does not have FP64 SIMD

* 1. fixed bug in itoa() found by alalek
2. restored ==, !=, > and < univ. intrinsics on ARM32/ARM64.
2023-08-04 10:50:03 +03:00
cudawarped
bea0c1b660 cuda: Fix GpuMat::copyTo and GpuMat::converTo python bindings 2023-08-01 15:09:37 +03:00
Alexander Smorkalov
47188b7c7e Merge branch 4.x 2023-07-28 13:05:36 +03:00
Alexander Smorkalov
b22c2505a8 Disable warning C5054 in VS 2022 C++20 2023-07-26 09:23:32 +03:00
Alexander Smorkalov
12acf5603a
Merge pull request #24001 from legrosbuffle:legrosbuffle-cvround-intrinsic
Use intrinsics for `cvRound` on x86_64 `__GNUC__` (clang/gcc linux) too.
2023-07-23 09:53:18 +03:00
Clement Courbet
3cce299a78 Use intrinsics for cvRound on x86 and x86_64 __GNUC__ (clang/gcc linux) too.
We've measured a 7x improvement in speed for `cvRound` using the intrinsic.
2023-07-21 10:57:54 +03:00
Vincent Rabaud
423ab8ddb8 Use void* 2023-07-20 15:53:57 +02:00
Vincent Rabaud
20784d3da2 Fix undefined behavior with wrong function pointers called.
Details here: https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=58006
runtime error: call to function (unknown) through pointer to incorrect function type 'void (*)(const unsigned char **, const int *, unsigned char **, const int *, int, int)'
2023-07-20 15:32:05 +02:00
Alexander Smorkalov
23f27d8dbe Use OpenCV logging instead of std::cerr. 2023-07-19 10:49:54 +03:00
Alexander Smorkalov
1f7025f028
Merge pull request #23920 from loongson-zn:4.x
Fix LoongArch Macro Definition
2023-07-14 15:00:41 +03:00
Alexander Smorkalov
bd2695f01b
Merge pull request #23966 from hanliutong:popcount
Add missing ”v_popcount“ for RVV and enable tests.
2023-07-13 12:22:46 +03:00
Alexander Smorkalov
cea26341a5 Merge branch 4.x 2023-07-13 09:28:36 +03:00
Alexander Smorkalov
85f0074f23
Merge pull request #23973 from mshabunin:riscv-unaligned-access
RISC-V: fix unaligned loads and stores
2023-07-12 14:51:56 +03:00
Maksim Shabunin
3f0707234f risc-v: fix unaligned loads and stores 2023-07-11 19:23:12 +03:00
Avasam
cd9f85dbda Update usages of ConditionalAliasTypeNode following #23838 to use TYPE_CHECKING 2023-07-11 12:22:27 -04:00
Liutong HAN
a00818047f Add missing ”v_popcount“ for RVV and enable tests. 2023-07-11 16:10:27 +08:00
Alexander Smorkalov
6ff5245cf2
Merge pull request #23927 from Avasam:partially-unknown-mat
Fix partially unknown Mat
2023-07-11 10:32:48 +03:00
Alexander Smorkalov
05becd56e5
Merge pull request #23938 from mshabunin/fix-warnings-gcc
Fix compiler warnings for GCC 11-12 and Clang 13
2023-07-10 12:41:37 +03:00
Maksim Shabunin
09944a83d9 build: w/a compiler warnings for GCC 11-12 and Clang 13, reduce build output 2023-07-10 11:27:59 +03:00
Alexander Smorkalov
5af40a0269 Merge branch 4.x 2023-07-05 15:51:10 +03:00
Zhang Na
10294a84fa Fix LoongArch Macro Definition 2023-07-05 17:42:39 +08:00
Avasam
9f87475129 Fix partially unknown Mat 2023-07-04 16:44:32 -04:00
Berke
71796edf95
removed trailing semicolon after function
It gives error when building projects with -Wpedantic -Werror

error: extra ‘;’ [-Werror=pedantic]

Issue ##23916
2023-07-04 21:18:30 +03:00
Alexander Alekhin
67faf1610e Merge pull request #23885 from hanliutong:UniversalIntrinsicRewriter 2023-07-03 14:56:30 +00:00
Alexander Smorkalov
131dab774c Merge branch 'release_4.8.0' into 4.x 2023-06-28 15:22:43 +03:00
Alexander Smorkalov
f9a59f2592 Release OpenCV 4.8.0 2023-06-28 14:53:33 +03:00
Liutong HAN
d17507052e Rewrite SIMD code by using new Universal Intrinsic API. 2023-06-28 17:12:37 +08:00
Alexander Smorkalov
bf06bc92aa Merge branch '3.4' into merge-3.4 2023-06-23 20:12:58 +03:00
Paul Kim (김형준)
3b264d5877
Add pthread.h Inclusion if HAVE_PTHREADS_PF is defined
Single-case tested with success on Windows 11 with MinGW-w64 Standalone GCC v13.1.0 while building OpenCV 4.7.0
2023-06-23 17:53:03 +09:00
Dmitry Kurtaev
22b747eae2
Merge pull request #23702 from dkurt:py_rotated_rect
Python binding for RotatedRect #23702

### Pull Request Readiness Checklist

related: https://github.com/opencv/opencv/issues/23546#issuecomment-1562894602

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-22 15:09:53 +03:00
Alexander Smorkalov
65b957a5b3
Merge pull request #23832 from asmorkalov:as/reshape_docs
Document parameters of multi-dimentional reshape
2023-06-21 09:04:17 +03:00
Alexander Smorkalov
9eaa7bd566 Document parameters of multi-dimentional reshape. 2023-06-20 21:54:49 +03:00
Alexander Smorkalov
51702ffd92 pre: OpenCV 4.8.0 (version++) 2023-06-20 15:52:57 +03:00
Alexander Smorkalov
805946baaf pre: OpenCV 3.4.20 (version++) 2023-06-20 14:10:08 +03:00
Alexander Smorkalov
004801f1c5 Merge remote-tracking branch 'origin/3.4' into merge-3.4 2023-06-20 09:56:57 +03:00
Dmitry Kurtaev
433c364456
Merge pull request #23724 from dkurt:java_without_ant
Build Java without ANT #23724

### Pull Request Readiness Checklist

Enables a path of building Java bindings without ANT

* Able to build OpenCV JAR and Docs without ANT
  ```
  --   Java:
  --     ant:                         NO
  --     JNI:                         /usr/lib/jvm/default-java/include /usr/lib/jvm/default-java/include/linux /usr/lib/jvm/default-java/include
  --     Java wrappers:               YES
  --     Java tests:                  NO
  ```
* Possible to build OpenCV JAR without ANT but tests still require ANT

**Merge with**: https://github.com/opencv/opencv_contrib/pull/3502

Notes:
- Use `OPENCV_JAVA_IGNORE_ANT=1` to force "Java" flow for building Java bindings
- Java tests still require Apache ANT
- JAR doesn't include `.java` source code files.


See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-06-16 19:58:20 +03:00
dizcza
e625b32841 [opencv 3.x] back-ported tbb support ubuntu 22.04 2023-06-15 19:30:40 +03:00
Sean McBride
57da72d444 Fixed invalid cast and unaligned memory access
Although acceptible to Intel CPUs, it's still undefined behaviour according to the C++ standard.

It can be replaced with memcpy, which makes the code simpler, and it generates the same assembly code with gcc and clang with -O2 (verified with godbolt).

Also expanded the test to include other little endian CPUs by testing for __LITTLE_ENDIAN__.
2023-06-09 18:56:49 -04:00
Pierre Chatelier
60b806f9b8
Merge pull request #22947 from chacha21:hasNonZero
Added cv::hasNonZero() #22947 

`cv::hasNonZero()` is semantically equivalent to (`cv::countNonZero()>0`) but stops parsing the image when a non-zero value is found, for a performance gain

- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake

This pull request might be refused, but I submit it to know if further work is needed or if I just stop working on it.
The idea is only a performance gain vs `countNonZero()>0` at the cost of more code.

Reasons why it might be refused :

- this is just more code
- the execution time is "unfair"/"unpredictable" since it depends on the position of the first non-zero value
- the user must be aware that default search is from first row/col to last row/col and has no way to customize that, even if his use case lets him know where a non zero could be found
- the PR in its current state is using, for the ocl implementation, a mere `countNonZero()>0` ; there is not much sense in trying to break early the ocl kernel call when non-zero is encountered. So the ocl implementation does not bring any improvement.
- there is no IPP function that can help (`countNonZero()` is based in `ippCountInRange`)
- the PR in its current state might be slower than a call to `countNonZero()>0` in some cases (see "challenges" below)

Reasons why it might be accepted :

- the performance gain is huge on average, if we consider that "on average" means "non zero in the middle of the image"
- the "missing" IPP implementation is replaced by an "Open-CV universal intrinsics" implementation
- the PR in its current state is almost always faster than a call to `countNonZero()>0`, is only slightly slower in the worst cases, and not even for all matrices

**Challenges**
The worst case is either an all-zero matrix, or a non-zero at the very last position.  In such a case, the `hasNonZero()` implementation will parse the whole matrix like `countNonZero()` would do. But we expect the performance to be the same in this case. And `ippCountInRange` is hard to beat !
There is also the case of very small matrices (<=32x32...) in 8b, where the SIMD can be hard to feed.

For all cases but the worse, my custom `hasNonZero()` performs better than `ippCountInRange()`
For the worst case, my custom `hasNonZero()` performs better than `ippCountInRange()` *except for large matrices of type CV_32S or CV_64F* (but surprisingly, not CV_32F).
The difference is small, but it exists (and I don't understand why).
For very small CV_8U matrices `ippCountInRange()` seems unbeatable.

Here is the code that I use to check timings

```

  //test cv::hasNonZero() vs (cv::countNonZero()>0) for different matrices sizes, types, strides...
  {
    cv::setRNGSeed(1234);
    const std::vector<cv::Size> sizes = {{32, 32}, {64, 64}, {128, 128}, {320, 240}, {512, 512}, {640, 480}, {1024, 768}, {2048, 2048}, {1031, 1000}};
    const std::vector<int> types = {CV_8U, CV_16U, CV_32S, CV_32F, CV_64F};
    const size_t iterations = 1000;
    for(const cv::Size& size : sizes)
    {
      for(const int type : types)
      {
        for(int c = 0 ; c<2 ; ++c)
        {
          const bool continuous = !c;
          for(int i = 0 ; i<4 ; ++i)
          {
            cv::Mat m = continuous ? cv::Mat::zeros(size, type) : cv::Mat(cv::Mat::zeros(cv::Size(2*size.width, size.height), type), cv::Rect(cv::Point(0, 0), size));
            const bool nz = (i <= 2);
            const unsigned int nzOffsetRange = 10;
            const unsigned int nzOffset = cv::randu<unsigned int>()%nzOffsetRange;
            const cv::Point pos = 
              (i == 0) ? cv::Point(nzOffset, 0) :
              (i == 1) ? cv::Point(size.width/2-nzOffsetRange/2+nzOffset, size.height/2) :
              (i == 2) ? cv::Point(size.width-1-nzOffset, size.height-1) :
              cv::Point(0, 0);
            std::cout << "============================================================" << std::endl;
            std::cout << "size:" << size << "  type:" << type << "  continuous = " << (continuous ? "true" : "false") << "  iterations:" << iterations << "  nz=" << (nz ? "true" : "false");
            std::cout << "  pos=" << ((i == 0) ? "begin" : (i == 1) ? "middle" : (i == 2) ? "end" : "none");
            std::cout << std::endl;
            cv::Mat mask = cv::Mat::zeros(size, CV_8UC1);
            mask.at<unsigned char>(pos) = 0xFF;
            m.setTo(cv::Scalar::all(0));
            m.setTo(cv::Scalar::all(nz ? 1 : 0), mask);
            std::vector<bool> results;
            std::vector<double> timings;

            {
              bool res = false;
              auto ref = cv::getTickCount();
              for(size_t k = 0 ; k<iterations ; ++k)
                res = cv::hasNonZero(m);
              auto now = cv::getTickCount();
              const bool error = (res != nz);
              if (error)
                printf("!!ERROR!!\r\n");
              results.push_back(res);
              timings.push_back(1000.*(now-ref)/cv::getTickFrequency());
            }
            {
              bool res = false;
              auto ref = cv::getTickCount();
              for(size_t k = 0 ; k<iterations ; ++k)
                res = (cv::countNonZero(m)>0);
              auto now = cv::getTickCount();
              const bool error = (res != nz);
              if (error)
                printf("!!ERROR!!\r\n");
              results.push_back(res);
              timings.push_back(1000.*(now-ref)/cv::getTickFrequency());
            }

            const size_t bestTimingIndex = (std::min_element(timings.begin(), timings.end())-timings.begin());
            if ((bestTimingIndex != 0) || (std::find_if_not(results.begin(), results.end(), [&](bool r) {return (r == nz);}) != results.end()))
            {
              std::cout << "cv::hasNonZero\t\t=>" << results[0] << ((results[0] != nz) ? "  ERROR" : "") << "   perf:" << timings[0] << "ms => " << (iterations/timings[0]*1000) << " im/s" << ((bestTimingIndex == 0) ? " * " : "") << std::endl;
              std::cout << "cv::countNonZero\t=>" << results[1] << ((results[1] != nz) ? "  ERROR" : "") << "   perf:" << timings[1] << "ms => " << (iterations/timings[1]*1000) << " im/s" << ((bestTimingIndex == 1) ? " * " : "") << std::endl;
            }
          }
        }
      }
    }
  }

```

Here is a report of this benchmark (it only reports timings when `cv::countNonZero()` is faster)
My CPU is an Intel Core I7 4790 @ 3.60Ghz

```

============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
cv::hasNonZero          =>1   perf:0.353764ms => 2.82674e+06 im/s
cv::countNonZero        =>1   perf:0.282044ms => 3.54555e+06 im/s *
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:0.610478ms => 1.63806e+06 im/s
cv::countNonZero        =>1   perf:0.283182ms => 3.5313e+06 im/s *
============================================================
size:[32 x 32]  type:0  continuous = false  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:0.630115ms => 1.58701e+06 im/s
cv::countNonZero        =>0   perf:0.282044ms => 3.54555e+06 im/s *
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:0.607347ms => 1.64651e+06 im/s
cv::countNonZero        =>1   perf:0.467037ms => 2.14116e+06 im/s *
============================================================
size:[32 x 32]  type:5  continuous = false  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:0.618162ms => 1.6177e+06 im/s
cv::countNonZero        =>0   perf:0.468175ms => 2.13595e+06 im/s *
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[32 x 32]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[64 x 64]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[128 x 128]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[320 x 240]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[512 x 512]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[640 x 480]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1024 x 768]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:895.381ms => 1116.84 im/s
cv::countNonZero        =>1   perf:882.569ms => 1133.06 im/s *
============================================================
size:[2048 x 2048]  type:4  continuous = true  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:899.53ms => 1111.69 im/s
cv::countNonZero        =>0   perf:870.894ms => 1148.24 im/s *
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=true  pos=end
cv::hasNonZero          =>1   perf:2018.92ms => 495.313 im/s
cv::countNonZero        =>1   perf:1966.37ms => 508.552 im/s *
============================================================
size:[2048 x 2048]  type:6  continuous = true  iterations:1000  nz=false  pos=none
cv::hasNonZero          =>0   perf:2005.87ms => 498.537 im/s
cv::countNonZero        =>0   perf:1992.78ms => 501.812 im/s *
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[2048 x 2048]  type:6  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:0  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:0  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:2  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:2  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:4  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:4  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:5  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:5  continuous = false  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:6  continuous = true  iterations:1000  nz=false  pos=none
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=begin
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=middle
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=true  pos=end
============================================================
size:[1031 x 1000]  type:6  continuous = false  iterations:1000  nz=false  pos=none
done

```
2023-06-09 13:37:20 +03:00
Alexander Smorkalov
d24ffe9a65
Merge pull request #23705 from asmorkalov:as/cxx-named-arguments
Re-implement named parameters bindings for Python #23705

Reverted named argument handling from #19156.
Ported new solution from #23224
The port is required to harmonize 4.x -> 5.x merges.

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
2023-05-30 17:41:41 +03:00
Dmitry Kurtaev
380caa1a87
Merge pull request #23691 from dkurt:pycv_float16_fixes
Import and export np.float16 in Python #23691

### Pull Request Readiness Checklist

* Also, fixes `cv::norm` with `NORM_INF` and `CV_16F`

resolves https://github.com/opencv/opencv/issues/23687

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-26 18:56:21 +03:00
Alexander Smorkalov
65487946cc Added final constrants check to solveLP to filter out flating-point numeric issues. 2023-05-25 17:29:01 +03:00
Dmitry Kurtaev
4823285b55
Merge pull request #23679 from dkurt:py_cv_type_macro
Python bindings for CV_8UC(n) and other types macros #23679

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23628#issuecomment-1562468327

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 15:54:41 +03:00
Dmitry Kurtaev
29b2f77b5f
Merge pull request #23674 from dkurt:py_cv_maketype
CV_MAKETYPE Python binding #23674 

### Pull Request Readiness Checklist

resolves https://github.com/opencv/opencv/issues/23628

```python
import cv2 as cv

t = cv.CV_MAKETYPE(cv.CV_32F, 4)
```

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-25 09:45:22 +03:00
Alexander Smorkalov
d4861bfd1f Merge remote-tracking branch 'origin/3.4' into merge-3.4 2023-05-24 14:37:48 +03:00
cudawarped
7539abecdb cuda: add python bindings to allow GpuMat and Stream objects to be initialized from raw pointers 2023-05-22 11:02:04 +03:00
Alexander Smorkalov
4eec739624 Build warning fix on Windows for Eigen wrapper. 2023-05-17 10:12:02 +03:00
Alexander Smorkalov
05084aa63e Restored Java bindings for CPU features management. 2023-05-16 18:04:09 +03:00
Alexander Alekhin
04d71da6e7 Merge pull request #23566 from seanm:atomic-bool 2023-05-16 10:46:59 +00:00
n0099
868787c364
Merge pull request #23342 from n0099:#23335
Improve document of cv::RotatedRect for #23335 #23342

fix #23335

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-03 14:15:53 +03:00
Sean McBride
27e10efa66 Use std::atomic<bool> as it's necessary for correct thread safety
Now that C++11 is required, we can unconditionally use std::atomic in this case, which is more correct.
2023-05-01 16:44:34 -04:00
Pierre Chatelier
6dd8a9b6ad
Merge pull request #13879 from chacha21:REDUCE_SUM2
add REDUCE_SUM2 #13879 

proposal to add REDUCE_SUM2 to cv::reduce, an operation that sums up the square of elements
2023-04-28 20:42:52 +03:00
Laurent Berger
23b819efb8
Merge pull request #23555 from LaurentBerger:doc_format
don't ignore documentation for cv::format in doxygen #23555 

Issue https://github.com/opencv/opencv/issues/23553

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work issue
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-04-28 15:24:07 +03:00