opencv/samples/dnn
Liubov Batanina 4b35112022 Update sample
2020-01-24 16:30:10 +03:00
..
face_detector FIx misc. source and comment typos 2019-08-15 13:09:52 +03:00
action_recognition.py Merge pull request #14627 from l-bat:demo_kinetics 2019-05-30 17:36:00 +03:00
classification.cpp Add a file with preprocessing parameters for deep learning networks 2018-09-25 18:28:37 +03:00
classification.py Add a file with preprocessing parameters for deep learning networks 2018-09-25 18:28:37 +03:00
CMakeLists.txt Merge pull request #16150 from alalek:cmake_avoid_deprecated_link_private 2019-12-13 17:52:40 +03:00
colorization.cpp samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
colorization.py Make Intel's Inference Engine backend is default if no preferable backend is specified. 2018-06-04 18:31:46 +03:00
common.hpp dnn/samples: handle not set env vars gracefully 2018-10-24 12:37:01 +02:00
common.py samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
custom_layers.hpp Merge pull request #12264 from dkurt:dnn_remove_forward_method 2018-09-06 13:26:47 +03:00
edge_detection.py Fix edge_detection.py sample for Python 3 2019-01-09 15:28:10 +03:00
fast_neural_style.py fix pylint warnings 2019-10-16 18:49:33 +03:00
human_parsing.py Update sample 2020-01-24 16:30:10 +03:00
js_face_recognition.html Fix false positives of face detection network for large faces 2019-07-25 20:09:59 +03:00
mask_rcnn.py samples: use findFile() in dnn 2018-11-16 18:08:22 +00:00
mobilenet_ssd_accuracy.py fix pylint warnings 2019-10-16 18:49:33 +03:00
models.yml dnn/samples: add googlenet to model zoo 2019-01-17 12:14:35 +01:00
object_detection.cpp Fix dnn object detection sample 2019-09-13 11:50:50 +03:00
object_detection.py Fix dnn object detection sample 2019-09-13 11:50:50 +03:00
openpose.cpp Fix openpose samples 2018-12-25 14:12:44 -01:00
openpose.py FIx misc. source and comment typos 2019-08-15 13:09:52 +03:00
README.md Remove preprocessing parameters from README 2019-04-16 13:29:33 +03:00
segmentation.cpp Add a file with preprocessing parameters for deep learning networks 2018-09-25 18:28:37 +03:00
segmentation.py Add a file with preprocessing parameters for deep learning networks 2018-09-25 18:28:37 +03:00
shrink_tf_graph_weights.py Text TensorFlow graphs parsing. MobileNet-SSD for 90 classes. 2017-10-08 22:25:29 +03:00
text_detection.cpp core: repair CV_Assert() messages 2018-08-15 17:43:10 +03:00
text_detection.py fix pylint warnings 2019-10-16 18:49:33 +03:00
tf_text_graph_common.py fix pylint warnings 2019-10-16 18:49:33 +03:00
tf_text_graph_faster_rcnn.py StridedSlice from TensorFlow 2019-05-22 12:45:52 +03:00
tf_text_graph_mask_rcnn.py Enable ResNet-based Mask-RCNN models from TensorFlow Object Detection API 2019-02-06 13:05:11 +03:00
tf_text_graph_ssd.py Resolve https://github.com/opencv/opencv/issues/15863 2019-11-24 21:59:25 +03:00

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References