#25006#25314
This pull request removes hed_pretrained caffe model to the SOTA dexined onnx model for edge detection. Usage of conventional methods like canny has also been added
The obsolete cpp and python sample has been removed
TODO:
- [ ] Remove temporary hack for quantized models. Refer issue https://github.com/opencv/opencv_zoo/issues/273
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Improved classification sample #25519#25006#25314
This pull requests replaces the caffe model for classification with onnx versions. It also adds resnet in model.yml.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add sample support of YOLOv9 and YOLOv10 in OpenCV #25794
This PR adds sample support of [`YOLOv9`](https://github.com/WongKinYiu/yolov9) and [`YOLOv10`](https://github.com/THU-MIG/yolov10/tree/main)) in OpenCV. Models for this test are located in this [PR](https://github.com/opencv/opencv_extra/pull/1186).
**Running YOLOv10 using OpenCV.**
1. In oder to run `YOLOv10` one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for ready solution, there is [this forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. Particularty follow this proceduce.
```bash
git clone git@github.com:Abdurrahheem/yolov10.git
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
python export_opencv.py --model=<model-name> --imgsz=<input-img-size>
```
By default `model="yolov10s"` and `imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV
2. For inference part on OpenCV. one can use `yolo_detector.cpp` [sample](https://github.com/opencv/opencv/blob/4.x/samples/dnn/yolo_detector.cpp). If you have followed above exporting procedure, then you can use following command to run the model.
``` bash
build opencv from source
cd build
./bin/example_dnn_yolo_detector --model=<path-to-yolov10s.onnx-file> --yolo=yolov10 --width=640 --height=480 --input=<path-to-image> --scale=0.003921568627 --padvalue=114
```
If you do not specify `--input` argument, OpenCV will grab first camera that is avaliable on your platform.
For more deatils on how to run the `yolo_detector.cpp` file see this [guide](https://docs.opencv.org/4.x/da/d9d/tutorial_dnn_yolo.html#autotoc_md443)
**Running YOLOv9 using OpenCV**
1. Export model following [official guide](https://github.com/WongKinYiu/yolov9)of the YOLOv9 repository. Particularly you can do following for converting.
```bash
git clone https://github.com/WongKinYiu/yolov9.git
cd yolov9
conda create -n yolov9 python=3.9
conda activate yolov9
pip install -r requirements.txt
wget https://github.com/WongKinYiu/yolov9/releases/download/v0.1/yolov9-t-converted.pt
python export.py --weights=./yolov9-t-converted.pt --include=onnx --img-size=(480,640)
```
This will generate <yolov9-t-converted.onnx> file.
2. Inference on OpenCV.
```bash
build opencv from source
cd build
./bin/example_dnn_yolo_detector --model=<path-to-yolov9-t-converted.onnx> --yolo=yolov9 --width=640 --height=480 --scale=0.003921568627 --padvalue=114 --path=<path-to-image>
```
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Documentation transition to fresh Doxygen #25042
* current Doxygen version is 1.10, but we will use 1.9.8 for now due to issue with snippets (https://github.com/doxygen/doxygen/pull/10584)
* Doxyfile adapted to new version
* MathJax updated to 3.x
* `@relates` instructions removed temporarily due to issue in Doxygen (to avoid warnings)
* refactored matx.hpp - extracted matx.inl.hpp
* opencv_contrib - https://github.com/opencv/opencv_contrib/pull/3638
Documentation for Yolo usage in Opencv #24898
This PR introduces documentation for the usage of yolo detection model family in open CV. This is not to be merge before #24691, as the sample will need to be changed.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: cleanup of halide backend for 5.x #24231
Merge with https://github.com/opencv/opencv_extra/pull/1092.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add DNN-based face detection and face recognition into modules/objdetect
* Add DNN-based face detector impl and interface
* Add a sample for DNN-based face detector
* add recog
* add notes
* move samples from samples/cpp to samples/dnn
* add documentation for dnn_face
* add set/get methods for input size, nms & score threshold and topk
* remove the DNN prefix from the face detector and face recognizer
* remove default values in the constructor of impl
* regenerate priors after setting input size
* two filenames for readnet
* Update face.hpp
* Update face_recognize.cpp
* Update face_match.cpp
* Update face.hpp
* Update face_recognize.cpp
* Update face_match.cpp
* Update face_recognize.cpp
* Update dnn_face.markdown
* Update dnn_face.markdown
* Update face.hpp
* Update dnn_face.markdown
* add regression test for face detection
* remove underscore prefix; fix warnings
* add reference & acknowledgement for face detection
* Update dnn_face.markdown
* Update dnn_face.markdown
* Update ts.hpp
* Update test_face.cpp
* Update face_match.cpp
* fix a compile error for python interface; add python examples for face detection and recognition
* Major changes for Vadim's comments:
* Replace class name FaceDetector with FaceDetectorYN in related failes
* Declare local mat before loop in modules/objdetect/src/face_detect.cpp
* Make input image and save flag optional in samples/dnn/face_detect(.cpp, .py)
* Add camera support in samples/dnn/face_detect(.cpp, .py)
* correct file paths for regression test
* fix convertion warnings; remove extra spaces
* update face_recog
* Update dnn_face.markdown
* Fix warnings and errors for the default CI reports:
* Remove trailing white spaces and extra new lines.
* Fix convertion warnings for windows and iOS.
* Add braces around initialization of subobjects.
* Fix warnings and errors for the default CI systems:
* Add prefix 'FR_' for each value name in enum DisType to solve the
redefinition error for iOS compilation; Modify other code accordingly
* Add bookmark '#tutorial_dnn_face' to solve warnings from doxygen
* Correct documentations to solve warnings from doxygen
* update FaceRecognizerSF
* Fix the error for CI to find ONNX models correctly
* add suffix f to float assignments
* add backend & target options for initializing face recognizer
* add checkeq for checking input size and preset size
* update test and threshold
* changes in response to alalek's comments:
* fix typos in samples/dnn/face_match.py
* import numpy before importing cv2
* add documentation to .setInputSize()
* remove extra include in face_recognize.cpp
* fix some bugs
* Update dnn_face.markdown
* update thresholds; remove useless code
* add time suffix to YuNet filename in test
* objdetect: update test code
[GSoC] High Level API and Samples for Scene Text Detection and Recognition
* APIs and samples for scene text detection and recognition
* update APIs and tutorial for Text Detection and Recognition
* API updates:
(1) put decodeType into struct Voc
(2) optimize the post-processing of DB
* sample update:
(1) add transformation into scene_text_spotting.cpp
(2) modify text_detection.cpp with API update
* update tutorial
* simplify text recognition API
update tutorial
* update impl usage in recognize() and detect()
* dnn: refactoring public API of TextRecognitionModel/TextDetectionModel
* update provided models
update opencv.bib
* dnn: adjust text rectangle angle
* remove points ordering operation in model.cpp
* update gts of DB test in test_model.cpp
* dnn: ensure to keep text rectangle angle
- avoid 90/180 degree turns
* dnn(text): use quadrangle result in TextDetectionModel API
* dnn: update Text Detection API
(1) keep points' order consistent with (bl, tl, tr, br) in unclip
(2) update contourScore with boundingRect