2017-06-26 18:35:51 +08:00
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
# include "precomp.hpp"
# include "op_halide.hpp"
2018-02-06 16:57:35 +08:00
# include "op_inf_engine.hpp"
2019-12-02 21:16:06 +08:00
# include "ie_ngraph.hpp"
2017-06-26 18:35:51 +08:00
# include "halide_scheduler.hpp"
# include <set>
# include <algorithm>
# include <iostream>
# include <sstream>
2019-04-13 00:31:07 +08:00
# include <fstream>
2017-06-26 18:35:51 +08:00
# include <iterator>
2017-08-02 22:27:58 +08:00
# include <numeric>
2017-06-26 18:35:51 +08:00
# include <opencv2/dnn/shape_utils.hpp>
# include <opencv2/imgproc.hpp>
2022-01-26 13:00:47 +08:00
# include <opencv2/core/utils/fp_control_utils.hpp>
2018-01-08 02:38:14 +08:00
# include <opencv2/core/utils/configuration.private.hpp>
2018-02-28 20:22:20 +08:00
# include <opencv2/core/utils/logger.hpp>
2018-01-08 02:38:14 +08:00
2017-06-29 03:59:02 +08:00
namespace cv {
namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
2017-06-26 18:35:51 +08:00
2020-02-06 05:20:10 +08:00
static size_t DNN_NETWORK_DUMP = utils : : getConfigurationParameterSizeT ( " OPENCV_DNN_NETWORK_DUMP " , 0 ) ;
2018-02-12 20:07:39 +08:00
// this option is useful to run valgrind memory errors detection
2018-01-08 02:38:14 +08:00
static bool DNN_DISABLE_MEMORY_OPTIMIZATIONS = utils : : getConfigurationParameterBool ( " OPENCV_DNN_DISABLE_MEMORY_OPTIMIZATIONS " , false ) ;
2018-05-17 23:29:04 +08:00
# ifdef HAVE_OPENCL
2018-05-16 18:23:19 +08:00
static bool DNN_OPENCL_ALLOW_ALL_DEVICES = utils : : getConfigurationParameterBool ( " OPENCV_DNN_OPENCL_ALLOW_ALL_DEVICES " , false ) ;
2018-05-17 23:29:04 +08:00
# endif
2018-05-16 18:23:19 +08:00
2018-06-13 23:55:31 +08:00
static int PARAM_DNN_BACKEND_DEFAULT = ( int ) utils : : getConfigurationParameterSizeT ( " OPENCV_DNN_BACKEND_DEFAULT " ,
# ifdef HAVE_INF_ENGINE
( size_t ) DNN_BACKEND_INFERENCE_ENGINE
# else
( size_t ) DNN_BACKEND_OPENCV
# endif
) ;
2018-12-05 23:31:14 +08:00
// Additional checks (slowdowns execution!)
static bool DNN_CHECK_NAN_INF = utils : : getConfigurationParameterBool ( " OPENCV_DNN_CHECK_NAN_INF " , false ) ;
static bool DNN_CHECK_NAN_INF_DUMP = utils : : getConfigurationParameterBool ( " OPENCV_DNN_CHECK_NAN_INF_DUMP " , false ) ;
static bool DNN_CHECK_NAN_INF_RAISE_ERROR = utils : : getConfigurationParameterBool ( " OPENCV_DNN_CHECK_NAN_INF_RAISE_ERROR " , false ) ;
using std : : vector ;
using std : : map ;
using std : : make_pair ;
using std : : set ;
2020-02-06 03:22:37 +08:00
using std : : string ;
2018-12-05 23:31:14 +08:00
2018-12-05 23:11:45 +08:00
//==================================================================================================
class BackendRegistry
{
public :
typedef std : : vector < std : : pair < Backend , Target > > BackendsList ;
const BackendsList & getBackends ( ) const { return backends ; }
static BackendRegistry & getRegistry ( )
{
static BackendRegistry impl ;
return impl ;
}
2019-10-22 00:09:44 +08:00
2019-12-02 21:16:06 +08:00
# ifdef HAVE_INF_ENGINE
static inline bool checkIETarget ( Target target )
2019-10-22 00:09:44 +08:00
{
2020-01-15 21:22:00 +08:00
# if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R3)
2019-12-24 18:34:33 +08:00
// Lightweight detection
2020-03-13 23:33:27 +08:00
const std : : vector < std : : string > devices = getCore ( " " ) . GetAvailableDevices ( ) ;
2019-12-24 18:34:33 +08:00
for ( std : : vector < std : : string > : : const_iterator i = devices . begin ( ) ; i ! = devices . end ( ) ; + + i )
{
if ( std : : string : : npos ! = i - > find ( " MYRIAD " ) & & target = = DNN_TARGET_MYRIAD )
return true ;
else if ( std : : string : : npos ! = i - > find ( " FPGA " ) & & target = = DNN_TARGET_FPGA )
return true ;
else if ( std : : string : : npos ! = i - > find ( " CPU " ) & & target = = DNN_TARGET_CPU )
return true ;
else if ( std : : string : : npos ! = i - > find ( " GPU " ) & & ( target = = DNN_TARGET_OPENCL | | target = = DNN_TARGET_OPENCL_FP16 ) )
return true ;
}
return false ;
# else
2019-10-22 00:09:44 +08:00
cv : : dnn : : Net net ;
cv : : dnn : : LayerParams lp ;
lp . set ( " kernel_size " , 1 ) ;
lp . set ( " num_output " , 1 ) ;
lp . set ( " bias_term " , false ) ;
lp . type = " Convolution " ;
lp . name = " testLayer " ;
lp . blobs . push_back ( Mat ( { 1 , 2 , 1 , 1 } , CV_32F , Scalar ( 1 ) ) ) ;
net . addLayerToPrev ( lp . name , lp . type , lp ) ;
net . setPreferableBackend ( cv : : dnn : : DNN_BACKEND_INFERENCE_ENGINE ) ;
net . setPreferableTarget ( target ) ;
static int inpDims [ ] = { 1 , 2 , 3 , 4 } ;
net . setInput ( cv : : Mat ( 4 , & inpDims [ 0 ] , CV_32FC1 , cv : : Scalar ( 0 ) ) ) ;
try
{
net . forward ( ) ;
}
2019-12-02 21:16:06 +08:00
catch ( const std : : exception & e )
2019-10-22 00:09:44 +08:00
{
2019-12-02 21:16:06 +08:00
CV_LOG_INFO ( NULL , " checkIETarget( " < < ( int ) target < < " ) has failed with message: " < < e . what ( ) ) ;
2019-10-22 00:09:44 +08:00
return false ;
}
return true ;
2019-12-24 18:34:33 +08:00
# endif
2019-10-22 00:09:44 +08:00
}
2019-12-02 21:16:06 +08:00
# endif
2019-10-22 00:09:44 +08:00
2018-12-05 23:11:45 +08:00
private :
BackendRegistry ( )
{
# ifdef HAVE_HALIDE
backends . push_back ( std : : make_pair ( DNN_BACKEND_HALIDE , DNN_TARGET_CPU ) ) ;
# ifdef HAVE_OPENCL
if ( cv : : ocl : : useOpenCL ( ) )
backends . push_back ( std : : make_pair ( DNN_BACKEND_HALIDE , DNN_TARGET_OPENCL ) ) ;
# endif
# endif // HAVE_HALIDE
# ifdef HAVE_INF_ENGINE
2019-12-02 21:16:06 +08:00
if ( checkIETarget ( DNN_TARGET_CPU ) ) {
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 , DNN_TARGET_CPU ) ) ;
2020-03-03 16:01:44 +08:00
# endif
2019-12-02 21:16:06 +08:00
# ifdef HAVE_DNN_NGRAPH
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH , DNN_TARGET_CPU ) ) ;
# endif
}
if ( checkIETarget ( DNN_TARGET_MYRIAD ) ) {
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 , DNN_TARGET_MYRIAD ) ) ;
2020-03-03 16:01:44 +08:00
# endif
2019-12-02 21:16:06 +08:00
# ifdef HAVE_DNN_NGRAPH
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH , DNN_TARGET_MYRIAD ) ) ;
# endif
}
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2018-12-05 23:11:45 +08:00
if ( checkIETarget ( DNN_TARGET_FPGA ) )
2019-12-02 21:16:06 +08:00
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 , DNN_TARGET_FPGA ) ) ;
2020-03-03 16:01:44 +08:00
# endif
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-12-05 23:11:45 +08:00
if ( cv : : ocl : : useOpenCL ( ) & & ocl : : Device : : getDefault ( ) . isIntel ( ) )
{
2019-12-02 21:16:06 +08:00
if ( checkIETarget ( DNN_TARGET_OPENCL ) ) {
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 , DNN_TARGET_OPENCL ) ) ;
2020-03-03 16:01:44 +08:00
# endif
2019-12-02 21:16:06 +08:00
# ifdef HAVE_DNN_NGRAPH
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH , DNN_TARGET_OPENCL ) ) ;
# endif
}
if ( checkIETarget ( DNN_TARGET_OPENCL_FP16 ) ) {
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 , DNN_TARGET_OPENCL_FP16 ) ) ;
2020-03-03 16:01:44 +08:00
# endif
2019-12-02 21:16:06 +08:00
# ifdef HAVE_DNN_NGRAPH
backends . push_back ( std : : make_pair ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH , DNN_TARGET_OPENCL_FP16 ) ) ;
# endif
}
2018-12-05 23:11:45 +08:00
}
2019-12-02 21:16:06 +08:00
# endif
2018-12-05 23:11:45 +08:00
# endif // HAVE_INF_ENGINE
# ifdef HAVE_OPENCL
if ( cv : : ocl : : useOpenCL ( ) )
{
backends . push_back ( std : : make_pair ( DNN_BACKEND_OPENCV , DNN_TARGET_OPENCL ) ) ;
backends . push_back ( std : : make_pair ( DNN_BACKEND_OPENCV , DNN_TARGET_OPENCL_FP16 ) ) ;
}
# endif
backends . push_back ( std : : make_pair ( DNN_BACKEND_OPENCV , DNN_TARGET_CPU ) ) ;
}
BackendsList backends ;
} ;
std : : vector < std : : pair < Backend , Target > > getAvailableBackends ( )
{
return BackendRegistry : : getRegistry ( ) . getBackends ( ) ;
}
std : : vector < Target > getAvailableTargets ( Backend be )
{
2018-12-05 23:31:14 +08:00
if ( be = = DNN_BACKEND_DEFAULT )
be = ( Backend ) PARAM_DNN_BACKEND_DEFAULT ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_INF_ENGINE
if ( be = = DNN_BACKEND_INFERENCE_ENGINE )
be = getInferenceEngineBackendTypeParam ( ) ;
# endif
2018-12-05 23:31:14 +08:00
2018-12-05 23:11:45 +08:00
std : : vector < Target > result ;
const BackendRegistry : : BackendsList all_backends = getAvailableBackends ( ) ;
for ( BackendRegistry : : BackendsList : : const_iterator i = all_backends . begin ( ) ; i ! = all_backends . end ( ) ; + + i )
{
if ( i - > first = = be )
result . push_back ( i - > second ) ;
}
return result ;
}
//==================================================================================================
2017-06-26 18:35:51 +08:00
namespace
{
struct LayerShapes
{
ShapesVec in , out , internal ;
// No guarantees that layer which support in-place computations
// will be computed in-place (input.data_ptr == output.data_ptr).
// If layer said that it could work in-place and layers after it
// no longer use input blob, we'll set output = input.
bool supportInPlace ;
LayerShapes ( ) { supportInPlace = false ; }
} ;
}
2018-01-13 23:17:56 +08:00
Mat blobFromImage ( InputArray image , double scalefactor , const Size & size ,
2018-06-05 04:51:28 +08:00
const Scalar & mean , bool swapRB , bool crop , int ddepth )
2017-06-26 18:35:51 +08:00
{
2018-01-13 23:17:56 +08:00
CV_TRACE_FUNCTION ( ) ;
Mat blob ;
2018-06-05 04:51:28 +08:00
blobFromImage ( image , blob , scalefactor , size , mean , swapRB , crop , ddepth ) ;
2018-01-13 23:17:56 +08:00
return blob ;
2017-06-26 18:35:51 +08:00
}
2018-01-13 23:17:56 +08:00
void blobFromImage ( InputArray image , OutputArray blob , double scalefactor ,
2018-06-05 04:51:28 +08:00
const Size & size , const Scalar & mean , bool swapRB , bool crop , int ddepth )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-12-03 04:52:35 +08:00
std : : vector < Mat > images ( 1 , image . getMat ( ) ) ;
2018-06-05 04:51:28 +08:00
blobFromImages ( images , blob , scalefactor , size , mean , swapRB , crop , ddepth ) ;
2017-06-26 18:35:51 +08:00
}
2018-01-13 23:17:56 +08:00
Mat blobFromImages ( InputArrayOfArrays images , double scalefactor , Size size ,
2018-06-05 04:51:28 +08:00
const Scalar & mean , bool swapRB , bool crop , int ddepth )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2018-01-13 23:17:56 +08:00
Mat blob ;
2018-06-05 04:51:28 +08:00
blobFromImages ( images , blob , scalefactor , size , mean , swapRB , crop , ddepth ) ;
2018-01-13 23:17:56 +08:00
return blob ;
}
void blobFromImages ( InputArrayOfArrays images_ , OutputArray blob_ , double scalefactor ,
2018-06-05 04:51:28 +08:00
Size size , const Scalar & mean_ , bool swapRB , bool crop , int ddepth )
2018-01-13 23:17:56 +08:00
{
CV_TRACE_FUNCTION ( ) ;
2018-06-05 04:51:28 +08:00
CV_CheckType ( ddepth , ddepth = = CV_32F | | ddepth = = CV_8U , " Blob depth should be CV_32F or CV_8U " ) ;
if ( ddepth = = CV_8U )
{
CV_CheckEQ ( scalefactor , 1.0 , " Scaling is not supported for CV_8U blob depth " ) ;
2018-08-15 19:55:47 +08:00
CV_Assert ( mean_ = = Scalar ( ) & & " Mean subtraction is not supported for CV_8U blob depth " ) ;
2018-06-05 04:51:28 +08:00
}
2018-01-13 23:17:56 +08:00
std : : vector < Mat > images ;
images_ . getMatVector ( images ) ;
CV_Assert ( ! images . empty ( ) ) ;
2019-04-04 03:13:11 +08:00
for ( size_t i = 0 ; i < images . size ( ) ; i + + )
2017-06-26 18:35:51 +08:00
{
Size imgSize = images [ i ] . size ( ) ;
if ( size = = Size ( ) )
size = imgSize ;
if ( size ! = imgSize )
{
2017-10-11 20:46:20 +08:00
if ( crop )
{
float resizeFactor = std : : max ( size . width / ( float ) imgSize . width ,
size . height / ( float ) imgSize . height ) ;
2017-12-13 20:00:38 +08:00
resize ( images [ i ] , images [ i ] , Size ( ) , resizeFactor , resizeFactor , INTER_LINEAR ) ;
2017-10-11 20:46:20 +08:00
Rect crop ( Point ( 0.5 * ( images [ i ] . cols - size . width ) ,
0.5 * ( images [ i ] . rows - size . height ) ) ,
size ) ;
images [ i ] = images [ i ] ( crop ) ;
}
else
2017-12-13 20:00:38 +08:00
resize ( images [ i ] , images [ i ] , size , 0 , 0 , INTER_LINEAR ) ;
2017-06-26 18:35:51 +08:00
}
2018-06-05 04:51:28 +08:00
if ( images [ i ] . depth ( ) = = CV_8U & & ddepth = = CV_32F )
2017-06-26 18:35:51 +08:00
images [ i ] . convertTo ( images [ i ] , CV_32F ) ;
Scalar mean = mean_ ;
if ( swapRB )
std : : swap ( mean [ 0 ] , mean [ 2 ] ) ;
images [ i ] - = mean ;
images [ i ] * = scalefactor ;
}
2019-04-04 03:13:11 +08:00
size_t nimages = images . size ( ) ;
2017-06-26 18:35:51 +08:00
Mat image0 = images [ 0 ] ;
int nch = image0 . channels ( ) ;
CV_Assert ( image0 . dims = = 2 ) ;
if ( nch = = 3 | | nch = = 4 )
{
2017-10-27 19:06:53 +08:00
int sz [ ] = { ( int ) nimages , nch , image0 . rows , image0 . cols } ;
2018-06-05 04:51:28 +08:00
blob_ . create ( 4 , sz , ddepth ) ;
2018-01-13 23:17:56 +08:00
Mat blob = blob_ . getMat ( ) ;
2017-06-26 18:35:51 +08:00
Mat ch [ 4 ] ;
2019-04-04 03:13:11 +08:00
for ( size_t i = 0 ; i < nimages ; i + + )
2017-06-26 18:35:51 +08:00
{
2019-04-04 03:13:11 +08:00
const Mat & image = images [ i ] ;
2018-06-05 04:51:28 +08:00
CV_Assert ( image . depth ( ) = = blob_ . depth ( ) ) ;
2017-06-26 18:35:51 +08:00
nch = image . channels ( ) ;
CV_Assert ( image . dims = = 2 & & ( nch = = 3 | | nch = = 4 ) ) ;
CV_Assert ( image . size ( ) = = image0 . size ( ) ) ;
2017-10-27 19:06:53 +08:00
for ( int j = 0 ; j < nch ; j + + )
2018-06-05 04:51:28 +08:00
ch [ j ] = Mat ( image . rows , image . cols , ddepth , blob . ptr ( ( int ) i , j ) ) ;
2017-06-26 18:35:51 +08:00
if ( swapRB )
std : : swap ( ch [ 0 ] , ch [ 2 ] ) ;
split ( image , ch ) ;
}
}
else
{
CV_Assert ( nch = = 1 ) ;
int sz [ ] = { ( int ) nimages , 1 , image0 . rows , image0 . cols } ;
2018-06-05 04:51:28 +08:00
blob_ . create ( 4 , sz , ddepth ) ;
2018-01-13 23:17:56 +08:00
Mat blob = blob_ . getMat ( ) ;
2017-06-26 18:35:51 +08:00
2019-04-04 03:13:11 +08:00
for ( size_t i = 0 ; i < nimages ; i + + )
2017-06-26 18:35:51 +08:00
{
2019-04-04 03:13:11 +08:00
const Mat & image = images [ i ] ;
2018-06-05 04:51:28 +08:00
CV_Assert ( image . depth ( ) = = blob_ . depth ( ) ) ;
2017-06-26 18:35:51 +08:00
nch = image . channels ( ) ;
CV_Assert ( image . dims = = 2 & & ( nch = = 1 ) ) ;
CV_Assert ( image . size ( ) = = image0 . size ( ) ) ;
2018-06-05 04:51:28 +08:00
image . copyTo ( Mat ( image . rows , image . cols , ddepth , blob . ptr ( ( int ) i , 0 ) ) ) ;
2017-06-26 18:35:51 +08:00
}
}
}
2018-02-12 19:51:07 +08:00
void imagesFromBlob ( const cv : : Mat & blob_ , OutputArrayOfArrays images_ )
{
CV_TRACE_FUNCTION ( ) ;
//A blob is a 4 dimensional matrix in floating point precision
//blob_[0] = batchSize = nbOfImages
//blob_[1] = nbOfChannels
//blob_[2] = height
//blob_[3] = width
CV_Assert ( blob_ . depth ( ) = = CV_32F ) ;
CV_Assert ( blob_ . dims = = 4 ) ;
images_ . create ( cv : : Size ( 1 , blob_ . size [ 0 ] ) , blob_ . depth ( ) ) ;
std : : vector < Mat > vectorOfChannels ( blob_ . size [ 1 ] ) ;
for ( int n = 0 ; n < blob_ . size [ 0 ] ; + + n )
{
for ( int c = 0 ; c < blob_ . size [ 1 ] ; + + c )
{
vectorOfChannels [ c ] = getPlane ( blob_ , n , c ) ;
}
cv : : merge ( vectorOfChannels , images_ . getMatRef ( n ) ) ;
}
}
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-01-11 02:50:54 +08:00
class OpenCLBackendWrapper : public BackendWrapper
{
public :
2018-06-01 15:54:12 +08:00
OpenCLBackendWrapper ( Mat & m ) : BackendWrapper ( DNN_BACKEND_OPENCV , DNN_TARGET_OPENCL )
2018-01-11 02:50:54 +08:00
{
m . copyTo ( umat ) ;
host = & m ;
hostDirty = false ;
}
OpenCLBackendWrapper ( const Ptr < BackendWrapper > & baseBuffer , Mat & m )
2018-06-01 15:54:12 +08:00
: BackendWrapper ( DNN_BACKEND_OPENCV , DNN_TARGET_OPENCL )
2018-01-11 02:50:54 +08:00
{
Ptr < OpenCLBackendWrapper > base = baseBuffer . dynamicCast < OpenCLBackendWrapper > ( ) ;
CV_Assert ( ! base . empty ( ) ) ;
host = & m ;
int shape [ ] = { 1 , ( int ) base - > umat . total ( ) } ;
umat = base - > umat . reshape ( 1 , 2 , & shape [ 0 ] )
. colRange ( 0 , host - > total ( ) )
. reshape ( 1 , host - > dims , & host - > size [ 0 ] ) ;
hostDirty = false ;
}
static Ptr < BackendWrapper > create ( Mat & m )
{
return Ptr < BackendWrapper > ( new OpenCLBackendWrapper ( m ) ) ;
}
static Ptr < BackendWrapper > create ( const Ptr < BackendWrapper > & baseBuffer , Mat & m )
{
return Ptr < BackendWrapper > ( new OpenCLBackendWrapper ( baseBuffer , m ) ) ;
}
static std : : vector < UMat > getUMatVector ( const std : : vector < Ptr < BackendWrapper > > & wrappers )
{
const int numWrappers = wrappers . size ( ) ;
std : : vector < UMat > mats ( wrappers . size ( ) ) ;
for ( int i = 0 ; i < numWrappers ; + + i )
{
Ptr < OpenCLBackendWrapper > umatWrapper = wrappers [ i ] . dynamicCast < OpenCLBackendWrapper > ( ) ;
CV_Assert ( ! umatWrapper . empty ( ) ) ;
umatWrapper - > copyToDevice ( ) ;
mats [ i ] = umatWrapper - > umat ;
}
return mats ;
}
// Replaces all umats in wrappers to specific ones.
static void update ( const std : : vector < Ptr < BackendWrapper > > & wrappers ,
const std : : vector < UMat > & umats )
{
CV_Assert ( wrappers . size ( ) = = umats . size ( ) ) ;
for ( int i = 0 , n = umats . size ( ) ; i < n ; + + i )
{
Ptr < OpenCLBackendWrapper > umatWrapper = wrappers [ i ] . dynamicCast < OpenCLBackendWrapper > ( ) ;
CV_Assert ( ! umatWrapper . empty ( ) ) ;
umatWrapper - > umat = umats [ i ] ;
}
}
~ OpenCLBackendWrapper ( ) { }
// Copies data from device to a host memory.
2018-03-15 21:16:56 +08:00
virtual void copyToHost ( ) CV_OVERRIDE
2018-01-11 02:50:54 +08:00
{
umat . copyTo ( * host ) ;
}
2018-03-15 21:16:56 +08:00
virtual void setHostDirty ( ) CV_OVERRIDE
2018-01-11 02:50:54 +08:00
{
hostDirty = true ;
} ;
void copyToDevice ( )
{
if ( hostDirty )
{
host - > copyTo ( umat ) ;
hostDirty = false ;
}
}
private :
UMat umat ;
Mat * host ;
bool hostDirty ;
} ;
2019-12-02 21:16:06 +08:00
# endif
2018-01-11 02:50:54 +08:00
2017-06-26 18:35:51 +08:00
struct LayerPin
{
int lid ;
int oid ;
LayerPin ( int layerId = - 1 , int outputId = - 1 )
: lid ( layerId ) , oid ( outputId ) { }
bool valid ( ) const
{
return ( lid > = 0 & & oid > = 0 ) ;
}
bool equal ( const LayerPin & r ) const
{
return ( lid = = r . lid & & oid = = r . oid ) ;
}
bool operator < ( const LayerPin & r ) const
{
2018-11-15 04:25:23 +08:00
return lid < r . lid | | ( lid = = r . lid & & oid < r . oid ) ;
2017-06-26 18:35:51 +08:00
}
bool operator = = ( const LayerPin & r ) const
{
return lid = = r . lid & & oid = = r . oid ;
}
} ;
struct LayerData
{
2018-02-22 18:20:35 +08:00
LayerData ( ) : id ( - 1 ) , skip ( false ) , flag ( 0 ) { }
2017-06-26 18:35:51 +08:00
LayerData ( int _id , const String & _name , const String & _type , LayerParams & _params )
2018-01-21 02:55:25 +08:00
: id ( _id ) , name ( _name ) , type ( _type ) , params ( _params ) , skip ( false ) , flag ( 0 )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
//add logging info
params . name = name ;
params . type = type ;
}
int id ;
String name ;
String type ;
LayerParams params ;
std : : vector < LayerPin > inputBlobsId ;
std : : set < int > inputLayersId ;
std : : set < int > requiredOutputs ;
std : : vector < LayerPin > consumers ;
2017-09-06 15:34:07 +08:00
std : : vector < Ptr < BackendWrapper > > outputBlobsWrappers ;
std : : vector < Ptr < BackendWrapper > > inputBlobsWrappers ;
2018-01-11 02:50:54 +08:00
std : : vector < Ptr < BackendWrapper > > internalBlobsWrappers ;
2017-06-26 18:35:51 +08:00
Ptr < Layer > layerInstance ;
std : : vector < Mat > outputBlobs ;
std : : vector < Mat * > inputBlobs ;
std : : vector < Mat > internals ;
// Computation nodes of implemented backends (except DEFAULT).
std : : map < int , Ptr < BackendNode > > backendNodes ;
// Flag for skip layer computation for specific backend.
2018-01-21 02:55:25 +08:00
bool skip ;
2017-06-26 18:35:51 +08:00
int flag ;
Ptr < Layer > getLayerInstance ( )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( type , " type " , type . c_str ( ) ) ;
2017-06-26 18:35:51 +08:00
if ( layerInstance )
return layerInstance ;
layerInstance = LayerFactory : : createLayerInstance ( type , params ) ;
if ( ! layerInstance )
{
CV_Error ( Error : : StsError , " Can't create layer \" " + name + " \" of type \" " + type + " \" " ) ;
}
return layerInstance ;
}
} ;
//fake layer containing network input blobs
struct DataLayer : public Layer
{
2018-06-05 04:51:28 +08:00
DataLayer ( ) : Layer ( )
{
skip = false ;
}
virtual bool supportBackend ( int backendId ) CV_OVERRIDE
{
return backendId = = DNN_BACKEND_OPENCV | |
2019-12-02 21:16:06 +08:00
( backendId = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 & & inputsData . size ( ) = = 1 ) ;
2018-06-05 04:51:28 +08:00
}
2018-07-09 19:35:54 +08:00
2018-09-06 18:26:47 +08:00
void forward ( InputArrayOfArrays inputs_arr , OutputArrayOfArrays outputs_arr , OutputArrayOfArrays internals_arr ) CV_OVERRIDE
2018-07-09 19:35:54 +08:00
{
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( name , " name " , name . c_str ( ) ) ;
2021-11-28 12:29:54 +08:00
// FIXIT: add wrapper without exception suppression
2018-07-09 19:35:54 +08:00
CV_OCL_RUN ( IS_DNN_OPENCL_TARGET ( preferableTarget ) ,
2018-09-06 18:26:47 +08:00
forward_ocl ( inputs_arr , outputs_arr , internals_arr ) )
2018-07-09 19:35:54 +08:00
2021-11-28 12:29:54 +08:00
bool isFP16 = outputs_arr . depth ( ) = = CV_16S ;
2018-09-06 18:26:47 +08:00
std : : vector < Mat > outputs , internals ;
outputs_arr . getMatVector ( outputs ) ;
internals_arr . getMatVector ( internals ) ;
2018-07-09 19:35:54 +08:00
for ( int i = 0 ; i < inputsData . size ( ) ; + + i )
{
2018-06-05 04:51:28 +08:00
double scale = scaleFactors [ i ] ;
Scalar & mean = means [ i ] ;
2021-11-28 12:29:54 +08:00
2018-08-15 19:55:47 +08:00
CV_Assert ( mean = = Scalar ( ) | | inputsData [ i ] . size [ 1 ] < = 4 ) ;
2021-11-28 12:29:54 +08:00
if ( isFP16 )
CV_CheckTypeEQ ( outputs [ i ] . type ( ) , CV_16SC1 , " " ) ;
else
CV_CheckTypeEQ ( outputs [ i ] . type ( ) , CV_32FC1 , " " ) ;
2018-06-05 04:51:28 +08:00
bool singleMean = true ;
for ( int j = 1 ; j < std : : min ( 4 , inputsData [ i ] . size [ 1 ] ) & & singleMean ; + + j )
{
singleMean = mean [ j ] = = mean [ j - 1 ] ;
}
if ( singleMean )
{
2021-11-28 12:29:54 +08:00
if ( isFP16 )
{
Mat input_f32 ;
inputsData [ i ] . convertTo ( input_f32 , CV_32F , scale , - mean [ 0 ] * scale ) ;
convertFp16 ( input_f32 , outputs [ i ] ) ;
}
else
{
inputsData [ i ] . convertTo ( outputs [ i ] , CV_32F , scale , - mean [ 0 ] * scale ) ;
}
2018-06-05 04:51:28 +08:00
}
else
2018-07-09 19:35:54 +08:00
{
2018-06-05 04:51:28 +08:00
for ( int n = 0 ; n < inputsData [ i ] . size [ 0 ] ; + + n )
2021-11-28 12:29:54 +08:00
{
2018-06-05 04:51:28 +08:00
for ( int c = 0 ; c < inputsData [ i ] . size [ 1 ] ; + + c )
{
Mat inp = getPlane ( inputsData [ i ] , n , c ) ;
Mat out = getPlane ( outputs [ i ] , n , c ) ;
2021-11-28 12:29:54 +08:00
if ( isFP16 )
{
Mat input_f32 ;
inp . convertTo ( input_f32 , CV_32F , scale , - mean [ c ] * scale ) ;
convertFp16 ( input_f32 , out ) ;
}
else
{
inp . convertTo ( out , CV_32F , scale , - mean [ c ] * scale ) ;
}
2018-06-05 04:51:28 +08:00
}
2021-11-28 12:29:54 +08:00
}
2018-07-09 19:35:54 +08:00
}
}
}
# ifdef HAVE_OPENCL
bool forward_ocl ( InputArrayOfArrays , OutputArrayOfArrays outputs_ , OutputArrayOfArrays internals_ )
{
2021-11-28 12:29:54 +08:00
bool isFP16 = outputs_ . depth ( ) = = CV_16S ;
2018-06-05 04:51:28 +08:00
std : : vector < UMat > outputs ;
outputs_ . getUMatVector ( outputs ) ;
for ( int i = 0 ; i < inputsData . size ( ) ; + + i )
2018-07-09 19:35:54 +08:00
{
2018-10-05 22:06:50 +08:00
Mat inputData = inputsData [ i ] ;
2018-06-05 04:51:28 +08:00
double scale = scaleFactors [ i ] ;
Scalar & mean = means [ i ] ;
2021-11-28 12:29:54 +08:00
CV_Assert ( mean = = Scalar ( ) | | inputData . size [ 1 ] < = 4 ) ;
if ( isFP16 )
CV_CheckTypeEQ ( outputs [ i ] . type ( ) , CV_16SC1 , " " ) ;
else
CV_CheckTypeEQ ( outputs [ i ] . type ( ) , CV_32FC1 , " " ) ;
2018-06-05 04:51:28 +08:00
bool singleMean = true ;
2021-11-28 12:29:54 +08:00
for ( int j = 1 ; j < std : : min ( 4 , inputData . size [ 1 ] ) & & singleMean ; + + j )
2018-07-09 19:35:54 +08:00
{
2018-06-05 04:51:28 +08:00
singleMean = mean [ j ] = = mean [ j - 1 ] ;
}
2021-11-28 12:29:54 +08:00
if ( singleMean )
2018-06-05 04:51:28 +08:00
{
2021-11-28 12:29:54 +08:00
if ( isFP16 )
2018-10-05 22:06:50 +08:00
{
2021-11-28 12:29:54 +08:00
UMat input_i ;
inputData . convertTo ( input_i , CV_32F , scale , - mean [ 0 ] * scale ) ;
convertFp16 ( input_i , outputs [ i ] ) ;
2018-10-05 22:06:50 +08:00
}
2018-06-05 04:51:28 +08:00
else
{
2021-11-28 12:29:54 +08:00
inputData . convertTo ( outputs [ i ] , CV_32F , scale , - mean [ 0 ] * scale ) ;
2018-06-05 04:51:28 +08:00
}
}
else
{
2021-11-28 12:29:54 +08:00
for ( int n = 0 ; n < inputData . size [ 0 ] ; + + n )
2018-06-05 04:51:28 +08:00
{
2021-11-28 12:29:54 +08:00
for ( int c = 0 ; c < inputData . size [ 1 ] ; + + c )
{
Mat inp = getPlane ( inputData , n , c ) ;
2018-06-05 04:51:28 +08:00
2021-11-28 12:29:54 +08:00
std : : vector < cv : : Range > plane ( 4 , Range : : all ( ) ) ;
plane [ 0 ] = Range ( n , n + 1 ) ;
plane [ 1 ] = Range ( c , c + 1 ) ;
UMat out = outputs [ i ] ( plane ) . reshape ( 1 , inp . dims , inp . size ) ;
2018-06-05 04:51:28 +08:00
2021-11-28 12:29:54 +08:00
if ( isFP16 )
{
UMat input_i ;
inp . convertTo ( input_i , CV_32F , scale , - mean [ c ] * scale ) ;
convertFp16 ( input_i , out ) ;
}
else
{
2018-06-05 04:51:28 +08:00
inp . convertTo ( out , CV_32F , scale , - mean [ c ] * scale ) ;
}
2021-11-28 12:29:54 +08:00
}
2018-06-05 04:51:28 +08:00
}
2018-07-09 19:35:54 +08:00
}
}
return true ;
}
# endif
2017-06-26 18:35:51 +08:00
2018-03-15 21:16:56 +08:00
int outputNameToIndex ( const String & tgtName ) CV_OVERRIDE
2017-06-26 18:35:51 +08:00
{
int idx = ( int ) ( std : : find ( outNames . begin ( ) , outNames . end ( ) , tgtName ) - outNames . begin ( ) ) ;
return ( idx < ( int ) outNames . size ( ) ) ? idx : - 1 ;
}
void setNames ( const std : : vector < String > & names )
{
outNames . assign ( names . begin ( ) , names . end ( ) ) ;
2020-02-22 03:39:54 +08:00
shapes . clear ( ) ; shapes . resize ( outNames . size ( ) ) ;
}
void setInputShape ( const String & tgtName , const MatShape & shape )
{
std : : vector < String > : : const_iterator it = std : : find ( outNames . begin ( ) , outNames . end ( ) , tgtName ) ;
CV_Check ( tgtName , it ! = outNames . end ( ) , " Unknown input " ) ;
int idx = ( int ) ( it - outNames . begin ( ) ) ;
CV_Assert ( idx < ( int ) shapes . size ( ) ) ;
CV_Check ( tgtName , shapes [ idx ] . empty ( ) , " Input shape redefinition is not allowed " ) ;
shapes [ idx ] = shape ;
2017-06-26 18:35:51 +08:00
}
2017-11-02 21:21:06 +08:00
bool getMemoryShapes ( const std : : vector < MatShape > & inputs ,
const int requiredOutputs ,
std : : vector < MatShape > & outputs ,
2018-03-15 21:16:56 +08:00
std : : vector < MatShape > & internals ) const CV_OVERRIDE
2017-11-02 21:21:06 +08:00
{
CV_Assert ( inputs . size ( ) = = requiredOutputs ) ;
outputs . assign ( inputs . begin ( ) , inputs . end ( ) ) ;
return false ;
}
2018-09-06 18:26:47 +08:00
virtual void finalize ( InputArrayOfArrays , OutputArrayOfArrays outputs_arr ) CV_OVERRIDE
2018-06-05 04:51:28 +08:00
{
2018-09-06 18:26:47 +08:00
std : : vector < Mat > outputs ;
outputs_arr . getMatVector ( outputs ) ;
2018-08-15 19:55:47 +08:00
CV_Assert_N ( outputs . size ( ) = = scaleFactors . size ( ) , outputs . size ( ) = = means . size ( ) ,
2018-06-05 04:51:28 +08:00
inputsData . size ( ) = = outputs . size ( ) ) ;
skip = true ;
for ( int i = 0 ; skip & & i < inputsData . size ( ) ; + + i )
{
if ( inputsData [ i ] . data ! = outputs [ i ] . data | | scaleFactors [ i ] ! = 1.0 | | means [ i ] ! = Scalar ( ) )
skip = false ;
}
}
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2018-06-05 04:51:28 +08:00
virtual Ptr < BackendNode > initInfEngine ( const std : : vector < Ptr < BackendWrapper > > & ) CV_OVERRIDE
{
2018-08-22 21:04:40 +08:00
CV_CheckEQ ( inputsData . size ( ) , ( size_t ) 1 , " " ) ;
CV_CheckEQ ( inputsData [ 0 ] . dims , 4 , " " ) ;
2018-06-05 04:51:28 +08:00
const size_t numChannels = inputsData [ 0 ] . size [ 1 ] ;
CV_Assert ( numChannels < = 4 ) ;
// Scale
2019-08-07 03:20:26 +08:00
InferenceEngine : : TensorDesc td ( InferenceEngine : : Precision : : FP32 , { numChannels } ,
InferenceEngine : : Layout : : C ) ;
auto weights = InferenceEngine : : make_shared_blob < float > ( td ) ;
2018-06-05 04:51:28 +08:00
weights - > allocate ( ) ;
2019-08-07 03:20:26 +08:00
float * weight_buf = weights - > buffer ( ) . as < float * > ( ) ;
std : : fill ( weight_buf , weight_buf + numChannels , scaleFactors [ 0 ] ) ;
2018-06-05 04:51:28 +08:00
// Mean subtraction
2019-08-07 03:20:26 +08:00
auto biases = InferenceEngine : : make_shared_blob < float > ( td ) ;
2018-06-05 04:51:28 +08:00
biases - > allocate ( ) ;
2019-08-07 03:20:26 +08:00
float * bias_buf = biases - > buffer ( ) . as < float * > ( ) ;
2018-06-05 04:51:28 +08:00
for ( int i = 0 ; i < numChannels ; + + i )
{
2019-08-07 03:20:26 +08:00
bias_buf [ i ] = - means [ 0 ] [ i ] * scaleFactors [ 0 ] ;
2018-06-05 04:51:28 +08:00
}
2019-02-14 18:30:30 +08:00
InferenceEngine : : Builder : : Layer ieLayer = InferenceEngine : : Builder : : ScaleShiftLayer ( name ) ;
addConstantData ( " weights " , weights , ieLayer ) ;
addConstantData ( " biases " , biases , ieLayer ) ;
2018-06-05 04:51:28 +08:00
return Ptr < BackendNode > ( new InfEngineBackendNode ( ieLayer ) ) ;
}
2020-03-03 16:01:44 +08:00
# endif // HAVE_DNN_IE_NN_BUILDER_2019
2018-06-05 04:51:28 +08:00
2017-06-26 18:35:51 +08:00
std : : vector < String > outNames ;
2020-02-22 03:39:54 +08:00
std : : vector < MatShape > shapes ;
2018-06-05 04:51:28 +08:00
// Preprocessing parameters for each network's input.
std : : vector < double > scaleFactors ;
std : : vector < Scalar > means ;
2018-07-09 19:35:54 +08:00
std : : vector < Mat > inputsData ;
2018-06-05 04:51:28 +08:00
bool skip ;
2017-06-26 18:35:51 +08:00
} ;
struct BlobManager
{
public :
// Increase references counter to layer output.
void addReference ( const LayerPin & lp )
{
std : : map < LayerPin , int > : : iterator it = refCounter . find ( lp ) ;
if ( it = = refCounter . end ( ) )
refCounter [ lp ] = 1 ;
else
it - > second + = 1 ;
}
void addReferences ( const std : : vector < LayerPin > & pins )
{
for ( int i = 0 ; i < pins . size ( ) ; i + + )
{
addReference ( pins [ i ] ) ;
}
}
// Returns number of references to allocated memory that used in specific
// layer blob.
int numReferences ( const LayerPin & lp )
{
2022-01-12 11:46:13 +08:00
std : : map < LayerPin , LayerPin > : : const_iterator mapIt = reuseMap . find ( lp ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( mapIt ! = reuseMap . end ( ) ) ;
LayerPin memHost = mapIt - > second ;
2022-01-12 11:46:13 +08:00
std : : map < LayerPin , int > : : const_iterator refIt = refCounter . find ( memHost ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( refIt ! = refCounter . end ( ) ) ;
return refIt - > second ;
}
// Reuse data allocated in <host> inside the <user> blob.
void reuse ( const LayerPin & host , const LayerPin & user )
{
CV_Assert ( reuseMap . find ( user ) = = reuseMap . end ( ) ) ;
CV_Assert ( reuseMap . find ( host ) ! = reuseMap . end ( ) ) ;
LayerPin memHost = reuseMap [ host ] ;
reuseMap [ user ] = memHost ;
if ( refCounter . find ( memHost ) ! = refCounter . end ( ) )
{
std : : map < LayerPin , int > : : iterator userRefIt = refCounter . find ( user ) ;
if ( userRefIt ! = refCounter . end ( ) )
{
refCounter [ memHost ] + = userRefIt - > second ;
refCounter . erase ( userRefIt ) ;
}
else
refCounter [ memHost ] + = 1 ;
}
}
// Decrease references counter to allocated memory inside specific blob.
void releaseReference ( const LayerPin & lp )
{
2022-01-12 11:46:13 +08:00
std : : map < LayerPin , LayerPin > : : const_iterator mapIt = reuseMap . find ( lp ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( mapIt ! = reuseMap . end ( ) ) ;
std : : map < LayerPin , int > : : iterator refIt = refCounter . find ( mapIt - > second ) ;
CV_Assert ( refIt ! = refCounter . end ( ) ) ;
CV_Assert ( refIt - > second > 0 ) ;
refIt - > second - = 1 ;
}
void releaseReferences ( const std : : vector < LayerPin > & pins )
{
for ( int i = 0 ; i < pins . size ( ) ; i + + )
{
releaseReference ( pins [ i ] ) ;
}
}
2018-08-27 20:45:44 +08:00
void reuseOrCreate ( const MatShape & shape , const LayerPin & lp , Mat & dst , bool use_half )
2017-06-26 18:35:51 +08:00
{
2018-08-27 20:45:44 +08:00
if ( ! DNN_DISABLE_MEMORY_OPTIMIZATIONS )
2018-01-08 02:38:14 +08:00
{
Mat bestBlob ;
LayerPin bestBlobPin ;
2017-07-04 22:23:47 +08:00
2022-01-12 11:46:13 +08:00
std : : map < LayerPin , Mat > : : const_iterator hostIt ;
std : : map < LayerPin , int > : : const_iterator refIt ;
2017-07-04 22:23:47 +08:00
2018-01-08 02:38:14 +08:00
const int targetTotal = total ( shape ) ;
int bestBlobTotal = INT_MAX ;
2017-07-04 22:23:47 +08:00
2018-01-08 02:38:14 +08:00
for ( hostIt = memHosts . begin ( ) ; hostIt ! = memHosts . end ( ) ; + + hostIt )
2017-06-26 18:35:51 +08:00
{
2018-01-08 02:38:14 +08:00
refIt = refCounter . find ( hostIt - > first ) ;
// Use only blobs that had references before because if not,
// it might be used as output.
if ( refIt ! = refCounter . end ( ) & & refIt - > second = = 0 )
2017-06-26 18:35:51 +08:00
{
2022-01-12 11:46:13 +08:00
const Mat & unusedBlob = hostIt - > second ;
2018-01-08 02:38:14 +08:00
if ( unusedBlob . total ( ) > = targetTotal & &
unusedBlob . total ( ) < bestBlobTotal )
{
bestBlobPin = hostIt - > first ;
bestBlob = unusedBlob ;
bestBlobTotal = unusedBlob . total ( ) ;
}
2017-06-26 18:35:51 +08:00
}
}
2018-01-08 02:38:14 +08:00
if ( ! bestBlob . empty ( ) )
{
reuse ( bestBlobPin , lp ) ;
dst = bestBlob . reshape ( 1 , 1 ) . colRange ( 0 , targetTotal ) . reshape ( 1 , shape ) ;
return ;
}
2017-06-26 18:35:51 +08:00
}
2018-01-08 02:38:14 +08:00
2017-06-26 18:35:51 +08:00
{
// if dst already has been allocated with total(shape) elements,
2018-06-03 07:21:08 +08:00
// it won't be recreated and pointer of dst.data remains the same.
2018-04-26 19:20:16 +08:00
dst . create ( shape , use_half ? CV_16S : CV_32F ) ;
2017-06-26 18:35:51 +08:00
addHost ( lp , dst ) ;
}
}
void allocateBlobsForLayer ( LayerData & ld , const LayerShapes & layerShapes ,
2018-02-06 16:57:35 +08:00
std : : vector < LayerPin > & pinsForInternalBlobs ,
2018-08-27 20:45:44 +08:00
bool use_half = false )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
pinsForInternalBlobs . clear ( ) ;
std : : vector < Mat > & outputBlobs = ld . outputBlobs ,
& internalBlobs = ld . internals ;
const ShapesVec & outShapes = layerShapes . out ,
internalShapes = layerShapes . internal ;
outputBlobs . resize ( std : : max ( ( size_t ) 1 , outShapes . size ( ) ) ) ; //layer produce at least one output blob
internalBlobs . resize ( internalShapes . size ( ) ) ;
CV_Assert ( ld . requiredOutputs . size ( ) < = outShapes . size ( ) ) ;
// Check that layer could work in-place.
bool inPlace = false ;
if ( layerShapes . supportInPlace )
{
if ( ld . inputBlobs . size ( ) = = 1 )
{
// Get number of references to the input memory.
int numRef = numReferences ( ld . inputBlobsId [ 0 ] ) ;
// If current layer is one and only customer of this blob.
inPlace = numRef = = 1 ;
}
}
ShapesVec shapes ( outShapes ) ;
shapes . insert ( shapes . end ( ) , internalShapes . begin ( ) , internalShapes . end ( ) ) ;
std : : vector < Mat * > blobs ;
for ( int i = 0 ; i < outputBlobs . size ( ) ; i + + )
{
blobs . push_back ( & outputBlobs [ i ] ) ;
}
for ( int i = 0 ; i < internalBlobs . size ( ) ; i + + )
{
blobs . push_back ( & internalBlobs [ i ] ) ;
if ( total ( internalShapes [ i ] ) )
{
pinsForInternalBlobs . push_back ( LayerPin ( ld . id , ld . outputBlobs . size ( ) + i ) ) ;
}
}
addReferences ( pinsForInternalBlobs ) ;
std : : map < int , std : : vector < int > > idxSizes ;
for ( int i = 0 ; i < shapes . size ( ) ; i + + )
{
idxSizes [ total ( shapes [ i ] ) ] . push_back ( i ) ;
}
std : : map < int , std : : vector < int > > : : reverse_iterator it ;
for ( it = idxSizes . rbegin ( ) ; it ! = idxSizes . rend ( ) ; it + + )
{
for ( int j = 0 ; j < it - > second . size ( ) ; j + + )
{
int index = it - > second [ j ] ;
if ( total ( shapes [ index ] ) )
{
LayerPin blobPin ( ld . id , index ) ;
2017-12-28 21:04:09 +08:00
if ( index < outShapes . size ( ) & & inPlace )
2017-06-26 18:35:51 +08:00
{
2018-01-11 02:50:54 +08:00
CV_Assert ( ld . inputBlobs [ 0 ] - > total ( ) = = total ( shapes [ index ] ) ) ;
ld . outputBlobs [ index ] = ld . inputBlobs [ 0 ] - > reshape ( 1 , shapes [ index ] ) ;
2017-06-26 18:35:51 +08:00
reuse ( ld . inputBlobsId [ 0 ] , blobPin ) ;
}
else
2018-08-27 20:45:44 +08:00
reuseOrCreate ( shapes [ index ] , blobPin , * blobs [ index ] , use_half ) ;
2017-06-26 18:35:51 +08:00
}
}
}
}
// Clear internal state. Calls before an every reallocation.
void reset ( )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
refCounter . clear ( ) ;
reuseMap . clear ( ) ;
memHosts . clear ( ) ;
}
private :
// Register allocated memory.
void addHost ( const LayerPin & lp , const Mat & mat )
{
CV_Assert ( memHosts . find ( lp ) = = memHosts . end ( ) ) ;
reuseMap [ lp ] = lp ;
memHosts [ lp ] = mat ;
}
std : : map < LayerPin , int > refCounter ;
// Maps pin to origin blob (for whom memory was allocated firstly).
// For origin blobs key == value.
std : : map < LayerPin , LayerPin > reuseMap ;
std : : map < LayerPin , Mat > memHosts ;
} ;
2018-01-11 02:50:54 +08:00
static Ptr < BackendWrapper > wrapMat ( int backendId , int targetId , cv : : Mat & m )
2017-09-06 15:34:07 +08:00
{
2018-06-01 15:54:12 +08:00
if ( backendId = = DNN_BACKEND_OPENCV )
2017-09-06 15:34:07 +08:00
{
2018-01-11 02:50:54 +08:00
if ( targetId = = DNN_TARGET_CPU )
return Ptr < BackendWrapper > ( ) ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-04-26 19:20:16 +08:00
else if ( IS_DNN_OPENCL_TARGET ( targetId ) )
2018-01-11 02:50:54 +08:00
return OpenCLBackendWrapper : : create ( m ) ;
2019-12-02 21:16:06 +08:00
# endif
2018-01-11 02:50:54 +08:00
else
2019-12-02 21:16:06 +08:00
CV_Error ( Error : : StsNotImplemented , " Unknown/unsupported target identifier " ) ;
2017-09-06 15:34:07 +08:00
}
else if ( backendId = = DNN_BACKEND_HALIDE )
{
CV_Assert ( haveHalide ( ) ) ;
# ifdef HAVE_HALIDE
return Ptr < BackendWrapper > ( new HalideBackendWrapper ( targetId , m ) ) ;
# endif // HAVE_HALIDE
2018-02-06 16:57:35 +08:00
}
2019-12-02 21:16:06 +08:00
else if ( backendId = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 )
2018-02-06 16:57:35 +08:00
{
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2018-02-06 16:57:35 +08:00
return Ptr < BackendWrapper > ( new InfEngineBackendWrapper ( targetId , m ) ) ;
2019-12-02 21:16:06 +08:00
# else
2020-03-03 16:01:44 +08:00
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built without Inference Engine NN Builder API support " ) ;
2019-12-02 21:16:06 +08:00
# endif
}
else if ( backendId = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH )
{
# ifdef HAVE_DNN_NGRAPH
return Ptr < BackendWrapper > ( new NgraphBackendWrapper ( targetId , m ) ) ;
# else
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built without support of Inference Engine + nGraph " ) ;
# endif
2017-09-06 15:34:07 +08:00
}
else
CV_Error ( Error : : StsNotImplemented , " Unknown backend identifier " ) ;
2019-12-02 21:16:06 +08:00
return Ptr < BackendWrapper > ( ) ; // TODO Error?
2017-09-06 15:34:07 +08:00
}
2020-02-06 05:20:10 +08:00
static int g_networkId = 0 ;
2020-05-26 20:45:55 +08:00
detail : : NetImplBase : : NetImplBase ( )
: networkId ( CV_XADD ( & g_networkId , 1 ) )
, networkDumpCounter ( 0 )
, dumpLevel ( DNN_NETWORK_DUMP )
{
// nothing
}
2022-01-12 11:46:13 +08:00
std : : string detail : : NetImplBase : : getDumpFileNameBase ( ) const
2020-05-26 20:45:55 +08:00
{
std : : string dumpFileNameBase = cv : : format ( " ocv_dnn_net_%05d_%02d " , networkId , networkDumpCounter + + ) ;
return dumpFileNameBase ;
}
struct Net : : Impl : public detail : : NetImplBase
2017-06-26 18:35:51 +08:00
{
typedef std : : map < int , LayerShapes > LayersShapesMap ;
typedef std : : map < int , LayerData > MapIdToLayerData ;
Impl ( )
{
//allocate fake net input layer
netInputLayer = Ptr < DataLayer > ( new DataLayer ( ) ) ;
LayerData & inpl = layers . insert ( make_pair ( 0 , LayerData ( ) ) ) . first - > second ;
inpl . id = 0 ;
2018-06-05 04:51:28 +08:00
netInputLayer - > name = inpl . name = " _input " ;
2017-06-26 18:35:51 +08:00
inpl . type = " __NetInputLayer__ " ;
inpl . layerInstance = netInputLayer ;
layerNameToId . insert ( std : : make_pair ( inpl . name , inpl . id ) ) ;
2017-08-02 22:27:58 +08:00
lastLayerId = 0 ;
2017-06-26 18:35:51 +08:00
netWasAllocated = false ;
2017-07-04 22:23:47 +08:00
fusion = true ;
2019-04-20 02:01:19 +08:00
isAsync = false ;
2017-06-26 18:35:51 +08:00
preferableBackend = DNN_BACKEND_DEFAULT ;
preferableTarget = DNN_TARGET_CPU ;
2018-03-17 00:27:04 +08:00
skipInfEngineInit = false ;
2020-11-17 18:31:04 +08:00
hasDynamicShapes = false ;
2017-06-26 18:35:51 +08:00
}
Ptr < DataLayer > netInputLayer ;
std : : vector < LayerPin > blobsToKeep ;
MapIdToLayerData layers ;
std : : map < String , int > layerNameToId ;
2022-01-30 03:11:58 +08:00
std : : map < std : : string , int > outputNameToId ; // use registerOutput() to populate outputs
2017-06-26 18:35:51 +08:00
BlobManager blobManager ;
int preferableBackend ;
int preferableTarget ;
String halideConfigFile ;
2018-03-17 00:27:04 +08:00
bool skipInfEngineInit ;
2020-11-17 18:31:04 +08:00
bool hasDynamicShapes ;
2017-09-06 15:34:07 +08:00
// Map host data to backend specific wrapper.
std : : map < void * , Ptr < BackendWrapper > > backendWrappers ;
2017-06-26 18:35:51 +08:00
int lastLayerId ;
bool netWasAllocated ;
2017-07-04 22:23:47 +08:00
bool fusion ;
2019-04-20 02:01:19 +08:00
bool isAsync ;
2017-08-02 22:27:58 +08:00
std : : vector < int64 > layersTimings ;
2017-06-26 18:35:51 +08:00
2018-01-11 02:50:54 +08:00
Ptr < BackendWrapper > wrap ( Mat & host )
2017-09-06 15:34:07 +08:00
{
2018-06-01 15:54:12 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV & & preferableTarget = = DNN_TARGET_CPU )
2017-09-06 15:34:07 +08:00
return Ptr < BackendWrapper > ( ) ;
MatShape shape ( host . dims ) ;
for ( int i = 0 ; i < host . dims ; + + i )
shape [ i ] = host . size [ i ] ;
void * data = host . data ;
if ( backendWrappers . find ( data ) ! = backendWrappers . end ( ) )
{
Ptr < BackendWrapper > baseBuffer = backendWrappers [ data ] ;
2018-06-01 15:54:12 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV )
2018-01-11 02:50:54 +08:00
{
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-04-26 19:20:16 +08:00
CV_Assert ( IS_DNN_OPENCL_TARGET ( preferableTarget ) ) ;
2018-01-11 02:50:54 +08:00
return OpenCLBackendWrapper : : create ( baseBuffer , host ) ;
2019-12-02 21:16:06 +08:00
# else
CV_Error ( Error : : StsInternal , " " ) ;
# endif
2018-01-11 02:50:54 +08:00
}
else if ( preferableBackend = = DNN_BACKEND_HALIDE )
2017-09-06 15:34:07 +08:00
{
CV_Assert ( haveHalide ( ) ) ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_HALIDE
2017-09-06 15:34:07 +08:00
return Ptr < BackendWrapper > ( new HalideBackendWrapper ( baseBuffer , shape ) ) ;
2019-12-02 21:16:06 +08:00
# endif
2017-09-06 15:34:07 +08:00
}
2019-12-02 21:16:06 +08:00
else if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 )
{
return wrapMat ( preferableBackend , preferableTarget , host ) ;
}
else if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH )
2018-02-06 16:57:35 +08:00
{
return wrapMat ( preferableBackend , preferableTarget , host ) ;
}
2017-09-06 15:34:07 +08:00
else
CV_Error ( Error : : StsNotImplemented , " Unknown backend identifier " ) ;
}
Ptr < BackendWrapper > wrapper = wrapMat ( preferableBackend , preferableTarget , host ) ;
backendWrappers [ data ] = wrapper ;
return wrapper ;
}
2017-10-10 22:52:55 +08:00
# ifdef HAVE_HALIDE
2017-06-26 18:35:51 +08:00
void compileHalide ( )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( preferableBackend = = DNN_BACKEND_HALIDE ) ;
HalideScheduler scheduler ( halideConfigFile ) ;
2017-10-10 22:52:55 +08:00
std : : vector < std : : reference_wrapper < LayerData > > compileList ; compileList . reserve ( 64 ) ;
for ( MapIdToLayerData : : iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
2017-06-26 18:35:51 +08:00
{
2022-01-12 11:46:13 +08:00
LayerData & ld = it - > second ;
2017-06-26 18:35:51 +08:00
Ptr < Layer > layer = ld . layerInstance ;
2018-01-21 02:55:25 +08:00
if ( layer - > supportBackend ( DNN_BACKEND_HALIDE ) & & ! ld . skip )
2017-06-26 18:35:51 +08:00
{
CV_Assert ( ! ld . backendNodes [ DNN_BACKEND_HALIDE ] . empty ( ) ) ;
bool scheduled = scheduler . process ( ld . backendNodes [ DNN_BACKEND_HALIDE ] ) ;
if ( ! scheduled )
{
// Use automatic scheduling provided by layer.
layer - > applyHalideScheduler ( ld . backendNodes [ DNN_BACKEND_HALIDE ] ,
ld . inputBlobs , ld . outputBlobs ,
preferableTarget ) ;
}
2017-10-10 22:52:55 +08:00
compileList . emplace_back ( ld ) ;
2017-06-26 18:35:51 +08:00
}
}
2017-10-10 22:52:55 +08:00
std : : atomic < int > progress ( 0 ) ;
auto fn = ( [ & ] ( ) - > void
{
for ( ; ; )
{
int id = progress . fetch_add ( 1 ) ;
if ( ( size_t ) id > = compileList . size ( ) )
return ;
const LayerData & ld = compileList [ id ] . get ( ) ;
Ptr < BackendNode > node = ld . backendNodes . find ( DNN_BACKEND_HALIDE ) - > second ;
dnn : : compileHalide ( ld . outputBlobs , node , preferableTarget ) ;
}
} ) ;
size_t num_threads = std : : min ( compileList . size ( ) , ( size_t ) std : : thread : : hardware_concurrency ( ) ) ;
num_threads = std : : max ( ( size_t ) 1u , std : : min ( ( size_t ) 8u , num_threads ) ) ;
std : : vector < std : : thread > threads ( num_threads - 1 ) ;
for ( auto & t : threads ) t = std : : thread ( fn ) ;
fn ( ) ; // process own tasks
for ( auto & t : threads ) t . join ( ) ;
2017-06-26 18:35:51 +08:00
}
2017-10-10 22:52:55 +08:00
# endif
2017-06-26 18:35:51 +08:00
void clear ( )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
MapIdToLayerData : : iterator it ;
for ( it = layers . begin ( ) ; it ! = layers . end ( ) ; it + + )
{
if ( it - > second . id ! = 0 ) {
2017-06-29 21:45:17 +08:00
it - > second . inputBlobs . clear ( ) ;
2017-06-26 18:35:51 +08:00
it - > second . outputBlobs . clear ( ) ;
it - > second . internals . clear ( ) ;
}
2018-01-21 02:55:25 +08:00
it - > second . skip = false ;
2017-06-28 16:15:22 +08:00
//it->second.consumers.clear();
Ptr < Layer > currLayer = it - > second . layerInstance ;
2017-06-26 18:35:51 +08:00
2017-06-28 16:15:22 +08:00
if ( currLayer . empty ( ) )
continue ;
2017-07-04 22:23:47 +08:00
currLayer - > unsetAttached ( ) ;
2017-06-26 18:35:51 +08:00
}
2017-08-02 22:27:58 +08:00
layersTimings . clear ( ) ;
2017-06-26 18:35:51 +08:00
}
void setUpNet ( const std : : vector < LayerPin > & blobsToKeep_ = std : : vector < LayerPin > ( ) )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2020-05-26 20:45:55 +08:00
if ( dumpLevel & & networkDumpCounter = = 0 )
2020-02-06 05:20:10 +08:00
{
dumpNetworkToFile ( ) ;
}
2018-06-01 15:54:12 +08:00
if ( preferableBackend = = DNN_BACKEND_DEFAULT )
2018-06-13 23:55:31 +08:00
preferableBackend = ( Backend ) PARAM_DNN_BACKEND_DEFAULT ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_INF_ENGINE
if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE )
preferableBackend = getInferenceEngineBackendTypeParam ( ) ;
# endif
2018-06-13 23:55:31 +08:00
2018-06-01 15:54:12 +08:00
CV_Assert ( preferableBackend ! = DNN_BACKEND_OPENCV | |
preferableTarget = = DNN_TARGET_CPU | |
preferableTarget = = DNN_TARGET_OPENCL | |
preferableTarget = = DNN_TARGET_OPENCL_FP16 ) ;
CV_Assert ( preferableBackend ! = DNN_BACKEND_HALIDE | |
preferableTarget = = DNN_TARGET_CPU | |
preferableTarget = = DNN_TARGET_OPENCL ) ;
2021-03-20 19:20:02 +08:00
# ifdef HAVE_INF_ENGINE
2019-12-02 21:16:06 +08:00
if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 | |
preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH )
{
CV_Assert (
2021-03-20 19:20:02 +08:00
( preferableTarget = = DNN_TARGET_CPU & & ( ! isArmComputePlugin ( ) | | preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ) ) | |
2018-06-01 15:54:12 +08:00
preferableTarget = = DNN_TARGET_OPENCL | |
preferableTarget = = DNN_TARGET_OPENCL_FP16 | |
2018-11-16 22:09:54 +08:00
preferableTarget = = DNN_TARGET_MYRIAD | |
2019-12-02 21:16:06 +08:00
preferableTarget = = DNN_TARGET_FPGA
) ;
}
2021-03-20 19:20:02 +08:00
# endif
2017-06-26 18:35:51 +08:00
if ( ! netWasAllocated | | this - > blobsToKeep ! = blobsToKeep_ )
{
2018-06-01 15:54:12 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV & & IS_DNN_OPENCL_TARGET ( preferableTarget ) )
2018-05-16 18:23:19 +08:00
# ifndef HAVE_OPENCL
2018-02-28 20:22:20 +08:00
{
2018-05-16 18:23:19 +08:00
CV_LOG_WARNING ( NULL , " DNN: OpenCL target is not available in this OpenCV build, switching to CPU. " ) ;
2018-02-28 20:22:20 +08:00
preferableTarget = DNN_TARGET_CPU ;
}
2018-05-16 18:23:19 +08:00
# else
{
2018-09-26 21:27:00 +08:00
if ( ! DNN_OPENCL_ALLOW_ALL_DEVICES )
2018-05-16 18:23:19 +08:00
{
2018-09-26 21:27:00 +08:00
// Current implementation is only valid for GPU (#11494)
if ( ocl : : Device : : getDefault ( ) . type ( ) ! = ocl : : Device : : TYPE_GPU )
{
CV_LOG_WARNING ( NULL , " DNN: OpenCL target is not supported with current OpenCL device (tested with GPUs only), switching to CPU. " ) ;
preferableTarget = DNN_TARGET_CPU ;
}
else if ( preferableTarget = = DNN_TARGET_OPENCL_FP16 & & ! ocl : : Device : : getDefault ( ) . isIntel ( ) )
{
CV_LOG_WARNING ( NULL ,
" DNN: OpenCL target with fp16 precision is not supported "
" with current OpenCL device (tested with Intel GPUs only), "
" switching to OpenCL with fp32 precision. " ) ;
preferableTarget = DNN_TARGET_OPENCL ;
}
2018-05-16 18:23:19 +08:00
}
}
2018-02-28 20:22:20 +08:00
# endif
2017-06-26 18:35:51 +08:00
clear ( ) ;
2021-12-23 10:37:45 +08:00
if ( hasDynamicShapes )
{
updateLayersShapes ( ) ;
}
2020-02-17 03:12:14 +08:00
this - > blobsToKeep = blobsToKeep_ ;
2017-06-26 18:35:51 +08:00
allocateLayers ( blobsToKeep_ ) ;
2018-06-05 04:51:28 +08:00
MapIdToLayerData : : iterator it = layers . find ( 0 ) ;
CV_Assert ( it ! = layers . end ( ) ) ;
it - > second . skip = netInputLayer - > skip ;
2020-02-17 03:12:14 +08:00
initBackend ( blobsToKeep_ ) ;
2017-06-26 18:35:51 +08:00
if ( ! netWasAllocated )
{
2017-10-10 22:52:55 +08:00
# ifdef HAVE_HALIDE
2017-06-26 18:35:51 +08:00
if ( preferableBackend = = DNN_BACKEND_HALIDE )
compileHalide ( ) ;
2017-10-10 22:52:55 +08:00
# else
CV_Assert ( preferableBackend ! = DNN_BACKEND_HALIDE ) ;
# endif
2017-06-26 18:35:51 +08:00
}
netWasAllocated = true ;
2020-02-06 05:20:10 +08:00
2020-05-26 20:45:55 +08:00
if ( dumpLevel )
2020-02-06 05:20:10 +08:00
{
dumpNetworkToFile ( ) ;
}
2017-06-26 18:35:51 +08:00
}
}
2022-01-12 11:46:13 +08:00
int getLayerId ( const String & layerName ) const
2017-06-26 18:35:51 +08:00
{
2022-01-12 11:46:13 +08:00
std : : map < String , int > : : const_iterator it = layerNameToId . find ( layerName ) ;
2017-06-26 18:35:51 +08:00
return ( it ! = layerNameToId . end ( ) ) ? it - > second : - 1 ;
}
2022-01-12 11:46:13 +08:00
int getLayerId ( int id ) const
2017-06-26 18:35:51 +08:00
{
2022-01-12 11:46:13 +08:00
MapIdToLayerData : : const_iterator it = layers . find ( id ) ;
2017-06-26 18:35:51 +08:00
return ( it ! = layers . end ( ) ) ? id : - 1 ;
}
2022-01-12 11:46:13 +08:00
int getLayerId ( DictValue & layerDesc ) const
2017-06-26 18:35:51 +08:00
{
if ( layerDesc . isInt ( ) )
return getLayerId ( layerDesc . get < int > ( ) ) ;
else if ( layerDesc . isString ( ) )
return getLayerId ( layerDesc . get < String > ( ) ) ;
CV_Assert ( layerDesc . isInt ( ) | | layerDesc . isString ( ) ) ;
return - 1 ;
}
2022-01-12 11:46:13 +08:00
String getLayerName ( int id ) const
2017-06-26 18:35:51 +08:00
{
2022-01-12 11:46:13 +08:00
MapIdToLayerData : : const_iterator it = layers . find ( id ) ;
2017-06-26 18:35:51 +08:00
return ( it ! = layers . end ( ) ) ? it - > second . name : " (unknown layer) " ;
}
2022-01-12 11:46:13 +08:00
LayerData & getLayerData ( int id ) const
2017-06-26 18:35:51 +08:00
{
2022-01-12 11:46:13 +08:00
MapIdToLayerData : : const_iterator it = layers . find ( id ) ;
2017-06-26 18:35:51 +08:00
if ( it = = layers . end ( ) )
CV_Error ( Error : : StsObjectNotFound , format ( " Layer with requested id=%d not found " , id ) ) ;
2022-01-12 11:46:13 +08:00
return const_cast < LayerData & > ( it - > second ) ;
2017-06-26 18:35:51 +08:00
}
2022-01-12 11:46:13 +08:00
LayerData & getLayerData ( const String & layerName ) const
2017-06-26 18:35:51 +08:00
{
int id = getLayerId ( layerName ) ;
if ( id < 0 )
2018-02-12 20:07:39 +08:00
CV_Error ( Error : : StsError , " Requested layer \" " + layerName + " \" not found " ) ;
2017-06-26 18:35:51 +08:00
return getLayerData ( id ) ;
}
2022-01-12 11:46:13 +08:00
LayerData & getLayerData ( const DictValue & layerDesc ) const
2017-06-26 18:35:51 +08:00
{
2017-07-04 22:23:47 +08:00
CV_Assert ( layerDesc . isInt ( ) | | layerDesc . isString ( ) ) ;
2017-06-26 18:35:51 +08:00
if ( layerDesc . isInt ( ) )
return getLayerData ( layerDesc . get < int > ( ) ) ;
2017-07-04 22:23:47 +08:00
else /*if (layerDesc.isString())*/
2017-06-26 18:35:51 +08:00
return getLayerData ( layerDesc . get < String > ( ) ) ;
}
static void addLayerInput ( LayerData & ld , int inNum , LayerPin from )
{
if ( ( int ) ld . inputBlobsId . size ( ) < = inNum )
{
ld . inputBlobsId . resize ( inNum + 1 ) ;
}
else
{
LayerPin storedFrom = ld . inputBlobsId [ inNum ] ;
if ( storedFrom . valid ( ) & & ! storedFrom . equal ( from ) )
2018-01-13 23:17:56 +08:00
CV_Error ( Error : : StsError , format ( " Input #%d of layer \" %s \" already was connected " ,
inNum , ld . name . c_str ( ) ) ) ;
2017-06-26 18:35:51 +08:00
}
ld . inputBlobsId [ inNum ] = from ;
}
2022-01-12 11:46:13 +08:00
int resolvePinOutputName ( LayerData & ld , const String & outName ) const
2017-06-26 18:35:51 +08:00
{
if ( outName . empty ( ) )
return 0 ;
return ld . getLayerInstance ( ) - > outputNameToIndex ( outName ) ;
}
2022-01-12 11:46:13 +08:00
LayerPin getPinByAlias ( const String & layerName ) const
2017-06-26 18:35:51 +08:00
{
LayerPin pin ;
pin . lid = ( layerName . empty ( ) ) ? 0 : getLayerId ( layerName ) ;
if ( pin . lid > = 0 )
2018-06-20 19:25:24 +08:00
pin . oid = resolvePinOutputName ( getLayerData ( pin . lid ) , layerName ) ;
2017-06-26 18:35:51 +08:00
return pin ;
}
2022-01-12 11:46:13 +08:00
std : : vector < LayerPin > getLayerOutPins ( const String & layerName ) const
2017-06-26 18:35:51 +08:00
{
int lid = ( layerName . empty ( ) ) ? 0 : getLayerId ( layerName ) ;
2022-01-12 11:46:13 +08:00
MapIdToLayerData : : const_iterator it = layers . find ( lid ) ;
if ( it = = layers . end ( ) )
CV_Error_ ( Error : : StsOutOfRange , ( " Layer #%d is not valid " , lid ) ) ;
const size_t nOutputs = it - > second . outputBlobs . size ( ) ;
2017-06-26 18:35:51 +08:00
2022-01-12 11:46:13 +08:00
std : : vector < LayerPin > pins ;
for ( int i = 0 ; i < nOutputs ; i + + )
2017-06-26 18:35:51 +08:00
{
pins . push_back ( LayerPin ( lid , i ) ) ;
}
return pins ;
}
2022-01-30 03:11:58 +08:00
int addLayer ( const String & name , const String & type , LayerParams & params )
{
if ( getLayerId ( name ) > = 0 )
{
CV_Error ( Error : : StsBadArg , " Layer \" " + name + " \" already into net " ) ;
return - 1 ;
}
int id = + + lastLayerId ;
layerNameToId . insert ( std : : make_pair ( name , id ) ) ;
layers . insert ( std : : make_pair ( id , LayerData ( id , name , type , params ) ) ) ;
if ( params . get < bool > ( " has_dynamic_shapes " , false ) )
hasDynamicShapes = true ;
return id ;
}
2017-06-26 18:35:51 +08:00
void connect ( int outLayerId , int outNum , int inLayerId , int inNum )
{
CV_Assert ( outLayerId < inLayerId ) ;
LayerData & ldOut = getLayerData ( outLayerId ) ;
LayerData & ldInp = getLayerData ( inLayerId ) ;
addLayerInput ( ldInp , inNum , LayerPin ( outLayerId , outNum ) ) ;
ldOut . requiredOutputs . insert ( outNum ) ;
ldOut . consumers . push_back ( LayerPin ( inLayerId , outNum ) ) ;
2022-01-30 03:11:58 +08:00
CV_LOG_VERBOSE ( NULL , 0 , " DNN: connect( " < < outLayerId < < " : " < < outNum < < " ==> " < < inLayerId < < " : " < < inNum < < " ) " ) ;
}
int registerOutput ( const std : : string & outputName , int layerId , int outputPort )
{
int checkLayerId = getLayerId ( outputName ) ;
if ( checkLayerId > = 0 )
{
if ( checkLayerId = = layerId )
{
if ( outputPort = = 0 )
{
// layer name correlates with its output name
CV_LOG_DEBUG ( NULL , " DNN: register output=' " < < outputName < < " ': reuse layer with the same name and id= " < < layerId < < " to be linked " ) ;
outputNameToId . insert ( std : : make_pair ( outputName , layerId ) ) ;
return checkLayerId ;
}
}
CV_Error_ ( Error : : StsBadArg , ( " Layer with name='%s' already exists id=%d (to be linked with %d:%d) " , outputName . c_str ( ) , checkLayerId , layerId , outputPort ) ) ;
}
#if 0 // TODO
if ( outputPort = = 0 )
// make alias only, need to adopt getUnconnectedOutLayers() call
# endif
LayerParams outputLayerParams ;
outputLayerParams . name = outputName ;
outputLayerParams . type = " Identity " ;
int outputLayerId = addLayer ( outputLayerParams . name , outputLayerParams . type , outputLayerParams ) ;
connect ( layerId , outputPort , outputLayerId , 0 ) ;
CV_LOG_DEBUG ( NULL , " DNN: register output=' " < < outputName < < " ' id= " < < outputLayerId < < " defined as " < < layerId < < " : " < < outputPort ) ;
outputNameToId . insert ( std : : make_pair ( outputName , outputLayerId ) ) ;
return outputLayerId ;
2017-06-26 18:35:51 +08:00
}
2020-02-17 03:12:14 +08:00
void initBackend ( const std : : vector < LayerPin > & blobsToKeep_ )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2018-06-01 15:54:12 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV )
2018-04-26 19:20:16 +08:00
CV_Assert ( preferableTarget = = DNN_TARGET_CPU | | IS_DNN_OPENCL_TARGET ( preferableTarget ) ) ;
2018-02-06 16:57:35 +08:00
else if ( preferableBackend = = DNN_BACKEND_HALIDE )
initHalideBackend ( ) ;
2019-12-02 21:16:06 +08:00
else if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 )
{
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2020-02-17 03:12:14 +08:00
initInfEngineBackend ( blobsToKeep_ ) ;
2019-12-02 21:16:06 +08:00
# else
2020-03-03 16:01:44 +08:00
CV_Assert ( false & & " This OpenCV version is built without Inference Engine NN Builder API support " ) ;
2019-12-02 21:16:06 +08:00
# endif
}
else if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH )
{
# ifdef HAVE_DNN_NGRAPH
2020-02-17 03:12:14 +08:00
initNgraphBackend ( blobsToKeep_ ) ;
2019-12-02 21:16:06 +08:00
# else
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built without support of Inference Engine + nGraph " ) ;
# endif
}
2018-02-06 16:57:35 +08:00
else
CV_Error ( Error : : StsNotImplemented , " Unknown backend identifier " ) ;
}
void initHalideBackend ( )
{
CV_TRACE_FUNCTION ( ) ;
2018-08-15 19:55:47 +08:00
CV_Assert_N ( preferableBackend = = DNN_BACKEND_HALIDE , haveHalide ( ) ) ;
2017-06-26 18:35:51 +08:00
// Iterator to current layer.
MapIdToLayerData : : iterator it = layers . begin ( ) ;
// Iterator to base layer for fusion. In example, in case of conv+bn+relu
// it'll be a conv layer.
MapIdToLayerData : : iterator baseIt = layers . begin ( ) ;
for ( ; it ! = layers . end ( ) ; it + + )
{
LayerData & ldTop = it - > second ;
Ptr < Layer > layerTop = ldTop . layerInstance ;
if ( ! layerTop - > supportBackend ( preferableBackend ) )
{
// Move base iterator to layer that don't support preferable
// backend to prevent fusion over layer of different backend.
baseIt = it ;
continue ;
}
// Try to do layers fusion.
LayerData & ldBot = baseIt - > second ;
Ptr < Layer > layerBot = ldBot . layerInstance ;
// 1. Check that bottom and top from the same backends.
if ( it ! = layers . begin ( ) & & layerBot - > supportBackend ( preferableBackend ) )
{
// 2. Check that current layer works in-place.
bool inPlace = ldTop . inputBlobs . size ( ) = = 1 & &
ldBot . outputBlobs . size ( ) = = 1 & &
ldTop . inputBlobs [ 0 ] - > data = =
ldBot . outputBlobs [ 0 ] . data ;
if ( inPlace )
{
// 3. Try to attach node.
CV_Assert ( ! ldBot . backendNodes [ preferableBackend ] . empty ( ) ) ;
Ptr < BackendNode > fusedNode =
layerTop - > tryAttach ( ldBot . backendNodes [ preferableBackend ] ) ;
if ( ! fusedNode . empty ( ) )
{
2018-01-21 02:55:25 +08:00
ldTop . skip = true ;
2017-06-26 18:35:51 +08:00
ldBot . backendNodes [ preferableBackend ] = fusedNode ;
2018-01-21 02:55:25 +08:00
ldBot . outputBlobsWrappers = ldTop . outputBlobsWrappers ;
2017-06-26 18:35:51 +08:00
continue ;
}
}
}
// No layers fusion.
2018-01-21 02:55:25 +08:00
ldTop . skip = false ;
2018-02-06 16:57:35 +08:00
ldTop . backendNodes [ DNN_BACKEND_HALIDE ] =
layerTop - > initHalide ( ldTop . inputBlobsWrappers ) ;
baseIt = it ;
}
}
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2018-02-06 21:23:18 +08:00
// Before launching Inference Engine graph we need to specify output blobs.
// This function requests output blobs based on inputs references of
// layers from default backend or layers from different graphs.
void addInfEngineNetOutputs ( LayerData & ld )
{
2019-12-02 21:16:06 +08:00
CV_TRACE_FUNCTION ( ) ;
2018-02-06 21:23:18 +08:00
Ptr < InfEngineBackendNet > layerNet ;
if ( ld . backendNodes . find ( preferableBackend ) ! = ld . backendNodes . end ( ) )
{
Ptr < BackendNode > node = ld . backendNodes [ preferableBackend ] ;
if ( ! node . empty ( ) )
{
Ptr < InfEngineBackendNode > ieNode = node . dynamicCast < InfEngineBackendNode > ( ) ;
2018-08-22 21:04:40 +08:00
CV_Assert ( ! ieNode . empty ( ) ) ; CV_Assert ( ! ieNode - > net . empty ( ) ) ;
2018-02-06 21:23:18 +08:00
layerNet = ieNode - > net ;
}
}
// For an every input reference we check that it belongs to one of
// the Inference Engine backend graphs. Request an output blob if it is.
// Do nothing if layer's input is from the same graph.
for ( int i = 0 ; i < ld . inputBlobsId . size ( ) ; + + i )
{
LayerData & inpLd = layers [ ld . inputBlobsId [ i ] . lid ] ;
Ptr < BackendNode > inpNode = inpLd . backendNodes [ preferableBackend ] ;
if ( ! inpNode . empty ( ) )
{
Ptr < InfEngineBackendNode > ieInpNode = inpNode . dynamicCast < InfEngineBackendNode > ( ) ;
2018-08-22 21:04:40 +08:00
CV_Assert ( ! ieInpNode . empty ( ) ) ; CV_Assert ( ! ieInpNode - > net . empty ( ) ) ;
2018-02-06 21:23:18 +08:00
if ( layerNet ! = ieInpNode - > net )
{
// layerNet is empty or nodes are from different graphs.
2019-01-14 14:55:44 +08:00
ieInpNode - > net - > addOutput ( ieInpNode - > layer . getName ( ) ) ;
2018-02-06 21:23:18 +08:00
}
}
}
}
2020-02-17 03:12:14 +08:00
void initInfEngineBackend ( const std : : vector < LayerPin > & blobsToKeep_ )
2018-02-06 16:57:35 +08:00
{
CV_TRACE_FUNCTION ( ) ;
2019-12-02 21:16:06 +08:00
CV_Assert_N ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 , haveInfEngine ( ) ) ;
2018-02-06 16:57:35 +08:00
MapIdToLayerData : : iterator it ;
Ptr < InfEngineBackendNet > net ;
2018-03-17 00:27:04 +08:00
2018-06-05 04:51:28 +08:00
for ( it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
{
LayerData & ld = it - > second ;
if ( ld . id = = 0 )
{
CV_Assert ( ( netInputLayer - > outNames . empty ( ) & & ld . outputBlobsWrappers . size ( ) = = 1 ) | |
( netInputLayer - > outNames . size ( ) = = ld . outputBlobsWrappers . size ( ) ) ) ;
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = infEngineDataNode ( ld . outputBlobsWrappers [ i ] ) ;
2019-08-07 03:20:26 +08:00
# if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
2018-06-05 04:51:28 +08:00
dataPtr - > name = netInputLayer - > outNames . empty ( ) ? ld . name : netInputLayer - > outNames [ i ] ;
2019-08-07 03:20:26 +08:00
# else
dataPtr - > setName ( netInputLayer - > outNames . empty ( ) ? ld . name : netInputLayer - > outNames [ i ] ) ;
# endif
2018-06-05 04:51:28 +08:00
}
}
else
{
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = infEngineDataNode ( ld . outputBlobsWrappers [ i ] ) ;
2019-08-07 03:20:26 +08:00
# if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
2018-06-05 04:51:28 +08:00
dataPtr - > name = ld . name ;
2019-08-07 03:20:26 +08:00
# else
dataPtr - > setName ( ld . name ) ;
# endif
2018-06-05 04:51:28 +08:00
}
}
}
2018-03-17 00:27:04 +08:00
if ( skipInfEngineInit )
{
Ptr < BackendNode > node = layers [ lastLayerId ] . backendNodes [ preferableBackend ] ;
CV_Assert ( ! node . empty ( ) ) ;
Ptr < InfEngineBackendNode > ieNode = node . dynamicCast < InfEngineBackendNode > ( ) ;
CV_Assert ( ! ieNode . empty ( ) ) ;
2020-04-19 00:42:48 +08:00
ieNode - > net - > reset ( ) ;
2018-03-17 00:27:04 +08:00
for ( it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
{
LayerData & ld = it - > second ;
2018-06-05 04:51:28 +08:00
if ( ld . id = = 0 )
2018-03-17 00:27:04 +08:00
{
2018-06-05 04:51:28 +08:00
for ( int i = 0 ; i < ld . inputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = infEngineDataNode ( ld . inputBlobsWrappers [ i ] ) ;
2019-08-07 03:20:26 +08:00
# if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
2018-06-05 04:51:28 +08:00
dataPtr - > name = netInputLayer - > outNames [ i ] ;
2019-08-07 03:20:26 +08:00
# else
dataPtr - > setName ( netInputLayer - > outNames [ i ] ) ;
# endif
2018-06-05 04:51:28 +08:00
}
}
else
{
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = infEngineDataNode ( ld . outputBlobsWrappers [ i ] ) ;
2019-08-07 03:20:26 +08:00
# if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2019010000)
2018-06-05 04:51:28 +08:00
dataPtr - > name = ld . name ;
2019-08-07 03:20:26 +08:00
# else
dataPtr - > setName ( ld . name ) ;
# endif
2018-06-05 04:51:28 +08:00
}
2018-03-17 00:27:04 +08:00
}
ieNode - > net - > addBlobs ( ld . inputBlobsWrappers ) ;
ieNode - > net - > addBlobs ( ld . outputBlobsWrappers ) ;
ld . skip = true ;
}
layers [ lastLayerId ] . skip = false ;
2019-12-02 21:16:06 +08:00
ieNode - > net - > init ( ( Target ) preferableTarget ) ;
2018-03-17 00:27:04 +08:00
return ;
}
// Build Inference Engine networks from sets of layers that support this
// backend. Split a whole model on several Inference Engine networks if
2019-01-14 14:55:44 +08:00
// some of layers are not implemented.
2018-03-17 00:27:04 +08:00
2019-10-22 00:09:44 +08:00
bool supportsCPUFallback = preferableTarget = = DNN_TARGET_CPU | |
BackendRegistry : : checkIETarget ( DNN_TARGET_CPU ) ;
2018-02-06 21:23:18 +08:00
// Set of all input and output blobs wrappers for current network.
2018-06-05 04:51:28 +08:00
std : : map < LayerPin , Ptr < BackendWrapper > > netBlobsWrappers ;
2018-02-06 16:57:35 +08:00
for ( it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
{
LayerData & ld = it - > second ;
2018-06-05 04:51:28 +08:00
if ( ld . id = = 0 & & ld . skip )
2018-05-31 19:05:21 +08:00
continue ;
bool fused = ld . skip ;
2018-02-06 16:57:35 +08:00
2018-03-12 22:35:28 +08:00
Ptr < Layer > layer = ld . layerInstance ;
2018-07-26 22:22:05 +08:00
if ( ! fused & & ! layer - > supportBackend ( preferableBackend ) )
2017-06-26 18:35:51 +08:00
{
2019-11-28 00:37:56 +08:00
bool customizable = ld . id ! = 0 & &
2019-10-22 00:09:44 +08:00
INF_ENGINE_VER_MAJOR_GE ( INF_ENGINE_RELEASE_2019R2 ) & &
supportsCPUFallback ;
2019-09-03 23:58:57 +08:00
// TODO: there is a bug in Myriad plugin with custom layers shape infer.
if ( preferableTarget = = DNN_TARGET_MYRIAD )
{
for ( int i = 0 ; customizable & & i < ld . inputBlobs . size ( ) ; + + i )
{
customizable = ld . inputBlobs [ i ] - > size [ 0 ] = = 1 ;
}
}
// TODO: fix these workarounds
if ( preferableTarget = = DNN_TARGET_MYRIAD | |
preferableTarget = = DNN_TARGET_OPENCL | |
preferableTarget = = DNN_TARGET_OPENCL_FP16 )
customizable & = ld . type ! = " Concat " ;
if ( preferableTarget = = DNN_TARGET_OPENCL | |
preferableTarget = = DNN_TARGET_OPENCL_FP16 )
customizable & = ld . type ! = " Power " ;
if ( preferableTarget = = DNN_TARGET_OPENCL )
customizable & = ld . type ! = " Eltwise " ;
if ( ! customizable )
{
addInfEngineNetOutputs ( ld ) ;
net = Ptr < InfEngineBackendNet > ( ) ;
netBlobsWrappers . clear ( ) ; // Is not used for R5 release but we don't wrap it to #ifdef.
layer - > preferableTarget = DNN_TARGET_CPU ;
continue ;
}
2018-02-06 16:57:35 +08:00
}
2018-03-12 22:35:28 +08:00
ld . skip = true ; // Initially skip all Inference Engine supported layers.
2018-02-06 16:57:35 +08:00
2018-02-06 21:23:18 +08:00
// Create a new network if one of inputs from different Inference Engine graph.
2018-02-06 16:57:35 +08:00
for ( int i = 0 ; i < ld . inputBlobsId . size ( ) ; + + i )
{
LayerData & inpLd = layers [ ld . inputBlobsId [ i ] . lid ] ;
Ptr < BackendNode > inpNode = inpLd . backendNodes [ preferableBackend ] ;
if ( ! inpNode . empty ( ) )
{
Ptr < InfEngineBackendNode > ieInpNode = inpNode . dynamicCast < InfEngineBackendNode > ( ) ;
2018-08-22 21:04:40 +08:00
CV_Assert ( ! ieInpNode . empty ( ) ) ; CV_Assert ( ! ieInpNode - > net . empty ( ) ) ;
2018-02-06 21:23:18 +08:00
if ( ieInpNode - > net ! = net )
{
net = Ptr < InfEngineBackendNet > ( ) ;
2019-01-14 14:55:44 +08:00
netBlobsWrappers . clear ( ) ; // Is not used for R5 release but we don't wrap it to #ifdef.
2018-02-06 21:23:18 +08:00
break ;
}
}
}
2018-02-06 16:57:35 +08:00
Ptr < BackendNode > node ;
if ( ! net . empty ( ) )
{
2018-03-12 22:35:28 +08:00
if ( fused )
2018-02-06 16:57:35 +08:00
{
2018-03-12 22:35:28 +08:00
bool inPlace = ld . inputBlobsId . size ( ) = = 1 & & ld . outputBlobs . size ( ) = = 1 & &
ld . inputBlobs [ 0 ] - > data = = ld . outputBlobs [ 0 ] . data ;
CV_Assert ( inPlace ) ;
node = layers [ ld . inputBlobsId [ 0 ] . lid ] . backendNodes [ preferableBackend ] ;
ld . inputBlobsWrappers = layers [ ld . inputBlobsId [ 0 ] . lid ] . inputBlobsWrappers ;
2018-02-06 16:57:35 +08:00
}
2017-06-26 18:35:51 +08:00
}
else
2018-02-06 16:57:35 +08:00
net = Ptr < InfEngineBackendNet > ( new InfEngineBackendNet ( ) ) ;
if ( ! fused )
2017-06-26 18:35:51 +08:00
{
2019-09-03 23:58:57 +08:00
if ( layer - > supportBackend ( preferableBackend ) )
node = layer - > initInfEngine ( ld . inputBlobsWrappers ) ;
else
{
node = Ptr < BackendNode > ( new InfEngineBackendNode (
ld . layerInstance , ld . inputBlobs , ld . outputBlobs , ld . internals ) ) ;
}
2017-06-26 18:35:51 +08:00
}
2018-08-02 21:36:15 +08:00
else if ( node . empty ( ) )
continue ;
2018-02-06 16:57:35 +08:00
CV_Assert ( ! node . empty ( ) ) ;
ld . backendNodes [ preferableBackend ] = node ;
Ptr < InfEngineBackendNode > ieNode = node . dynamicCast < InfEngineBackendNode > ( ) ;
CV_Assert ( ! ieNode . empty ( ) ) ;
ieNode - > net = net ;
2020-02-17 03:12:14 +08:00
for ( const auto & pin : blobsToKeep_ )
{
if ( pin . lid = = ld . id )
{
ieNode - > net - > addOutput ( ieNode - > layer . getName ( ) ) ;
break ;
}
}
2019-01-14 14:55:44 +08:00
// Convert weights in FP16 for specific targets.
if ( ( preferableTarget = = DNN_TARGET_OPENCL_FP16 | |
preferableTarget = = DNN_TARGET_MYRIAD | |
preferableTarget = = DNN_TARGET_FPGA ) & & ! fused )
{
2019-04-01 20:00:25 +08:00
# if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
2019-02-11 22:13:39 +08:00
for ( const std : : string & name : { " weights " , " biases " } )
{
auto it = ieNode - > layer . getParameters ( ) . find ( name ) ;
if ( it ! = ieNode - > layer . getParameters ( ) . end ( ) )
{
2019-02-14 18:30:30 +08:00
InferenceEngine : : Blob : : Ptr bp = it - > second . as < InferenceEngine : : Blob : : Ptr > ( ) ;
it - > second = convertFp16 ( std : : const_pointer_cast < InferenceEngine : : Blob > ( bp ) ) ;
2019-02-11 22:13:39 +08:00
}
}
# else
2019-01-14 14:55:44 +08:00
auto & blobs = ieNode - > layer . getConstantData ( ) ;
if ( blobs . empty ( ) )
{
// In case of non weightable layer we have to specify
// it's precision adding dummy blob.
auto blob = InferenceEngine : : make_shared_blob < int16_t > (
InferenceEngine : : Precision : : FP16 ,
InferenceEngine : : Layout : : C , { 1 } ) ;
blob - > allocate ( ) ;
blobs [ " " ] = blob ;
}
else
{
for ( auto & it : blobs )
it . second = convertFp16 ( std : : const_pointer_cast < InferenceEngine : : Blob > ( it . second ) ) ;
}
2019-02-11 22:13:39 +08:00
# endif
2019-01-14 14:55:44 +08:00
}
if ( ! fused )
net - > addLayer ( ieNode - > layer ) ;
net - > connect ( ld . inputBlobsWrappers , ld . outputBlobsWrappers , ieNode - > layer . getName ( ) ) ;
net - > addBlobs ( ld . inputBlobsWrappers ) ;
net - > addBlobs ( ld . outputBlobsWrappers ) ;
addInfEngineNetOutputs ( ld ) ;
2017-06-26 18:35:51 +08:00
}
2018-02-06 16:57:35 +08:00
// Initialize all networks.
for ( MapIdToLayerData : : reverse_iterator it = layers . rbegin ( ) ; it ! = layers . rend ( ) ; + + it )
{
LayerData & ld = it - > second ;
if ( ld . backendNodes . find ( preferableBackend ) = = ld . backendNodes . end ( ) )
continue ;
Ptr < BackendNode > node = ld . backendNodes [ preferableBackend ] ;
if ( node . empty ( ) )
continue ;
Ptr < InfEngineBackendNode > ieNode = node . dynamicCast < InfEngineBackendNode > ( ) ;
if ( ieNode . empty ( ) )
continue ;
CV_Assert ( ! ieNode - > net . empty ( ) ) ;
if ( ! ieNode - > net - > isInitialized ( ) )
{
2019-12-02 21:16:06 +08:00
ieNode - > net - > init ( ( Target ) preferableTarget ) ;
2018-02-06 16:57:35 +08:00
ld . skip = false ;
}
}
2019-12-02 21:16:06 +08:00
}
2020-03-03 16:01:44 +08:00
# endif // HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
# ifdef HAVE_DNN_NGRAPH
void addNgraphOutputs ( LayerData & ld )
{
CV_TRACE_FUNCTION ( ) ;
Ptr < InfEngineNgraphNet > layerNet ;
auto it = ld . backendNodes . find ( preferableBackend ) ;
if ( it ! = ld . backendNodes . end ( ) )
{
Ptr < BackendNode > node = it - > second ;
if ( ! node . empty ( ) )
{
Ptr < InfEngineNgraphNode > ieNode = node . dynamicCast < InfEngineNgraphNode > ( ) ;
CV_Assert ( ! ieNode . empty ( ) ) ; CV_Assert ( ! ieNode - > net . empty ( ) ) ;
layerNet = ieNode - > net ;
}
}
for ( int i = 0 ; i < ld . inputBlobsId . size ( ) ; + + i )
{
LayerData & inpLd = layers [ ld . inputBlobsId [ i ] . lid ] ;
Ptr < BackendNode > inpNode = inpLd . backendNodes [ preferableBackend ] ;
if ( ! inpNode . empty ( ) )
{
Ptr < InfEngineNgraphNode > ieInpNode = inpNode . dynamicCast < InfEngineNgraphNode > ( ) ;
CV_Assert ( ! ieInpNode . empty ( ) ) ; CV_Assert ( ! ieInpNode - > net . empty ( ) ) ;
if ( layerNet ! = ieInpNode - > net )
{
ieInpNode - > net - > addOutput ( ieInpNode - > node - > get_friendly_name ( ) ) ;
ieInpNode - > net - > setUnconnectedNodes ( ieInpNode ) ;
}
}
}
}
2020-02-17 03:12:14 +08:00
void initNgraphBackend ( const std : : vector < LayerPin > & blobsToKeep_ )
2019-12-02 21:16:06 +08:00
{
CV_TRACE_FUNCTION ( ) ;
CV_Assert_N ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH , haveInfEngine ( ) ) ;
Ptr < InfEngineNgraphNet > net ;
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : const_iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
2019-12-02 21:16:06 +08:00
{
2022-01-12 11:46:13 +08:00
const LayerData & ld = it - > second ;
2019-12-02 21:16:06 +08:00
if ( ld . id = = 0 )
{
CV_Assert ( ( netInputLayer - > outNames . empty ( ) & & ld . outputBlobsWrappers . size ( ) = = 1 ) | |
( netInputLayer - > outNames . size ( ) = = ld . outputBlobsWrappers . size ( ) ) ) ;
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = ngraphDataNode ( ld . outputBlobsWrappers [ i ] ) ;
2020-02-26 22:51:18 +08:00
std : : string outputName = netInputLayer - > outNames . empty ( ) ? ld . name : netInputLayer - > outNames [ i ] ;
outputName = ld . outputBlobsWrappers . size ( ) > 1 ? ( outputName + " . " + std : : to_string ( i ) ) : outputName ;
dataPtr - > setName ( outputName ) ;
2019-12-02 21:16:06 +08:00
}
}
else
{
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = ngraphDataNode ( ld . outputBlobsWrappers [ i ] ) ;
2020-02-26 22:51:18 +08:00
std : : string outputName = ld . outputBlobsWrappers . size ( ) > 1 ? ( ld . name + " . " + std : : to_string ( i ) ) : ld . name ;
dataPtr - > setName ( outputName ) ;
2019-12-02 21:16:06 +08:00
}
}
}
if ( skipInfEngineInit )
{
Ptr < BackendNode > node = layers [ lastLayerId ] . backendNodes [ preferableBackend ] ;
CV_Assert ( ! node . empty ( ) ) ;
Ptr < InfEngineNgraphNode > ieNode = node . dynamicCast < InfEngineNgraphNode > ( ) ;
CV_Assert ( ! ieNode . empty ( ) ) ;
2021-07-15 07:31:41 +08:00
CV_Assert ( ieNode - > net ) ;
InfEngineNgraphNet & ienet = * ieNode - > net ;
ienet . reset ( ) ;
2019-12-02 21:16:06 +08:00
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
2019-12-02 21:16:06 +08:00
{
2022-01-12 11:46:13 +08:00
LayerData & ld = it - > second ;
2019-12-02 21:16:06 +08:00
if ( ld . id = = 0 )
{
for ( int i = 0 ; i < ld . inputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = ngraphDataNode ( ld . inputBlobsWrappers [ i ] ) ;
dataPtr - > setName ( netInputLayer - > outNames [ i ] ) ;
}
}
else
{
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
2021-07-15 07:31:41 +08:00
auto it = ienet . outputsDesc . find ( ld . name ) ;
if ( it ! = ienet . outputsDesc . end ( ) )
{
const InferenceEngine : : TensorDesc & descriptor = it - > second ;
InferenceEngine : : DataPtr dataPtr = ngraphDataOutputNode ( ld . outputBlobsWrappers [ i ] , descriptor , ld . name ) ;
dataPtr - > setName ( ld . name ) ;
}
else
{
InferenceEngine : : DataPtr dataPtr = ngraphDataNode ( ld . outputBlobsWrappers [ i ] ) ;
dataPtr - > setName ( ld . name ) ;
}
2019-12-02 21:16:06 +08:00
}
}
2021-07-15 07:31:41 +08:00
ienet . addBlobs ( ld . inputBlobsWrappers ) ;
ienet . addBlobs ( ld . outputBlobsWrappers ) ;
2019-12-02 21:16:06 +08:00
ld . skip = true ;
}
layers [ lastLayerId ] . skip = false ;
2021-07-15 07:31:41 +08:00
ienet . init ( ( Target ) preferableTarget ) ;
2019-12-02 21:16:06 +08:00
return ;
}
2021-03-20 19:20:02 +08:00
bool supportsCPUFallback = ! isArmComputePlugin ( ) & & ( preferableTarget = = DNN_TARGET_CPU | |
BackendRegistry : : checkIETarget ( DNN_TARGET_CPU ) ) ;
2020-02-26 22:51:18 +08:00
2019-12-02 21:16:06 +08:00
// Build Inference Engine networks from sets of layers that support this
// backend. Split a whole model on several Inference Engine networks if
// some of layers are not implemented.
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
2019-12-02 21:16:06 +08:00
{
2022-01-12 11:46:13 +08:00
LayerData & ld = it - > second ;
2019-12-02 21:16:06 +08:00
if ( ld . id = = 0 & & ld . skip )
continue ;
bool fused = ld . skip ;
Ptr < Layer > layer = ld . layerInstance ;
if ( ! fused & & ! layer - > supportBackend ( preferableBackend ) )
{
2020-02-26 22:51:18 +08:00
bool customizable = ld . id ! = 0 & & supportsCPUFallback ;
2019-12-02 21:16:06 +08:00
2020-02-26 22:51:18 +08:00
// TODO: there is a bug in Myriad plugin with custom layers shape infer.
if ( preferableTarget = = DNN_TARGET_MYRIAD )
2019-12-02 21:16:06 +08:00
{
2020-02-26 22:51:18 +08:00
for ( int i = 0 ; customizable & & i < ld . inputBlobs . size ( ) ; + + i )
{
customizable = ld . inputBlobs [ i ] - > size [ 0 ] = = 1 ;
2019-12-02 21:16:06 +08:00
}
}
2020-02-26 22:51:18 +08:00
// TODO: fix these workarounds
if ( preferableTarget = = DNN_TARGET_MYRIAD | |
preferableTarget = = DNN_TARGET_OPENCL | |
preferableTarget = = DNN_TARGET_OPENCL_FP16 )
customizable & = ld . type ! = " Concat " ;
if ( preferableTarget = = DNN_TARGET_OPENCL | |
preferableTarget = = DNN_TARGET_OPENCL_FP16 )
customizable & = ld . type ! = " Power " ;
if ( preferableTarget = = DNN_TARGET_OPENCL )
customizable & = ld . type ! = " Eltwise " ;
if ( ! customizable )
{
addNgraphOutputs ( ld ) ;
net = Ptr < InfEngineNgraphNet > ( ) ;
layer - > preferableTarget = DNN_TARGET_CPU ;
for ( int i = 0 ; i < ld . inputBlobsId . size ( ) ; + + i )
{
LayerData & inpLd = layers [ ld . inputBlobsId [ i ] . lid ] ;
Ptr < BackendNode > inpNode = inpLd . backendNodes [ preferableBackend ] ;
if ( ! inpNode . empty ( ) ) {
Ptr < InfEngineNgraphNode > ieNode = inpNode . dynamicCast < InfEngineNgraphNode > ( ) ;
2020-06-09 02:57:27 +08:00
CV_Assert ( ! ieNode . empty ( ) ) ;
2020-02-26 22:51:18 +08:00
ieNode - > net - > setUnconnectedNodes ( ieNode ) ;
}
}
continue ;
}
2019-12-02 21:16:06 +08:00
}
ld . skip = true ; // Initially skip all Inference Engine supported layers.
// Create a new network if one of inputs from different Inference Engine graph.
std : : vector < Ptr < BackendNode > > inputNodes ;
for ( int i = 0 ; i < ld . inputBlobsId . size ( ) ; + + i )
{
// Layer_Test_ROIPooling.Accuracy has 2 inputs inpLD = 0, 0 -> has 4 inputNodes (input, rois, input, rois)
if ( inputNodes . size ( ) = = ld . inputBlobsId . size ( ) ) {
break ;
}
LayerData & inpLd = layers [ ld . inputBlobsId [ i ] . lid ] ;
Ptr < BackendNode > inpNode = inpLd . backendNodes [ preferableBackend ] ;
if ( ! inpNode . empty ( ) )
{
Ptr < InfEngineNgraphNode > ieInpNode = inpNode . dynamicCast < InfEngineNgraphNode > ( ) ;
CV_Assert ( ! ieInpNode . empty ( ) ) ; CV_Assert ( ! ieInpNode - > net . empty ( ) ) ;
if ( ieInpNode - > net = = net & & ! fused ) {
inputNodes . push_back ( inpNode ) ;
continue ;
}
}
if ( net . empty ( ) ) {
2020-05-26 20:45:55 +08:00
net = Ptr < InfEngineNgraphNet > ( new InfEngineNgraphNet ( * this ) ) ;
2019-12-02 21:16:06 +08:00
}
if ( ! fused ) {
std : : vector < std : : string > inputNames ;
std : : vector < cv : : Mat > inputs ;
auto curr_pos = inpLd . consumers . begin ( ) ;
auto compare = [ & ld ] ( const LayerPin & lp ) { return lp . lid = = ld . id ; } ;
auto cons = curr_pos ;
while ( ( cons = std : : find_if ( curr_pos , inpLd . consumers . end ( ) , compare ) ) ! =
inpLd . consumers . end ( ) ) {
int cons_inp = cons - > oid ;
Ptr < NgraphBackendWrapper > inpWrapper = inpLd . outputBlobsWrappers [ cons_inp ] .
dynamicCast < NgraphBackendWrapper > ( ) ;
2020-06-09 02:57:27 +08:00
CV_Assert ( ! inpWrapper . empty ( ) ) ;
2019-12-02 21:16:06 +08:00
auto iter = std : : find ( inputNames . begin ( ) , inputNames . end ( ) ,
inpWrapper - > dataPtr - > getName ( ) ) ;
if ( iter = = inputNames . end ( ) ) {
inputNames . push_back ( inpWrapper - > dataPtr - > getName ( ) ) ;
inputs . push_back ( inpLd . outputBlobs [ cons_inp ] ) ;
}
curr_pos = cons + 1 ;
}
auto inps = net - > setInputs ( inputs , inputNames ) ;
for ( auto & inp : inps ) {
inputNodes . emplace_back ( Ptr < BackendNode > ( new InfEngineNgraphNode ( inp ) ) ) ;
}
}
}
Ptr < BackendNode > node ;
if ( ! net . empty ( ) )
{
if ( fused )
{
bool inPlace = ld . inputBlobsId . size ( ) = = 1 & & ld . outputBlobs . size ( ) = = 1 & &
ld . inputBlobs [ 0 ] - > data = = ld . outputBlobs [ 0 ] . data ;
CV_Assert ( inPlace ) ;
node = layers [ ld . inputBlobsId [ 0 ] . lid ] . backendNodes [ preferableBackend ] ;
ld . inputBlobsWrappers = layers [ ld . inputBlobsId [ 0 ] . lid ] . inputBlobsWrappers ;
}
}
else {
2020-05-26 20:45:55 +08:00
net = Ptr < InfEngineNgraphNet > ( new InfEngineNgraphNet ( * this ) ) ;
2019-12-02 21:16:06 +08:00
}
if ( ! fused )
{
2020-02-26 22:51:18 +08:00
CV_Assert ( ld . inputBlobsId . size ( ) = = inputNodes . size ( ) ) ;
for ( int i = 0 ; i < ld . inputBlobsId . size ( ) ; + + i )
2019-12-02 21:16:06 +08:00
{
2020-02-26 22:51:18 +08:00
int lid = ld . inputBlobsId [ i ] . lid ;
int oid = ld . inputBlobsId [ i ] . oid ;
if ( oid = = 0 | | lid = = 0 )
continue ;
auto ieInpNode = inputNodes [ i ] . dynamicCast < InfEngineNgraphNode > ( ) ;
2022-02-05 11:28:36 +08:00
const auto & ngraph_input_node = ieInpNode - > node ;
CV_LOG_DEBUG ( NULL , " DNN/IE: bind output port " < < lid < < " : " < < oid < < " ( " < < ngraph_input_node - > get_friendly_name ( ) < < " : " < < ngraph_input_node - > get_type_info ( ) . name < < " ) " ) ;
// Handle parameters from other subnets. Output port is not used in this case
if ( ( ngraph : : op : : is_parameter ( ngraph_input_node ) | | ngraph : : op : : is_constant ( ngraph_input_node ) ) & &
ngraph_input_node - > get_output_size ( ) = = 1 )
{
inputNodes [ i ] = Ptr < BackendNode > ( new InfEngineNgraphNode ( ngraph_input_node ) ) ;
continue ;
}
CV_CheckLT ( ( size_t ) oid , ngraph_input_node - > get_output_size ( ) , " " ) ;
2020-08-04 13:18:38 +08:00
# if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4)
2022-02-05 11:28:36 +08:00
// FIXIT refactor ".initNgraph()" API to use Output<Node>
// WA: use Concat to emulate Identity operation with requested output port
auto oid_node = std : : make_shared < ngraph : : op : : Concat > ( ngraph : : OutputVector { ngraph_input_node - > output ( oid ) } , 0 ) ;
inputNodes [ i ] = Ptr < BackendNode > ( new InfEngineNgraphNode ( oid_node ) ) ;
2020-08-04 13:18:38 +08:00
# elif INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_3)
2020-04-03 20:40:11 +08:00
inputNodes [ i ] = Ptr < BackendNode > ( new InfEngineNgraphNode ( ieInpNode - > node - > get_output_as_single_output_node ( oid ) ) ) ;
# else
2020-02-26 22:51:18 +08:00
inputNodes [ i ] = Ptr < BackendNode > ( new InfEngineNgraphNode ( ieInpNode - > node - > get_output_as_single_output_node ( oid , false ) ) ) ;
2020-04-03 20:40:11 +08:00
# endif
2020-02-26 22:51:18 +08:00
}
if ( layer - > supportBackend ( preferableBackend ) )
{
node = layer - > initNgraph ( ld . inputBlobsWrappers , inputNodes ) ;
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
InferenceEngine : : DataPtr dataPtr = ngraphDataNode ( ld . outputBlobsWrappers [ i ] ) ;
node . dynamicCast < InfEngineNgraphNode > ( ) - > setName ( dataPtr - > getName ( ) ) ;
}
}
else
{
node = Ptr < BackendNode > ( new InfEngineNgraphNode ( inputNodes ,
ld . layerInstance , ld . inputBlobs , ld . outputBlobs , ld . internals ) ) ;
2019-12-02 21:16:06 +08:00
}
}
else if ( node . empty ( ) )
continue ;
ld . backendNodes [ preferableBackend ] = node ;
Ptr < InfEngineNgraphNode > ieNode = node . dynamicCast < InfEngineNgraphNode > ( ) ;
CV_Assert ( ! ieNode . empty ( ) ) ;
ieNode - > net = net ;
if ( ld . consumers . empty ( ) ) {
// TF EAST_text_detection
ieNode - > net - > setUnconnectedNodes ( ieNode ) ;
}
2020-02-17 03:12:14 +08:00
for ( const auto & pin : blobsToKeep_ )
{
if ( pin . lid = = ld . id )
{
ieNode - > net - > addOutput ( ieNode - > node - > get_friendly_name ( ) ) ;
break ;
}
}
2019-12-02 21:16:06 +08:00
ieNode - > net - > setNodePtr ( & ieNode - > node ) ;
net - > addBlobs ( ld . inputBlobsWrappers ) ;
net - > addBlobs ( ld . outputBlobsWrappers ) ;
addNgraphOutputs ( ld ) ;
}
// Initialize all networks.
for ( MapIdToLayerData : : reverse_iterator it = layers . rbegin ( ) ; it ! = layers . rend ( ) ; + + it )
{
LayerData & ld = it - > second ;
auto iter = ld . backendNodes . find ( preferableBackend ) ;
if ( iter = = ld . backendNodes . end ( ) )
continue ;
Ptr < BackendNode > & node = iter - > second ;
if ( node . empty ( ) )
continue ;
Ptr < InfEngineNgraphNode > ieNode = node . dynamicCast < InfEngineNgraphNode > ( ) ;
if ( ieNode . empty ( ) )
continue ;
CV_Assert ( ! ieNode - > net . empty ( ) ) ;
if ( ! ieNode - > net - > isInitialized ( ) )
{
ieNode - > net - > setUnconnectedNodes ( ieNode ) ;
ieNode - > net - > createNet ( ( Target ) preferableTarget ) ;
ld . skip = false ;
}
}
2017-06-26 18:35:51 +08:00
}
2019-12-02 21:16:06 +08:00
# endif // HAVE_DNN_NGRAPH
2017-06-26 18:35:51 +08:00
void allocateLayer ( int lid , const LayersShapesMap & layersShapes )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
LayerData & ld = layers [ lid ] ;
//already allocated
if ( ld . flag )
return ;
size_t ninputs = ld . inputBlobsId . size ( ) ;
#if 0
printf ( " layer %s: " , ld . name . c_str ( ) ) ;
for ( size_t i = 0 ; i < ninputs ; i + + )
{
int inp_lid = ld . inputBlobsId [ i ] . lid ;
LayerData & inp_ld = layers [ inp_lid ] ;
int inp_outputs = ( int ) inp_ld . outputBlobs . size ( ) ;
std : : cout < < " " < < inp_ld . name < < " ( " < < inp_outputs ;
for ( int j = 0 ; j < inp_outputs ; j + + )
{
std : : cout < < ( j = = 0 ? " : " : " , " ) < < inp_ld . outputBlobs [ j ] . size ;
}
std : : cout < < " ) " ;
}
printf ( " \n " ) ;
# endif
//determine parent layers
for ( size_t i = 0 ; i < ninputs ; i + + )
ld . inputLayersId . insert ( ld . inputBlobsId [ i ] . lid ) ;
//allocate parents
2022-01-12 11:46:13 +08:00
for ( set < int > : : const_iterator i = ld . inputLayersId . begin ( ) ; i ! = ld . inputLayersId . end ( ) ; i + + )
2017-06-26 18:35:51 +08:00
allocateLayer ( * i , layersShapes ) ;
//bind inputs
2018-07-09 19:35:54 +08:00
if ( ld . id = = 0 ) // DataLayer
{
ninputs = netInputLayer - > inputsData . size ( ) ;
ld . inputBlobsWrappers . resize ( ninputs ) ;
for ( size_t i = 0 ; i < ninputs ; i + + )
{
ld . inputBlobsWrappers [ i ] = wrap ( netInputLayer - > inputsData [ i ] ) ;
}
}
else
2017-06-26 18:35:51 +08:00
{
2018-07-09 19:35:54 +08:00
ld . inputBlobs . resize ( ninputs ) ;
ld . inputBlobsWrappers . resize ( ninputs ) ;
for ( size_t i = 0 ; i < ninputs ; i + + )
{
LayerPin from = ld . inputBlobsId [ i ] ;
CV_Assert ( from . valid ( ) ) ;
CV_DbgAssert ( layers . count ( from . lid ) & & ( int ) layers [ from . lid ] . outputBlobs . size ( ) > from . oid ) ;
ld . inputBlobs [ i ] = & layers [ from . lid ] . outputBlobs [ from . oid ] ;
ld . inputBlobsWrappers [ i ] = layers [ from . lid ] . outputBlobsWrappers [ from . oid ] ;
}
2017-06-26 18:35:51 +08:00
}
LayersShapesMap : : const_iterator layerShapesIt = layersShapes . find ( lid ) ;
CV_Assert ( layerShapesIt ! = layersShapes . end ( ) ) ;
std : : vector < LayerPin > pinsForInternalBlobs ;
2018-02-06 16:57:35 +08:00
blobManager . allocateBlobsForLayer ( ld , layerShapesIt - > second , pinsForInternalBlobs ,
2018-06-01 15:54:12 +08:00
preferableBackend = = DNN_BACKEND_OPENCV & &
2018-04-26 19:20:16 +08:00
preferableTarget = = DNN_TARGET_OPENCL_FP16 ) ;
2017-09-06 15:34:07 +08:00
ld . outputBlobsWrappers . resize ( ld . outputBlobs . size ( ) ) ;
for ( int i = 0 ; i < ld . outputBlobs . size ( ) ; + + i )
{
ld . outputBlobsWrappers [ i ] = wrap ( ld . outputBlobs [ i ] ) ;
}
2018-01-11 02:50:54 +08:00
ld . internalBlobsWrappers . resize ( ld . internals . size ( ) ) ;
for ( int i = 0 ; i < ld . internals . size ( ) ; + + i )
{
ld . internalBlobsWrappers [ i ] = wrap ( ld . internals [ i ] ) ;
}
2017-06-26 18:35:51 +08:00
Ptr < Layer > layerPtr = ld . getLayerInstance ( ) ;
{
2018-09-06 18:26:47 +08:00
std : : vector < Mat > inps ( ld . inputBlobs . size ( ) ) ;
for ( int i = 0 ; i < ld . inputBlobs . size ( ) ; + + i )
{
inps [ i ] = * ld . inputBlobs [ i ] ;
}
layerPtr - > finalize ( inps , ld . outputBlobs ) ;
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
layerPtr - > preferableTarget = preferableTarget ;
2017-06-26 18:35:51 +08:00
#if 0
std : : cout < < " \t outputs: " ;
size_t noutputs = ld . outputBlobs . size ( ) ;
for ( size_t j = 0 ; j < noutputs ; j + + )
{
std : : cout < < ( j = = 0 ? " " : " , " ) < < ld . outputBlobs [ j ] . size ;
}
std : : cout < < " \n " ;
# endif
}
// After allocation of layer, we decrease counters to it's input blobs.
blobManager . releaseReferences ( ld . inputBlobsId ) ;
blobManager . releaseReferences ( pinsForInternalBlobs ) ;
ld . flag = 1 ;
}
2017-07-04 22:23:47 +08:00
#if 0
# define printf_(args) printf args
# else
# define printf_(args)
# endif
2017-06-26 18:35:51 +08:00
void fuseLayers ( const std : : vector < LayerPin > & blobsToKeep_ )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2019-12-02 21:16:06 +08:00
if ( ! fusion | | ( preferableBackend ! = DNN_BACKEND_OPENCV & &
preferableBackend ! = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 & &
preferableBackend ! = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ) )
return ;
2022-02-04 04:23:17 +08:00
#if 0 // FIXIT mode without fusion is broken due to unsupported layers and handling of "custom" nodes
if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH )
return ;
# endif
2017-06-26 18:35:51 +08:00
// scan through all the layers. If there is convolution layer followed by the activation layer,
// we try to embed this activation into the convolution and disable separate execution of the activation
2022-02-04 04:23:17 +08:00
// FIXIT replace by layersToKeep to avoid hacks like "LayerPin(lid, 0)"
2017-06-26 18:35:51 +08:00
std : : set < LayerPin > pinsToKeep ( blobsToKeep_ . begin ( ) ,
blobsToKeep_ . end ( ) ) ;
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : const_iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; it + + )
2017-06-26 18:35:51 +08:00
{
int lid = it - > first ;
LayerData & ld = layers [ lid ] ;
2018-01-21 02:55:25 +08:00
if ( ld . skip )
2017-06-26 18:35:51 +08:00
{
2017-07-04 22:23:47 +08:00
printf_ ( ( " skipped %s: %s \n " , ld . layerInstance - > name . c_str ( ) , ld . layerInstance - > type . c_str ( ) ) ) ;
2017-06-26 18:35:51 +08:00
continue ;
}
2017-07-04 22:23:47 +08:00
printf_ ( ( " analyzing %s: %s \n " , ld . layerInstance - > name . c_str ( ) , ld . layerInstance - > type . c_str ( ) ) ) ;
2017-06-28 16:15:22 +08:00
2017-07-04 22:23:47 +08:00
// the optimization #1. try to fuse batch norm, scaling and/or activation layers
// with the current layer if they follow it. Normally, the are fused with the convolution layer,
// but some of them (like activation) may be fused with fully-connected, elemwise (+) and
// some other layers.
2017-06-28 16:15:22 +08:00
Ptr < Layer > & currLayer = ld . layerInstance ;
if ( ld . consumers . size ( ) = = 1 & & pinsToKeep . count ( LayerPin ( lid , 0 ) ) = = 0 )
2017-06-26 18:35:51 +08:00
{
LayerData * nextData = & layers [ ld . consumers [ 0 ] . lid ] ;
LayerPin lpNext ( ld . consumers [ 0 ] . lid , 0 ) ;
2018-02-13 17:07:56 +08:00
while ( nextData )
2017-06-26 18:35:51 +08:00
{
2022-02-04 04:23:17 +08:00
# ifdef HAVE_INF_ENGINE
if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH & & pinsToKeep . count ( lpNext ) ! = 0 )
{
CV_LOG_DEBUG ( NULL , " DNN/IE: skip fusing with 'output' node: " < < nextData - > name < < " @ " < < nextData - > type ) ;
break ;
}
# endif
2018-02-13 17:07:56 +08:00
Ptr < Layer > nextLayer = nextData - > layerInstance ;
if ( currLayer - > tryFuse ( nextLayer ) )
2017-06-26 18:35:51 +08:00
{
2018-02-13 17:07:56 +08:00
printf_ ( ( " \t fused with %s \n " , nextLayer - > name . c_str ( ) ) ) ;
nextData - > skip = true ;
2018-01-11 02:50:54 +08:00
ld . outputBlobs = layers [ lpNext . lid ] . outputBlobs ;
ld . outputBlobsWrappers = layers [ lpNext . lid ] . outputBlobsWrappers ;
2018-02-13 17:07:56 +08:00
if ( nextData - > consumers . size ( ) = = 1 )
2017-06-29 21:45:17 +08:00
{
2018-02-13 17:07:56 +08:00
int nextLayerId = nextData - > consumers [ 0 ] . lid ;
nextData = & layers [ nextLayerId ] ;
lpNext = LayerPin ( nextLayerId , 0 ) ;
2017-06-29 21:45:17 +08:00
}
2018-02-13 17:07:56 +08:00
else
2017-06-29 21:45:17 +08:00
{
2018-02-13 17:07:56 +08:00
nextData = 0 ;
break ;
2017-06-29 21:45:17 +08:00
}
2017-06-26 18:35:51 +08:00
}
2018-02-13 17:07:56 +08:00
else
break ;
2017-06-26 18:35:51 +08:00
}
2018-06-01 15:54:12 +08:00
if ( preferableBackend ! = DNN_BACKEND_OPENCV )
2018-03-12 22:35:28 +08:00
continue ; // Go to the next layer.
2018-08-31 20:41:56 +08:00
// TODO: OpenCL target support more fusion styles.
if ( preferableBackend = = DNN_BACKEND_OPENCV & & IS_DNN_OPENCL_TARGET ( preferableTarget ) & &
( ! cv : : ocl : : useOpenCL ( ) | | ( ld . layerInstance - > type ! = " Convolution " & &
ld . layerInstance - > type ! = " MVN " & & ld . layerInstance - > type ! = " Pooling " & &
ld . layerInstance - > type ! = " Concat " ) ) )
continue ;
2018-08-02 21:36:15 +08:00
while ( nextData )
2017-06-26 18:35:51 +08:00
{
2018-08-02 21:36:15 +08:00
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
if ( IS_DNN_OPENCL_TARGET ( preferableTarget ) & &
nextData - > type ! = " ReLU " & &
nextData - > type ! = " ChannelsPReLU " & &
nextData - > type ! = " ReLU6 " & &
nextData - > type ! = " TanH " & &
nextData - > type ! = " Power " )
break ;
2017-08-29 15:48:19 +08:00
2018-08-02 21:36:15 +08:00
Ptr < ActivationLayer > nextActivLayer = nextData - > layerInstance . dynamicCast < ActivationLayer > ( ) ;
if ( nextActivLayer . empty ( ) )
break ;
2017-08-29 15:48:19 +08:00
2018-08-02 21:36:15 +08:00
if ( currLayer - > setActivation ( nextActivLayer ) )
2017-08-29 15:48:19 +08:00
{
printf_ ( ( " \t fused with %s \n " , nextActivLayer - > name . c_str ( ) ) ) ;
2018-08-02 21:36:15 +08:00
nextData - > skip = true ;
2018-01-11 02:50:54 +08:00
ld . outputBlobs = layers [ lpNext . lid ] . outputBlobs ;
ld . outputBlobsWrappers = layers [ lpNext . lid ] . outputBlobsWrappers ;
2018-08-02 21:36:15 +08:00
if ( nextData - > consumers . size ( ) = = 1 )
2017-11-20 11:29:18 +08:00
{
2018-08-02 21:36:15 +08:00
int nextLayerId = nextData - > consumers [ 0 ] . lid ;
nextData = & layers [ nextLayerId ] ;
lpNext = LayerPin ( nextLayerId , 0 ) ;
}
else
2017-11-20 11:29:18 +08:00
{
2018-08-02 21:36:15 +08:00
nextData = 0 ;
break ;
2017-11-20 11:29:18 +08:00
}
}
2018-08-02 21:36:15 +08:00
else
break ;
2017-11-20 11:29:18 +08:00
}
2018-06-03 07:21:08 +08:00
// fuse convolution layer followed by eltwise + relu
2020-10-10 00:33:48 +08:00
while ( nextData & & IS_DNN_OPENCL_TARGET ( preferableTarget ) & & ld . layerInstance - > type = = " Convolution " ) // semantic of 'if'
2017-11-20 11:29:18 +08:00
{
2020-10-10 00:33:48 +08:00
Ptr < EltwiseLayer > nextEltwiseLayer = nextData - > layerInstance . dynamicCast < EltwiseLayer > ( ) ;
if ( nextEltwiseLayer . empty ( ) )
break ;
if ( pinsToKeep . count ( lpNext ) ! = 0 )
break ;
if ( nextData - > inputBlobsId . size ( ) ! = 2 )
break ;
if ( ! nextData - > params . has ( " operation " ) | | nextData - > params . get < String > ( " operation " ) . toLowerCase ( ) = = " sum " )
{
if ( nextData - > params . has ( " coeff " ) )
{
DictValue paramCoeff = nextData - > params . get ( " coeff " ) ;
int n = paramCoeff . size ( ) ;
bool isCoeffOneOne = ( n = = 2 ) ;
for ( int i = 0 ; isCoeffOneOne & & i < n ; i + + )
{
float c = paramCoeff . get < float > ( i ) ;
isCoeffOneOne & = ( c = = 1.0f ) ;
}
if ( ! isCoeffOneOne )
{
CV_LOG_DEBUG ( NULL , " DNN/OpenCL: fusion of 'Sum' without coeffs (or {1.0, 1.0}) is supported only " ) ;
break ;
}
}
}
else
{
CV_LOG_DEBUG ( NULL , " DNN/OpenCL: fusion with eltwise operation is not supported: " < < nextData - > params . get < String > ( " operation " ) ) ;
break ;
}
2017-11-20 11:29:18 +08:00
{
LayerData * eltwiseData = nextData ;
2018-11-07 16:16:15 +08:00
// Eltwise layer has two inputs. We need to determine which
// is a base convolution layer and which could be used as it's bias.
LayerData * biasLayerData = 0 ;
for ( int i = 0 ; i < 2 ; + + i )
2017-11-20 11:29:18 +08:00
{
2018-11-07 16:16:15 +08:00
LayerData * downLayerData = & layers [ eltwiseData - > inputBlobsId [ i ] . lid ] ;
CV_Assert ( downLayerData ) ;
2018-01-21 02:55:25 +08:00
while ( downLayerData - > skip )
2017-11-20 11:29:18 +08:00
{
2018-11-07 16:16:15 +08:00
if ( downLayerData - > inputBlobsId . size ( ) = = 1 )
2017-11-20 11:29:18 +08:00
downLayerData = & layers [ downLayerData - > inputBlobsId [ 0 ] . lid ] ;
2018-11-07 16:16:15 +08:00
else
{
downLayerData = 0 ;
break ;
}
2017-11-20 11:29:18 +08:00
}
2018-11-07 16:16:15 +08:00
if ( downLayerData & & ld . id = = downLayerData - > id )
{
biasLayerData = & layers [ eltwiseData - > inputBlobsId [ 1 - i ] . lid ] ;
break ;
}
}
CV_Assert ( biasLayerData ) ;
{
if ( eltwiseData - > consumers . size ( ) = = 1 )
2017-11-20 11:29:18 +08:00
{
// fuse eltwise + activation layer
2018-11-07 16:16:15 +08:00
if ( biasLayerData - > id < ld . id )
2017-11-20 11:29:18 +08:00
{
nextData = & layers [ eltwiseData - > consumers [ 0 ] . lid ] ;
lpNext = LayerPin ( eltwiseData - > consumers [ 0 ] . lid , 0 ) ;
Ptr < ActivationLayer > nextActivLayer ;
if ( nextData )
nextActivLayer = nextData - > layerInstance . dynamicCast < ActivationLayer > ( ) ;
2020-10-09 19:57:49 +08:00
Ptr < PowerLayer > activ_power ;
2020-08-13 18:55:41 +08:00
if ( ! nextActivLayer . empty ( ) & &
2017-11-20 11:29:18 +08:00
( ! nextData - > type . compare ( " ReLU " ) | |
! nextData - > type . compare ( " ChannelsPReLU " ) | |
2020-10-09 19:57:49 +08:00
( ! nextData - > type . compare ( " Power " ) & & ( activ_power = nextActivLayer . dynamicCast < PowerLayer > ( ) ) & & activ_power - > scale = = 1.0f )
) & &
2017-11-20 11:29:18 +08:00
currLayer - > setActivation ( nextActivLayer ) )
{
2018-11-07 16:16:15 +08:00
CV_Assert_N ( biasLayerData - > outputBlobsWrappers . size ( ) = = 1 , ld . inputBlobsWrappers . size ( ) = = 1 ) ;
ld . inputBlobsWrappers . push_back ( biasLayerData - > outputBlobsWrappers [ 0 ] ) ;
2017-11-20 11:29:18 +08:00
printf_ ( ( " \t fused with %s \n " , nextEltwiseLayer - > name . c_str ( ) ) ) ;
printf_ ( ( " \t fused with %s \n " , nextActivLayer - > name . c_str ( ) ) ) ;
2018-01-21 02:55:25 +08:00
eltwiseData - > skip = true ;
nextData - > skip = true ;
2018-01-11 02:50:54 +08:00
// This optimization for cases like
// some_layer conv
// | |
// +-- eltwise --+
// |
// activ
// This way all the element-wise computations
// (i.e. some_layer+conv or some_layer*conv)
// would be done at [conv] layer. So we need to
// replace [conv]'s output blob to [eltwise]'s one
// considering that [activ] is an in-place layer.
// Also we need to move all the consumers' references.
// To prevent memory collisions (i.e. when input of
// [conv] and output of [eltwise] is the same blob)
// we allocate a new blob.
2018-08-15 19:55:47 +08:00
CV_Assert_N ( ld . outputBlobs . size ( ) = = 1 , ld . outputBlobsWrappers . size ( ) = = 1 ) ;
2018-01-11 02:50:54 +08:00
ld . outputBlobs [ 0 ] = ld . outputBlobs [ 0 ] . clone ( ) ;
ld . outputBlobsWrappers [ 0 ] = wrap ( ld . outputBlobs [ 0 ] ) ;
eltwiseData - > outputBlobs = ld . outputBlobs ;
nextData - > outputBlobs = ld . outputBlobs ;
eltwiseData - > outputBlobsWrappers = ld . outputBlobsWrappers ;
nextData - > outputBlobsWrappers = ld . outputBlobsWrappers ;
// Move references of [activ] layer consumers to the newly allocated blob.
for ( int i = 0 ; i < nextData - > consumers . size ( ) ; + + i )
{
LayerData & consumer = layers [ nextData - > consumers [ i ] . lid ] ;
for ( int j = 0 ; j < consumer . inputBlobsId . size ( ) ; + + j )
{
if ( consumer . inputBlobsId [ j ] . lid = = lpNext . lid )
{
consumer . inputBlobs [ j ] = & ld . outputBlobs [ 0 ] ;
consumer . inputBlobsWrappers [ j ] = ld . outputBlobsWrappers [ 0 ] ;
break ;
}
}
}
2017-11-20 11:29:18 +08:00
}
}
}
}
2017-08-29 15:48:19 +08:00
}
2020-10-10 00:33:48 +08:00
break ;
2017-06-26 18:35:51 +08:00
}
}
2017-07-04 22:23:47 +08:00
2019-03-29 21:42:58 +08:00
if ( preferableBackend ! = DNN_BACKEND_OPENCV )
continue ; // Go to the next layer.
2019-04-08 16:29:10 +08:00
// the optimization #2. if there is concat layer that concatenates channels
2017-07-04 22:23:47 +08:00
// from the inputs together (i.e. axis == 1) then we make the inputs of
2018-06-03 07:21:08 +08:00
// the concat layer to write to the concatenation output buffer
2017-07-04 22:23:47 +08:00
// (and so we eliminate the concatenation layer, because the channels
// are concatenated implicitly).
Ptr < ConcatLayer > concatLayer = ld . layerInstance . dynamicCast < ConcatLayer > ( ) ;
2020-07-04 21:27:28 +08:00
if ( ! concatLayer . empty ( ) & & ! concatLayer - > padding & & ld . outputBlobs . size ( ) = = 1 )
2017-07-04 22:23:47 +08:00
{
Mat & output = ld . outputBlobs [ 0 ] ;
2018-07-12 15:16:32 +08:00
UMat umat_output ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-07-12 15:16:32 +08:00
if ( ! ld . outputBlobsWrappers . empty ( ) & &
( preferableBackend = = DNN_BACKEND_OPENCV & & IS_DNN_OPENCL_TARGET ( preferableTarget ) ) )
{
size_t i , ninputs = ld . inputBlobsId . size ( ) ;
bool conv_layer = true ;
for ( i = 0 ; i < ninputs ; i + + )
{
LayerPin pin = ld . inputBlobsId [ i ] ;
LayerData * inp_i_data = & layers [ pin . lid ] ;
while ( inp_i_data - > skip & &
inp_i_data - > inputBlobsId . size ( ) = = 1 & &
inp_i_data - > consumers . size ( ) = = 1 )
{
pin = inp_i_data - > inputBlobsId [ 0 ] ;
inp_i_data = & layers [ pin . lid ] ;
}
conv_layer = conv_layer & & ( inp_i_data - > getLayerInstance ( ) - > type = = " Convolution " ) ;
}
if ( ! conv_layer )
continue ;
std : : vector < UMat > umat_outputBlobs ;
umat_outputBlobs = OpenCLBackendWrapper : : getUMatVector ( ld . outputBlobsWrappers ) ;
umat_output = umat_outputBlobs [ 0 ] ;
}
2019-12-02 21:16:06 +08:00
# endif
2017-07-04 22:23:47 +08:00
// TODO: in general, this optimization can always be done, but
// many layers currently check that the input/output blobs are
// continuous arrays. Unfortunately, this is not true when
// the concatenation optimization is applied with batch_size > 1.
// so, for now, we only apply this optimization in the most popular
// case batch_size == 1.
2021-01-30 20:02:47 +08:00
int axis = normalize_axis ( concatLayer - > axis , output . dims ) ;
2020-07-04 21:27:28 +08:00
if ( output . total ( 0 , axis ) = = 1 )
2017-07-04 22:23:47 +08:00
{
size_t i , ninputs = ld . inputBlobsId . size ( ) ;
std : : vector < LayerPin > realinputs ( ninputs ) ;
for ( i = 0 ; i < ninputs ; i + + )
{
LayerPin pin = ld . inputBlobsId [ i ] ;
LayerData * inp_i_data = & layers [ pin . lid ] ;
2018-01-21 02:55:25 +08:00
while ( inp_i_data - > skip & &
2017-12-26 21:49:33 +08:00
inp_i_data - > inputBlobsId . size ( ) = = 1 & &
inp_i_data - > consumers . size ( ) = = 1 )
2017-07-04 22:23:47 +08:00
{
pin = inp_i_data - > inputBlobsId [ 0 ] ;
inp_i_data = & layers [ pin . lid ] ;
}
printf_ ( ( " \t real input for %s is %s \n " ,
layers [ ld . inputBlobsId [ i ] . lid ] . getLayerInstance ( ) - > name . c_str ( ) ,
inp_i_data - > getLayerInstance ( ) - > name . c_str ( ) ) ) ;
2018-01-21 02:55:25 +08:00
if ( inp_i_data - > skip | | inp_i_data - > consumers . size ( ) ! = 1 )
2017-07-04 22:23:47 +08:00
break ;
realinputs [ i ] = pin ;
}
if ( i > = ninputs )
{
2017-12-28 21:04:09 +08:00
// Allocate new memory to prevent collisions during memory
// reusing (see https://github.com/opencv/opencv/pull/10456).
output = output . clone ( ) ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-07-12 15:16:32 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV & &
IS_DNN_OPENCL_TARGET ( preferableTarget ) )
{
std : : vector < UMat > umats ( 1 ) ;
umat_output = umat_output . clone ( ) ;
umats [ 0 ] = umat_output ;
OpenCLBackendWrapper : : update ( ld . outputBlobsWrappers , umats ) ;
}
2019-12-02 21:16:06 +08:00
# endif
2020-07-04 21:27:28 +08:00
std : : vector < Range > chrange ( output . dims , Range : : all ( ) ) ;
2017-07-04 22:23:47 +08:00
int ofs = 0 ;
for ( i = 0 ; i < ninputs ; i + + )
{
LayerPin pin = realinputs [ i ] ;
LayerData * inp_i_data = & layers [ pin . lid ] ;
2020-07-04 21:27:28 +08:00
int channels_i = ld . inputBlobs [ i ] - > size [ axis ] ;
chrange [ axis ] = Range ( ofs , ofs + channels_i ) ;
2017-07-04 22:23:47 +08:00
printf_ ( ( " \t output %s(%d) to channels (%d, %d) \n " , inp_i_data - > layerInstance - > name . c_str ( ) ,
pin . oid , ofs , ofs + channels_i ) ) ;
ofs + = channels_i ;
Mat output_slice = output ( chrange ) ;
Mat & curr_output = inp_i_data - > outputBlobs [ pin . oid ] ;
CV_Assert ( output_slice . isContinuous ( ) & & output_slice . size = = curr_output . size ) ;
2017-12-26 21:49:33 +08:00
Mat * oldPtr = & curr_output ;
2017-07-04 22:23:47 +08:00
curr_output = output_slice ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-07-12 15:16:32 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV & & IS_DNN_OPENCL_TARGET ( preferableTarget ) )
{
std : : vector < UMat > umats ( inp_i_data - > outputBlobsWrappers . size ( ) ) ;
umats [ pin . oid ] = umat_output ( chrange ) ;
OpenCLBackendWrapper : : update ( inp_i_data - > outputBlobsWrappers , umats ) ;
}
2019-12-02 21:16:06 +08:00
# endif
2017-12-26 21:49:33 +08:00
// Layers that refer old input Mat will refer to the
// new data but the same Mat object.
2018-08-15 19:55:47 +08:00
CV_Assert_N ( curr_output . data = = output_slice . data , oldPtr = = & curr_output ) ;
2017-07-04 22:23:47 +08:00
}
2018-01-21 02:55:25 +08:00
ld . skip = true ;
2017-07-04 22:23:47 +08:00
printf_ ( ( " \t optimized out Concat layer %s \n " , concatLayer - > name . c_str ( ) ) ) ;
}
2017-06-28 16:15:22 +08:00
}
2017-06-26 18:35:51 +08:00
}
}
}
void allocateLayers ( const std : : vector < LayerPin > & blobsToKeep_ )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; it + + )
2017-06-26 18:35:51 +08:00
it - > second . flag = 0 ;
CV_Assert ( ! layers [ 0 ] . outputBlobs . empty ( ) ) ;
ShapesVec inputShapes ;
for ( int i = 0 ; i < layers [ 0 ] . outputBlobs . size ( ) ; i + + )
{
2018-07-09 19:35:54 +08:00
Mat & inp = layers [ 0 ] . outputBlobs [ i ] ;
CV_Assert ( inp . total ( ) ) ;
if ( preferableBackend = = DNN_BACKEND_OPENCV & &
2018-04-26 19:20:16 +08:00
preferableTarget = = DNN_TARGET_OPENCL_FP16 )
{
2018-07-09 19:35:54 +08:00
layers [ 0 ] . outputBlobs [ i ] . create ( inp . dims , inp . size , CV_16S ) ;
2018-04-26 19:20:16 +08:00
}
2018-07-09 19:35:54 +08:00
inputShapes . push_back ( shape ( inp ) ) ;
2017-06-26 18:35:51 +08:00
}
LayersShapesMap layersShapes ;
getLayersShapes ( inputShapes , layersShapes ) ;
blobManager . reset ( ) ;
2017-09-06 15:34:07 +08:00
backendWrappers . clear ( ) ;
2017-11-02 21:21:06 +08:00
// Fake references to input blobs.
for ( int i = 0 ; i < layers [ 0 ] . outputBlobs . size ( ) ; + + i )
blobManager . addReference ( LayerPin ( 0 , i ) ) ;
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : const_iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; + + it )
2017-06-26 18:35:51 +08:00
{
const LayerData & ld = it - > second ;
blobManager . addReferences ( ld . inputBlobsId ) ;
}
for ( int i = 0 ; i < blobsToKeep_ . size ( ) ; i + + )
{
blobManager . addReference ( blobsToKeep_ [ i ] ) ;
}
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : const_iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; it + + )
2017-06-26 18:35:51 +08:00
{
int lid = it - > first ;
allocateLayer ( lid , layersShapes ) ;
}
2017-08-02 22:27:58 +08:00
layersTimings . resize ( lastLayerId + 1 , 0 ) ;
2017-06-26 18:35:51 +08:00
fuseLayers ( blobsToKeep_ ) ;
}
void forwardLayer ( LayerData & ld )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
Ptr < Layer > layer = ld . layerInstance ;
2018-07-26 22:22:05 +08:00
if ( ! ld . skip )
2017-06-26 18:35:51 +08:00
{
2020-10-10 00:33:48 +08:00
TickMeter tm ;
tm . start ( ) ;
2022-01-12 11:46:13 +08:00
std : : map < int , Ptr < BackendNode > > : : const_iterator it = ld . backendNodes . find ( preferableBackend ) ;
2018-07-26 22:22:05 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV | | it = = ld . backendNodes . end ( ) | | it - > second . empty ( ) )
2017-09-06 15:34:07 +08:00
{
2019-04-20 02:01:19 +08:00
if ( isAsync )
CV_Error ( Error : : StsNotImplemented , " Default implementation fallbacks in asynchronous mode " ) ;
2019-07-20 00:18:34 +08:00
if ( ! layer - > supportBackend ( DNN_BACKEND_OPENCV ) )
CV_Error ( Error : : StsNotImplemented , format ( " Layer \" %s \" of type \" %s \" unsupported on OpenCV backend " ,
ld . name . c_str ( ) , ld . type . c_str ( ) ) ) ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-06-01 15:54:12 +08:00
if ( preferableBackend = = DNN_BACKEND_OPENCV & & IS_DNN_OPENCL_TARGET ( preferableTarget ) )
2017-09-06 15:34:07 +08:00
{
2018-07-20 20:19:44 +08:00
std : : vector < UMat > umat_inputBlobs = OpenCLBackendWrapper : : getUMatVector ( ld . inputBlobsWrappers ) ;
2018-01-11 02:50:54 +08:00
std : : vector < UMat > umat_outputBlobs = OpenCLBackendWrapper : : getUMatVector ( ld . outputBlobsWrappers ) ;
2018-07-20 20:19:44 +08:00
std : : vector < UMat > umat_internalBlobs = OpenCLBackendWrapper : : getUMatVector ( ld . internalBlobsWrappers ) ;
layer - > forward ( umat_inputBlobs ,
2018-01-11 02:50:54 +08:00
umat_outputBlobs ,
2018-07-20 20:19:44 +08:00
umat_internalBlobs ) ;
if ( DNN_CHECK_NAN_INF )
{
bool fail = false ;
for ( size_t i = 0 ; i < umat_outputBlobs . size ( ) ; + + i )
{
UMat & u = umat_outputBlobs [ i ] ;
Mat m ;
if ( u . depth ( ) = = CV_16S ) // FP16
convertFp16 ( u , m ) ;
else
m = u . getMat ( ACCESS_READ ) ;
if ( ! checkRange ( m ) )
{
std : : cerr < < " WARNING: NaN detected in layer output: id= " < < ld . id < < " name= " < < layer - > name < < std : : endl ;
std : : cerr < < " output id= " < < i < < " output shape= " < < shape ( m ) < < std : : endl ;
fail = true ;
}
else if ( ! checkRange ( m , true , NULL , - 1e6 , 1e6 ) )
{
std : : cerr < < " WARNING: Inf detected in layer output: id= " < < ld . id < < " name= " < < layer - > name < < std : : endl ;
std : : cerr < < " output id= " < < i < < " output shape= " < < shape ( m ) < < std : : endl ;
fail = true ;
}
}
if ( fail )
{
for ( size_t i = 0 ; i < umat_inputBlobs . size ( ) ; + + i )
{
UMat & u = umat_inputBlobs [ i ] ;
Mat m ;
if ( u . depth ( ) = = CV_16S ) // FP16
convertFp16 ( u , m ) ;
else
m = u . getMat ( ACCESS_READ ) ;
std : : cout < < " INPUT " < < i < < " " < < cv : : typeToString ( u . type ( ) ) < < " " < < shape ( m ) < < std : : endl ;
if ( DNN_CHECK_NAN_INF_DUMP ) std : : cout < < m . reshape ( 1 , 1 ) < < std : : endl ;
}
for ( size_t i = 0 ; i < umat_outputBlobs . size ( ) ; + + i )
{
UMat & u = umat_outputBlobs [ i ] ;
Mat m ;
if ( u . depth ( ) = = CV_16S ) // FP16
convertFp16 ( u , m ) ;
else
m = u . getMat ( ACCESS_READ ) ;
std : : cout < < " OUTPUT " < < i < < " " < < cv : : typeToString ( u . type ( ) ) < < " " < < shape ( m ) < < std : : endl ;
if ( DNN_CHECK_NAN_INF_DUMP ) std : : cout < < m . reshape ( 1 , 1 ) < < std : : endl ;
}
for ( size_t i = 0 ; i < umat_internalBlobs . size ( ) ; + + i )
{
UMat & u = umat_internalBlobs [ i ] ;
Mat m ;
if ( u . depth ( ) = = CV_16S ) // FP16
convertFp16 ( u , m ) ;
else
m = u . getMat ( ACCESS_READ ) ;
std : : cout < < " INTERNAL " < < i < < " " < < shape ( m ) < < std : : endl ;
if ( DNN_CHECK_NAN_INF_DUMP ) std : : cout < < cv : : typeToString ( u . type ( ) ) < < " " < < m . reshape ( 1 , 1 ) < < std : : endl ;
}
if ( DNN_CHECK_NAN_INF_RAISE_ERROR )
CV_Assert ( ! fail ) ;
}
}
2018-01-11 02:50:54 +08:00
OpenCLBackendWrapper : : update ( ld . outputBlobsWrappers , umat_outputBlobs ) ;
2017-09-06 15:34:07 +08:00
}
2017-11-09 12:57:37 +08:00
else
2019-12-02 21:16:06 +08:00
# endif
2017-09-06 15:34:07 +08:00
{
2018-01-11 02:50:54 +08:00
for ( int i = 0 , n = ld . inputBlobsWrappers . size ( ) ; i < n ; + + i )
{
if ( ! ld . inputBlobsWrappers [ i ] . empty ( ) )
ld . inputBlobsWrappers [ i ] - > copyToHost ( ) ;
}
2018-09-06 18:26:47 +08:00
std : : vector < Mat > inps ( ld . inputBlobs . size ( ) ) ;
for ( int i = 0 ; i < ld . inputBlobs . size ( ) ; + + i )
{
inps [ i ] = * ld . inputBlobs [ i ] ;
}
layer - > forward ( inps , ld . outputBlobs , ld . internals ) ;
2018-01-11 02:50:54 +08:00
2018-07-20 20:19:44 +08:00
if ( DNN_CHECK_NAN_INF )
{
bool fail = false ;
for ( size_t i = 0 ; i < ld . outputBlobs . size ( ) ; + + i )
{
const Mat & m = ld . outputBlobs [ i ] ;
if ( ! checkRange ( m ) )
{
std : : cerr < < " WARNING: NaN detected in layer output: id= " < < ld . id < < " name= " < < layer - > name < < std : : endl ;
std : : cerr < < " output id= " < < i < < " output shape= " < < shape ( m ) < < std : : endl ;
fail = true ;
}
else if ( ! checkRange ( m , true , NULL , - 1e6 , 1e6 ) )
{
std : : cerr < < " WARNING: Inf detected in layer output: id= " < < ld . id < < " name= " < < layer - > name < < std : : endl ;
std : : cerr < < " output id= " < < i < < " output shape= " < < shape ( m ) < < std : : endl ;
fail = true ;
}
}
if ( fail )
{
for ( size_t i = 0 ; i < ld . inputBlobs . size ( ) ; + + i )
{
const Mat * pM = ld . inputBlobs [ i ] ;
if ( ! pM )
{
std : : cout < < " INPUT " < < i < < " is NULL " < < std : : endl ;
continue ;
}
const Mat & m = * pM ;
std : : cout < < " INPUT " < < i < < " " < < cv : : typeToString ( m . type ( ) ) < < " " < < shape ( m ) < < std : : endl ;
if ( DNN_CHECK_NAN_INF_DUMP ) std : : cout < < m . reshape ( 1 , 1 ) < < std : : endl ;
}
for ( size_t i = 0 ; i < ld . outputBlobs . size ( ) ; + + i )
{
const Mat & m = ld . outputBlobs [ i ] ;
std : : cout < < " OUTPUT " < < i < < " " < < cv : : typeToString ( m . type ( ) ) < < " " < < shape ( m ) < < std : : endl ;
if ( DNN_CHECK_NAN_INF_DUMP ) std : : cout < < m . reshape ( 1 , 1 ) < < std : : endl ;
}
for ( size_t i = 0 ; i < ld . internals . size ( ) ; + + i )
{
const Mat & m = ld . internals [ i ] ;
std : : cout < < " INTERNAL " < < i < < " " < < cv : : typeToString ( m . type ( ) ) < < " " < < shape ( m ) < < std : : endl ;
if ( DNN_CHECK_NAN_INF_DUMP ) std : : cout < < m . reshape ( 1 , 1 ) < < std : : endl ;
}
if ( DNN_CHECK_NAN_INF_RAISE_ERROR )
CV_Assert ( ! fail ) ;
}
}
2018-01-11 02:50:54 +08:00
for ( int i = 0 , n = ld . outputBlobsWrappers . size ( ) ; i < n ; + + i )
{
if ( ! ld . outputBlobsWrappers [ i ] . empty ( ) )
ld . outputBlobsWrappers [ i ] - > setHostDirty ( ) ;
}
2017-09-06 15:34:07 +08:00
}
}
2017-08-02 22:27:58 +08:00
else
2018-02-06 16:57:35 +08:00
{
2018-07-26 22:22:05 +08:00
Ptr < BackendNode > node = it - > second ;
CV_Assert ( ! node . empty ( ) ) ;
if ( preferableBackend = = DNN_BACKEND_HALIDE )
{
forwardHalide ( ld . outputBlobsWrappers , node ) ;
}
2019-12-02 21:16:06 +08:00
else if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 )
2018-07-26 22:22:05 +08:00
{
2019-04-20 02:01:19 +08:00
forwardInfEngine ( ld . outputBlobsWrappers , node , isAsync ) ;
2018-07-26 22:22:05 +08:00
}
2019-12-02 21:16:06 +08:00
else if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH )
{
forwardNgraph ( ld . outputBlobsWrappers , node , isAsync ) ;
}
2018-07-26 22:22:05 +08:00
else
{
CV_Error ( Error : : StsNotImplemented , " Unknown backend identifier " ) ;
}
2017-06-26 18:35:51 +08:00
}
2020-10-10 00:33:48 +08:00
tm . stop ( ) ;
int64 t = tm . getTimeTicks ( ) ;
layersTimings [ ld . id ] = ( t > 0 ) ? t : t + 1 ; // zero for skipped layers only
2017-06-26 18:35:51 +08:00
}
2018-07-26 22:22:05 +08:00
else
2020-10-10 00:33:48 +08:00
{
layersTimings [ ld . id ] = 0 ;
}
2017-08-02 22:27:58 +08:00
2017-06-26 18:35:51 +08:00
ld . flag = 1 ;
}
void forwardToLayer ( LayerData & ld , bool clearFlags = true )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
if ( clearFlags )
{
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; it + + )
2017-06-26 18:35:51 +08:00
it - > second . flag = 0 ;
}
//already was forwarded
if ( ld . flag )
return ;
//forward parents
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : iterator it = layers . begin ( ) ; it ! = layers . end ( ) & & ( it - > second . id < ld . id ) ; + + it )
2017-06-26 18:35:51 +08:00
{
LayerData & ld = it - > second ;
if ( ld . flag )
continue ;
forwardLayer ( ld ) ;
}
//forward itself
forwardLayer ( ld ) ;
}
void getLayerShapesRecursively ( int id , LayersShapesMap & inOutShapes )
{
2021-12-23 07:33:57 +08:00
CV_CheckGE ( id , 0 , " " ) ;
CV_CheckLT ( id , ( int ) layers . size ( ) , " " ) ;
LayerData & layerData = layers [ id ] ;
std : : vector < LayerPin > & inputLayerIds = layerData . inputBlobsId ;
LayerShapes & layerShapes = inOutShapes [ id ] ;
2017-06-26 18:35:51 +08:00
2021-12-23 07:33:57 +08:00
if ( id = = 0 & & layerShapes . in [ 0 ] . empty ( ) )
2019-12-02 21:25:21 +08:00
{
2021-12-23 07:33:57 +08:00
if ( ! layerData . outputBlobs . empty ( ) )
2019-12-02 21:25:21 +08:00
{
2019-12-06 00:25:51 +08:00
ShapesVec shapes ;
2021-12-23 07:33:57 +08:00
for ( int i = 0 ; i < layerData . outputBlobs . size ( ) ; i + + )
2019-12-06 00:25:51 +08:00
{
2021-12-23 07:33:57 +08:00
Mat & inp = layerData . outputBlobs [ i ] ;
CV_Assert ( ! inp . empty ( ) ) ;
2019-12-06 00:25:51 +08:00
shapes . push_back ( shape ( inp ) ) ;
}
2021-12-23 07:33:57 +08:00
layerShapes . in = shapes ;
2019-12-02 21:25:21 +08:00
}
2019-12-06 00:25:51 +08:00
else
{
2020-02-22 03:39:54 +08:00
const std : : vector < MatShape > & inputShapes = netInputLayer - > shapes ;
bool none = true ;
for ( size_t i = 0 ; i < inputShapes . size ( ) ; i + + )
{
if ( ! inputShapes [ i ] . empty ( ) )
{
none = false ;
break ;
}
}
if ( none )
{
2021-12-23 07:33:57 +08:00
layerShapes . out . clear ( ) ;
2020-02-22 03:39:54 +08:00
return ;
}
else
{
2021-12-23 07:33:57 +08:00
layerShapes . in = inputShapes ;
2020-02-22 03:39:54 +08:00
}
2019-12-06 00:25:51 +08:00
}
}
2019-12-02 21:25:21 +08:00
2021-12-23 07:33:57 +08:00
if ( layerShapes . in . empty ( ) )
2017-06-26 18:35:51 +08:00
{
for ( int i = 0 ; i < inputLayerIds . size ( ) ; i + + )
{
int layerId = inputLayerIds [ i ] . lid ;
2022-01-12 11:46:13 +08:00
LayersShapesMap : : const_iterator it =
2017-06-26 18:35:51 +08:00
inOutShapes . find ( layerId ) ;
if ( it = = inOutShapes . end ( ) | |
it - > second . out . empty ( ) )
{
getLayerShapesRecursively ( layerId , inOutShapes ) ;
}
const MatShape & shape = inOutShapes [ layerId ] . out [ inputLayerIds [ i ] . oid ] ;
2021-12-23 07:33:57 +08:00
layerShapes . in . push_back ( shape ) ;
2017-06-26 18:35:51 +08:00
}
}
2021-12-23 07:33:57 +08:00
const ShapesVec & is = layerShapes . in ;
ShapesVec & os = layerShapes . out ;
ShapesVec & ints = layerShapes . internal ;
int requiredOutputs = layerData . requiredOutputs . size ( ) ;
Ptr < Layer > l = layerData . getLayerInstance ( ) ;
2019-12-09 06:11:55 +08:00
CV_Assert ( l ) ;
bool layerSupportInPlace = false ;
try
{
layerSupportInPlace = l - > getMemoryShapes ( is , requiredOutputs , os , ints ) ;
}
catch ( const cv : : Exception & e )
{
CV_LOG_ERROR ( NULL , " OPENCV/DNN: [ " < < l - > type < < " ]:( " < < l - > name < < " ): getMemoryShapes() throws exception. " < <
2020-01-16 19:31:43 +08:00
" inputs= " < < is . size ( ) < <
" outputs= " < < os . size ( ) < < " / " < < requiredOutputs < <
" blobs= " < < l - > blobs . size ( ) ) ;
2019-12-09 06:11:55 +08:00
for ( size_t i = 0 ; i < is . size ( ) ; + + i )
{
CV_LOG_ERROR ( NULL , " input[ " < < i < < " ] = " < < toString ( is [ i ] ) ) ;
}
for ( size_t i = 0 ; i < os . size ( ) ; + + i )
{
CV_LOG_ERROR ( NULL , " output[ " < < i < < " ] = " < < toString ( os [ i ] ) ) ;
}
2020-01-16 19:31:43 +08:00
for ( size_t i = 0 ; i < l - > blobs . size ( ) ; + + i )
{
CV_LOG_ERROR ( NULL , " blobs[ " < < i < < " ] = " < < typeToString ( l - > blobs [ i ] . type ( ) ) < < " " < < toString ( shape ( l - > blobs [ i ] ) ) ) ;
}
2019-12-09 06:11:55 +08:00
CV_LOG_ERROR ( NULL , " Exception message: " < < e . what ( ) ) ;
throw ;
}
2021-12-23 07:33:57 +08:00
layerShapes . supportInPlace = layerSupportInPlace ;
2019-09-25 20:35:04 +08:00
2021-12-23 07:33:57 +08:00
try
{
for ( int i = 0 ; i < ints . size ( ) ; i + + )
CV_CheckGT ( total ( ints [ i ] ) , 0 , " " ) ;
2019-09-25 20:35:04 +08:00
2021-12-23 07:33:57 +08:00
for ( int i = 0 ; i < os . size ( ) ; i + + )
CV_CheckGT ( total ( os [ i ] ) , 0 , " " ) ;
}
catch ( const cv : : Exception & e )
{
CV_LOG_ERROR ( NULL , " OPENCV/DNN: [ " < < l - > type < < " ]:( " < < l - > name < < " ): getMemoryShapes() post validation failed. " < <
" inputs= " < < is . size ( ) < <
" outputs= " < < os . size ( ) < < " / " < < requiredOutputs < <
" blobs= " < < l - > blobs . size ( ) < <
" inplace= " < < layerSupportInPlace ) ;
for ( size_t i = 0 ; i < is . size ( ) ; + + i )
{
CV_LOG_ERROR ( NULL , " input[ " < < i < < " ] = " < < toString ( is [ i ] ) ) ;
}
for ( size_t i = 0 ; i < os . size ( ) ; + + i )
{
CV_LOG_ERROR ( NULL , " output[ " < < i < < " ] = " < < toString ( os [ i ] ) ) ;
}
for ( size_t i = 0 ; i < l - > blobs . size ( ) ; + + i )
{
CV_LOG_ERROR ( NULL , " blobs[ " < < i < < " ] = " < < typeToString ( l - > blobs [ i ] . type ( ) ) < < " " < < toString ( shape ( l - > blobs [ i ] ) ) ) ;
}
CV_LOG_ERROR ( NULL , " Exception message: " < < e . what ( ) ) ;
throw ;
}
2017-06-26 18:35:51 +08:00
}
void getLayersShapes ( const ShapesVec & netInputShapes ,
LayersShapesMap & inOutShapes )
{
inOutShapes . clear ( ) ;
inOutShapes [ 0 ] . in = netInputShapes ; //insert shape for first input layer
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : const_iterator it = layers . begin ( ) ;
2017-06-26 18:35:51 +08:00
it ! = layers . end ( ) ; it + + )
{
getLayerShapesRecursively ( it - > first , inOutShapes ) ;
}
}
void getLayerShapes ( const ShapesVec & netInputShapes ,
const int layerId ,
LayerShapes & shapes )
{
LayersShapesMap inOutShapes ;
inOutShapes [ 0 ] . in = netInputShapes ; //insert shape for first input layer
getLayerShapesRecursively ( layerId , inOutShapes ) ;
shapes = inOutShapes [ layerId ] ;
}
2020-11-17 18:31:04 +08:00
void updateLayersShapes ( )
{
2021-12-23 07:33:57 +08:00
CV_LOG_DEBUG ( NULL , " updateLayersShapes() with layers.size= " < < layers . size ( ) ) ;
CV_Assert ( netInputLayer ) ;
DataLayer & inputLayer = * netInputLayer ;
LayerData & inputLayerData = layers [ 0 ] ;
CV_Assert ( inputLayerData . layerInstance . get ( ) = = & inputLayer ) ;
CV_Assert ( ! inputLayerData . outputBlobs . empty ( ) ) ;
2020-11-17 18:31:04 +08:00
ShapesVec inputShapes ;
2021-12-23 07:33:57 +08:00
for ( int i = 0 ; i < inputLayerData . outputBlobs . size ( ) ; i + + )
2020-11-17 18:31:04 +08:00
{
2021-12-23 07:33:57 +08:00
Mat & inp = inputLayerData . outputBlobs [ i ] ;
CV_Assert ( ! inp . empty ( ) ) ;
if ( preferableBackend = = DNN_BACKEND_OPENCV & & // FIXIT: wrong place for output allocation
2020-11-17 18:31:04 +08:00
preferableTarget = = DNN_TARGET_OPENCL_FP16 )
{
2021-12-23 07:33:57 +08:00
inp . create ( inp . dims , inp . size , CV_16S ) ;
2020-11-17 18:31:04 +08:00
}
inputShapes . push_back ( shape ( inp ) ) ;
}
2021-12-23 07:33:57 +08:00
CV_LOG_DEBUG ( NULL , toString ( inputShapes , " Network input shapes " ) ) ;
2020-11-17 18:31:04 +08:00
LayersShapesMap layersShapes ;
layersShapes [ 0 ] . in = inputShapes ;
2022-01-12 11:46:13 +08:00
for ( MapIdToLayerData : : iterator it = layers . begin ( ) ; it ! = layers . end ( ) ; it + + )
2020-11-17 18:31:04 +08:00
{
int layerId = it - > first ;
2021-12-23 07:33:57 +08:00
LayerData & layerData = it - > second ;
2022-01-12 11:46:13 +08:00
const std : : vector < LayerPin > & inputLayerIds = layerData . inputBlobsId ;
2021-12-23 07:33:57 +08:00
LayerShapes & layerShapes = layersShapes [ layerId ] ;
CV_LOG_DEBUG ( NULL , " layer " < < layerId < < " : [ " < < layerData . type < < " ]:( " < < layerData . name < < " ) with inputs.size= " < < inputLayerIds . size ( ) ) ;
if ( layerShapes . in . empty ( ) )
2020-11-17 18:31:04 +08:00
{
for ( int i = 0 ; i < inputLayerIds . size ( ) ; i + + )
{
2021-12-23 07:33:57 +08:00
const LayerPin & inputPin = inputLayerIds [ i ] ;
int inputLayerId = inputPin . lid ;
CV_LOG_DEBUG ( NULL , " input[ " < < i < < " ] " < < inputLayerId < < " : " < < inputPin . oid < < " as [ " < < layers [ inputLayerId ] . type < < " ]:( " < < layers [ inputLayerId ] . name < < " ) " ) ;
2022-01-12 11:46:13 +08:00
LayersShapesMap : : const_iterator inputIt = layersShapes . find ( inputLayerId ) ;
2021-12-23 07:33:57 +08:00
if ( inputIt = = layersShapes . end ( ) | | inputIt - > second . out . empty ( ) )
2020-11-17 18:31:04 +08:00
{
getLayerShapesRecursively ( inputLayerId , layersShapes ) ;
}
2021-12-23 07:33:57 +08:00
const MatShape & shape = layersShapes [ inputLayerId ] . out [ inputPin . oid ] ;
layerShapes . in . push_back ( shape ) ;
2020-11-17 18:31:04 +08:00
}
2021-12-23 07:33:57 +08:00
layerData . layerInstance - > updateMemoryShapes ( layerShapes . in ) ;
2020-11-17 18:31:04 +08:00
}
2021-12-23 07:33:57 +08:00
CV_LOG_DEBUG ( NULL , " Layer " < < layerId < < " : " < < toString ( layerShapes . in , " input shapes " ) ) ;
CV_LOG_IF_DEBUG ( NULL , ! layerShapes . out . empty ( ) , " Layer " < < layerId < < " : " < < toString ( layerShapes . out , " output shapes " ) ) ;
CV_LOG_IF_DEBUG ( NULL , ! layerShapes . internal . empty ( ) , " Layer " < < layerId < < " : " < < toString ( layerShapes . internal , " internal shapes " ) ) ;
2020-11-17 18:31:04 +08:00
}
2021-12-23 07:33:57 +08:00
CV_LOG_DEBUG ( NULL , " updateLayersShapes() - DONE " ) ;
2020-11-17 18:31:04 +08:00
}
2022-01-12 11:46:13 +08:00
LayerPin getLatestLayerPin ( const std : : vector < LayerPin > & pins ) const
2017-06-26 18:35:51 +08:00
{
return * std : : max_element ( pins . begin ( ) , pins . end ( ) ) ;
}
2022-01-12 11:46:13 +08:00
Mat getBlob ( const LayerPin & pin ) const
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
if ( ! pin . valid ( ) )
CV_Error ( Error : : StsObjectNotFound , " Requested blob not found " ) ;
2022-01-12 11:46:13 +08:00
MapIdToLayerData : : const_iterator it = layers . find ( pin . lid ) ;
if ( it = = layers . end ( ) )
CV_Error_ ( Error : : StsOutOfRange , ( " Layer #%d is not valid (output #%d requested) " , pin . lid , pin . oid ) ) ;
const LayerData & ld = it - > second ;
2017-06-26 18:35:51 +08:00
if ( ( size_t ) pin . oid > = ld . outputBlobs . size ( ) )
{
2018-01-13 23:17:56 +08:00
CV_Error ( Error : : StsOutOfRange , format ( " Layer \" %s \" produce only %d outputs, "
2018-02-12 20:07:39 +08:00
" the #%d was requested " , ld . name . c_str ( ) ,
2018-01-13 23:17:56 +08:00
ld . outputBlobs . size ( ) , pin . oid ) ) ;
2017-06-26 18:35:51 +08:00
}
2018-01-11 02:50:54 +08:00
if ( preferableTarget ! = DNN_TARGET_CPU )
2017-06-26 18:35:51 +08:00
{
2018-01-11 02:50:54 +08:00
CV_Assert ( ! ld . outputBlobsWrappers . empty ( ) & & ! ld . outputBlobsWrappers [ pin . oid ] . empty ( ) ) ;
2017-06-26 18:35:51 +08:00
// Transfer data to CPU if it's require.
2017-09-06 15:34:07 +08:00
ld . outputBlobsWrappers [ pin . oid ] - > copyToHost ( ) ;
2017-06-26 18:35:51 +08:00
}
2018-04-26 19:20:16 +08:00
if ( ld . outputBlobs [ pin . oid ] . depth ( ) = = CV_16S )
{
2022-01-12 11:46:13 +08:00
Mat output_blob ;
2018-04-26 19:20:16 +08:00
convertFp16 ( ld . outputBlobs [ pin . oid ] , output_blob ) ;
return output_blob ;
}
else
return ld . outputBlobs [ pin . oid ] ;
2017-06-26 18:35:51 +08:00
}
2022-01-12 11:46:13 +08:00
Mat getBlob ( String outputName ) const
2017-06-26 18:35:51 +08:00
{
return getBlob ( getPinByAlias ( outputName ) ) ;
}
2019-04-20 02:01:19 +08:00
# ifdef CV_CXX11
2019-05-01 19:51:12 +08:00
AsyncArray getBlobAsync ( const LayerPin & pin )
2019-04-20 02:01:19 +08:00
{
CV_TRACE_FUNCTION ( ) ;
# ifdef HAVE_INF_ENGINE
if ( ! pin . valid ( ) )
CV_Error ( Error : : StsObjectNotFound , " Requested blob not found " ) ;
LayerData & ld = layers [ pin . lid ] ;
if ( ( size_t ) pin . oid > = ld . outputBlobs . size ( ) )
{
CV_Error ( Error : : StsOutOfRange , format ( " Layer \" %s \" produce only %d outputs, "
" the #%d was requested " , ld . name . c_str ( ) ,
ld . outputBlobs . size ( ) , pin . oid ) ) ;
}
if ( preferableTarget ! = DNN_TARGET_CPU )
{
CV_Assert ( ! ld . outputBlobsWrappers . empty ( ) & & ! ld . outputBlobsWrappers [ pin . oid ] . empty ( ) ) ;
// Transfer data to CPU if it's require.
ld . outputBlobsWrappers [ pin . oid ] - > copyToHost ( ) ;
}
2019-12-02 21:16:06 +08:00
CV_Assert ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 | | preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ) ;
2019-04-20 02:01:19 +08:00
2019-12-02 21:16:06 +08:00
if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ) {
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
Ptr < InfEngineBackendWrapper > wrapper = ld . outputBlobsWrappers [ pin . oid ] . dynamicCast < InfEngineBackendWrapper > ( ) ;
return std : : move ( wrapper - > futureMat ) ;
2020-03-03 16:01:44 +08:00
# else
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built without Inference Engine NN Builder API support " ) ;
# endif
2019-12-02 21:16:06 +08:00
}
else if ( preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH )
{
# ifdef HAVE_DNN_NGRAPH
Ptr < NgraphBackendWrapper > wrapper = ld . outputBlobsWrappers [ pin . oid ] . dynamicCast < NgraphBackendWrapper > ( ) ;
return std : : move ( wrapper - > futureMat ) ;
2019-04-20 02:01:19 +08:00
# else
2019-12-02 21:16:06 +08:00
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built without support of Inference Engine + nGraph " ) ;
2019-04-20 02:01:19 +08:00
# endif
2019-12-02 21:16:06 +08:00
}
# endif // HAVE_INF_ENGINE
CV_Error ( Error : : StsNotImplemented , " DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 backend is required " ) ;
2019-04-20 02:01:19 +08:00
}
2019-05-01 19:51:12 +08:00
AsyncArray getBlobAsync ( String outputName )
2019-04-20 02:01:19 +08:00
{
return getBlobAsync ( getPinByAlias ( outputName ) ) ;
}
# endif // CV_CXX11
2019-11-27 22:31:38 +08:00
# ifdef HAVE_INF_ENGINE
static
Net createNetworkFromModelOptimizer ( InferenceEngine : : CNNNetwork & ieNet ) ;
# endif
2020-02-06 05:20:10 +08:00
2022-01-12 11:46:13 +08:00
string dump ( ) const ;
2020-02-06 05:20:10 +08:00
2022-01-12 11:46:13 +08:00
void dumpNetworkToFile ( ) const
2020-02-06 05:20:10 +08:00
{
# ifndef OPENCV_DNN_DISABLE_NETWORK_AUTO_DUMP
2020-05-26 20:45:55 +08:00
string dumpFileNameBase = getDumpFileNameBase ( ) ;
string dumpFileName = dumpFileNameBase + " .dot " ;
2020-02-06 05:20:10 +08:00
try
{
string dumpStr = dump ( ) ;
std : : ofstream out ( dumpFileName . c_str ( ) , std : : ios : : out | std : : ios : : binary ) ;
out < < dumpStr ;
}
catch ( const std : : exception & e )
{
std : : ofstream out ( ( dumpFileName + " .error " ) . c_str ( ) , std : : ios : : out ) ;
out < < " Exception: " < < e . what ( ) < < std : : endl ;
}
catch ( . . . )
{
std : : ofstream out ( ( dumpFileName + " .error " ) . c_str ( ) , std : : ios : : out ) ;
out < < " Can't dump: unknown exception " < < std : : endl ;
}
# endif
}
2017-06-26 18:35:51 +08:00
} ;
Net : : Net ( ) : impl ( new Net : : Impl )
{
}
2019-11-27 22:31:38 +08:00
# ifdef HAVE_INF_ENGINE
/*static*/
Net Net : : Impl : : createNetworkFromModelOptimizer ( InferenceEngine : : CNNNetwork & ieNet )
2018-03-17 00:27:04 +08:00
{
2019-11-27 22:31:38 +08:00
CV_TRACE_FUNCTION ( ) ;
2018-03-17 00:27:04 +08:00
2020-04-23 06:33:12 +08:00
CV_TRACE_REGION ( " register_inputs " ) ;
2018-03-17 00:27:04 +08:00
std : : vector < String > inputsNames ;
2019-12-02 21:25:21 +08:00
std : : vector < MatShape > inp_shapes ;
2018-03-17 00:27:04 +08:00
for ( auto & it : ieNet . getInputsInfo ( ) )
{
inputsNames . push_back ( it . first ) ;
2019-12-02 21:25:21 +08:00
std : : vector < size_t > dims = it . second - > getTensorDesc ( ) . getDims ( ) ;
inp_shapes . push_back ( std : : vector < int > ( dims . begin ( ) , dims . end ( ) ) ) ;
2018-03-17 00:27:04 +08:00
}
2018-03-28 21:34:37 +08:00
Net cvNet ;
2018-03-17 00:27:04 +08:00
cvNet . setInputsNames ( inputsNames ) ;
2019-12-02 21:25:21 +08:00
// set empty input to determine input shapes
for ( int inp_id = 0 ; inp_id < inputsNames . size ( ) ; + + inp_id )
{
2020-02-22 03:39:54 +08:00
cvNet . setInputShape ( inputsNames [ inp_id ] , inp_shapes [ inp_id ] ) ;
2019-12-02 21:25:21 +08:00
}
2020-04-23 06:33:12 +08:00
CV_TRACE_REGION_NEXT ( " backendNode " ) ;
2019-12-02 21:16:06 +08:00
Ptr < BackendNode > backendNode ;
# ifdef HAVE_DNN_NGRAPH
if ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = = getInferenceEngineBackendTypeParam ( ) )
{
auto fake_node = std : : make_shared < ngraph : : op : : Parameter > ( ngraph : : element : : f32 , ngraph : : Shape { } ) ;
Ptr < InfEngineNgraphNode > backendNodeNGraph ( new InfEngineNgraphNode ( fake_node ) ) ;
2020-05-26 20:45:55 +08:00
backendNodeNGraph - > net = Ptr < InfEngineNgraphNet > ( new InfEngineNgraphNet ( * ( cvNet . impl ) , ieNet ) ) ;
2019-12-02 21:16:06 +08:00
backendNode = backendNodeNGraph ;
}
else
# endif
{
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
Ptr < InfEngineBackendNode > backendNodeNN ( new InfEngineBackendNode ( InferenceEngine : : Builder : : Layer ( " " ) ) ) ;
backendNodeNN - > net = Ptr < InfEngineBackendNet > ( new InfEngineBackendNet ( ieNet ) ) ;
backendNode = backendNodeNN ;
2020-03-03 16:01:44 +08:00
# else
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built without Inference Engine NN Builder API support " ) ;
# endif
2019-12-02 21:16:06 +08:00
}
2020-04-23 06:33:12 +08:00
CV_TRACE_REGION_NEXT ( " register_outputs " ) ;
# ifdef HAVE_DNN_NGRAPH
auto ngraphFunction = ieNet . getFunction ( ) ;
# if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_2)
std : : list < std : : shared_ptr < ngraph : : Node > > ngraphOperations ;
# else
std : : vector < std : : shared_ptr < ngraph : : Node > > ngraphOperations ;
# endif
if ( ngraphFunction )
{
ngraphOperations = ngraphFunction - > get_ops ( ) ;
}
# endif
2018-03-17 00:27:04 +08:00
for ( auto & it : ieNet . getOutputsInfo ( ) )
{
2020-04-23 06:33:12 +08:00
CV_TRACE_REGION ( " output " ) ;
2020-06-02 04:43:35 +08:00
const auto & outputName = it . first ;
2020-04-23 06:33:12 +08:00
2018-03-17 00:27:04 +08:00
LayerParams lp ;
int lid = cvNet . addLayer ( it . first , " " , lp ) ;
LayerData & ld = cvNet . impl - > layers [ lid ] ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_DNN_NGRAPH
if ( DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = = getInferenceEngineBackendTypeParam ( ) )
{
Ptr < Layer > cvLayer ( new NgraphBackendLayer ( ieNet ) ) ;
2020-04-23 06:33:12 +08:00
cvLayer - > name = outputName ;
cvLayer - > type = " _unknown_ " ;
2019-12-02 21:16:06 +08:00
2020-06-02 04:43:35 +08:00
auto process_layer = [ & ] ( const std : : string & name ) - > bool
2020-04-23 06:33:12 +08:00
{
2020-06-02 04:43:35 +08:00
if ( ngraphFunction )
2020-04-23 06:33:12 +08:00
{
2020-06-02 04:43:35 +08:00
CV_TRACE_REGION ( " ngraph_function " ) ;
for ( const auto & op : ngraphOperations )
2020-04-23 06:33:12 +08:00
{
2020-06-02 04:43:35 +08:00
CV_Assert ( op ) ;
if ( op - > get_friendly_name ( ) = = name )
{
const std : : string typeName = op - > get_type_info ( ) . name ;
cvLayer - > type = typeName ;
return true ;
}
2020-04-23 06:33:12 +08:00
}
2020-06-02 04:43:35 +08:00
return false ;
2020-04-23 06:33:12 +08:00
}
2020-06-02 04:43:35 +08:00
else
{
2020-06-25 04:58:18 +08:00
# if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_4)
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built with Inference Engine which has dropped IR v7 support " ) ;
# else
2020-06-02 04:43:35 +08:00
CV_TRACE_REGION ( " legacy_cnn_layer " ) ;
try
{
InferenceEngine : : CNNLayerPtr ieLayer = ieNet . getLayerByName ( name . c_str ( ) ) ;
CV_Assert ( ieLayer ) ;
2019-12-02 21:16:06 +08:00
2020-06-02 04:43:35 +08:00
cvLayer - > type = ieLayer - > type ;
return true ;
}
catch ( const std : : exception & e )
{
CV_UNUSED ( e ) ;
CV_LOG_DEBUG ( NULL , " IE layer extraction failure: ' " < < name < < " ' - " < < e . what ( ) ) ;
return false ;
}
2020-06-25 04:58:18 +08:00
# endif
2020-06-02 04:43:35 +08:00
}
} ;
bool found = process_layer ( outputName ) ;
if ( ! found )
{
auto pos = outputName . rfind ( ' . ' ) ; // cut port number: ".0"
if ( pos ! = std : : string : : npos )
{
std : : string layerName = outputName . substr ( 0 , pos ) ;
found = process_layer ( layerName ) ;
}
2020-04-23 06:33:12 +08:00
}
2020-06-02 04:43:35 +08:00
if ( ! found )
CV_LOG_WARNING ( NULL , " DNN/IE: Can't determine output layer type: ' " < < outputName < < " ' " ) ;
2019-12-02 21:16:06 +08:00
ld . layerInstance = cvLayer ;
ld . backendNodes [ DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ] = backendNode ;
}
else
# endif
{
2020-03-03 16:01:44 +08:00
# ifdef HAVE_DNN_IE_NN_BUILDER_2019
2019-12-02 21:16:06 +08:00
Ptr < Layer > cvLayer ( new InfEngineBackendLayer ( ieNet ) ) ;
2020-06-02 04:43:35 +08:00
InferenceEngine : : CNNLayerPtr ieLayer ;
try
{
ieLayer = ieNet . getLayerByName ( outputName . c_str ( ) ) ;
}
catch ( . . . )
{
auto pos = outputName . rfind ( ' . ' ) ; // cut port number: ".0"
if ( pos ! = std : : string : : npos )
{
std : : string layerName = outputName . substr ( 0 , pos ) ;
ieLayer = ieNet . getLayerByName ( layerName . c_str ( ) ) ;
}
}
2019-12-02 21:16:06 +08:00
CV_Assert ( ieLayer ) ;
2020-06-02 04:43:35 +08:00
cvLayer - > name = outputName ;
2019-12-02 21:16:06 +08:00
cvLayer - > type = ieLayer - > type ;
ld . layerInstance = cvLayer ;
ld . backendNodes [ DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ] = backendNode ;
2020-03-03 16:01:44 +08:00
# else
CV_Error ( Error : : StsNotImplemented , " This OpenCV version is built without Inference Engine NN Builder API support " ) ;
# endif
2019-12-02 21:16:06 +08:00
}
2018-03-17 00:27:04 +08:00
2018-04-11 18:28:07 +08:00
for ( int i = 0 ; i < inputsNames . size ( ) ; + + i )
cvNet . connect ( 0 , i , lid , i ) ;
2018-03-17 00:27:04 +08:00
}
2020-04-23 06:33:12 +08:00
CV_TRACE_REGION_NEXT ( " finalize " ) ;
2019-12-02 21:16:06 +08:00
cvNet . setPreferableBackend ( getInferenceEngineBackendTypeParam ( ) ) ;
2018-03-17 00:27:04 +08:00
cvNet . impl - > skipInfEngineInit = true ;
return cvNet ;
2019-11-27 22:31:38 +08:00
}
# endif // HAVE_INF_ENGINE
Net Net : : readFromModelOptimizer ( const String & xml , const String & bin )
{
CV_TRACE_FUNCTION ( ) ;
# ifndef HAVE_INF_ENGINE
CV_UNUSED ( xml ) ; CV_UNUSED ( bin ) ;
CV_Error ( Error : : StsError , " Build OpenCV with Inference Engine to enable loading models from Model Optimizer. " ) ;
# else
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2019-11-27 22:31:38 +08:00
# if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R3)
InferenceEngine : : CNNNetReader reader ;
reader . ReadNetwork ( xml ) ;
reader . ReadWeights ( bin ) ;
InferenceEngine : : CNNNetwork ieNet = reader . getNetwork ( ) ;
# else
2020-03-13 23:33:27 +08:00
InferenceEngine : : Core & ie = getCore ( " " ) ;
2019-11-27 22:31:38 +08:00
InferenceEngine : : CNNNetwork ieNet = ie . ReadNetwork ( xml , bin ) ;
# endif
return Impl : : createNetworkFromModelOptimizer ( ieNet ) ;
2018-03-28 21:34:37 +08:00
# endif // HAVE_INF_ENGINE
2018-03-17 00:27:04 +08:00
}
2019-11-27 22:31:38 +08:00
Net Net : : readFromModelOptimizer ( const std : : vector < uchar > & bufferModelConfig , const std : : vector < uchar > & bufferWeights )
{
CV_TRACE_FUNCTION ( ) ;
CV_Assert ( ! bufferModelConfig . empty ( ) ) ;
CV_Assert ( ! bufferWeights . empty ( ) ) ;
return readFromModelOptimizer ( bufferModelConfig . data ( ) , bufferModelConfig . size ( ) ,
bufferWeights . data ( ) , bufferWeights . size ( ) ) ;
}
Net Net : : readFromModelOptimizer (
const uchar * bufferModelConfigPtr , size_t bufferModelConfigSize ,
const uchar * bufferWeightsPtr , size_t bufferWeightsSize
)
{
CV_TRACE_FUNCTION ( ) ;
# ifndef HAVE_INF_ENGINE
CV_UNUSED ( bufferModelConfigPtr ) ; CV_UNUSED ( bufferWeightsPtr ) ;
CV_UNUSED ( bufferModelConfigSize ) ; CV_UNUSED ( bufferModelConfigSize ) ;
CV_Error ( Error : : StsError , " Build OpenCV with Inference Engine to enable loading models from Model Optimizer. " ) ;
# else
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2019-11-27 22:31:38 +08:00
# if INF_ENGINE_VER_MAJOR_LE(INF_ENGINE_RELEASE_2019R3)
InferenceEngine : : CNNNetReader reader ;
try
{
reader . ReadNetwork ( bufferModelConfigPtr , bufferModelConfigSize ) ;
InferenceEngine : : TensorDesc tensorDesc ( InferenceEngine : : Precision : : U8 , { bufferWeightsSize } , InferenceEngine : : Layout : : C ) ;
InferenceEngine : : TBlob < uint8_t > : : Ptr weightsBlobPtr ( new InferenceEngine : : TBlob < uint8_t > ( tensorDesc ) ) ;
weightsBlobPtr - > allocate ( ) ;
std : : memcpy ( weightsBlobPtr - > buffer ( ) , ( uchar * ) bufferWeightsPtr , bufferWeightsSize ) ;
reader . SetWeights ( weightsBlobPtr ) ;
}
catch ( const std : : exception & e )
{
CV_Error ( Error : : StsError , std : : string ( " DNN: IE failed to load model: " ) + e . what ( ) ) ;
}
InferenceEngine : : CNNNetwork ieNet = reader . getNetwork ( ) ;
# else
2020-03-13 23:33:27 +08:00
InferenceEngine : : Core & ie = getCore ( " " ) ;
2019-11-27 22:31:38 +08:00
std : : string model ; model . assign ( ( char * ) bufferModelConfigPtr , bufferModelConfigSize ) ;
InferenceEngine : : CNNNetwork ieNet ;
try
{
InferenceEngine : : TensorDesc tensorDesc ( InferenceEngine : : Precision : : U8 , { bufferWeightsSize } , InferenceEngine : : Layout : : C ) ;
InferenceEngine : : Blob : : CPtr weights_blob = InferenceEngine : : make_shared_blob < uint8_t > ( tensorDesc , ( uint8_t * ) bufferWeightsPtr , bufferWeightsSize ) ;
ieNet = ie . ReadNetwork ( model , weights_blob ) ;
}
catch ( const std : : exception & e )
{
CV_Error ( Error : : StsError , std : : string ( " DNN: IE failed to load model: " ) + e . what ( ) ) ;
}
# endif
return Impl : : createNetworkFromModelOptimizer ( ieNet ) ;
# endif // HAVE_INF_ENGINE
}
2017-06-26 18:35:51 +08:00
Net : : ~ Net ( )
{
}
int Net : : addLayer ( const String & name , const String & type , LayerParams & params )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2022-01-30 03:11:58 +08:00
CV_Assert ( impl ) ;
return impl - > addLayer ( name , type , params ) ;
2017-06-26 18:35:51 +08:00
}
int Net : : addLayerToPrev ( const String & name , const String & type , LayerParams & params )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
int prvLid = impl - > lastLayerId ;
int newLid = this - > addLayer ( name , type , params ) ;
this - > connect ( prvLid , 0 , newLid , 0 ) ;
return newLid ;
}
void Net : : connect ( int outLayerId , int outNum , int inpLayerId , int inpNum )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
impl - > connect ( outLayerId , outNum , inpLayerId , inpNum ) ;
}
void Net : : connect ( String _outPin , String _inPin )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
LayerPin outPin = impl - > getPinByAlias ( _outPin ) ;
LayerPin inpPin = impl - > getPinByAlias ( _inPin ) ;
CV_Assert ( outPin . valid ( ) & & inpPin . valid ( ) ) ;
impl - > connect ( outPin . lid , outPin . oid , inpPin . lid , inpPin . oid ) ;
}
2022-01-30 03:11:58 +08:00
int Net : : registerOutput ( const std : : string & outputName , int layerId , int outputPort )
{
CV_TRACE_FUNCTION ( ) ;
CV_Assert ( impl ) ;
return impl - > registerOutput ( outputName , layerId , outputPort ) ;
}
2017-06-26 18:35:51 +08:00
Mat Net : : forward ( const String & outputName )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2020-10-05 14:23:47 +08:00
CV_Assert ( ! empty ( ) ) ;
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2017-06-28 19:46:58 +08:00
2017-06-26 18:35:51 +08:00
String layerName = outputName ;
if ( layerName . empty ( ) )
2020-10-05 14:23:47 +08:00
{
std : : vector < String > layerNames = getLayerNames ( ) ;
CV_Assert ( ! layerNames . empty ( ) ) ;
layerName = layerNames . back ( ) ;
}
2017-06-26 18:35:51 +08:00
2018-07-04 20:50:39 +08:00
std : : vector < LayerPin > pins ( 1 , impl - > getPinByAlias ( layerName ) ) ;
impl - > setUpNet ( pins ) ;
2017-06-26 18:35:51 +08:00
impl - > forwardToLayer ( impl - > getLayerData ( layerName ) ) ;
return impl - > getBlob ( layerName ) ;
}
2019-05-01 19:51:12 +08:00
AsyncArray Net : : forwardAsync ( const String & outputName )
2019-04-20 02:01:19 +08:00
{
CV_TRACE_FUNCTION ( ) ;
2020-10-05 14:23:47 +08:00
CV_Assert ( ! empty ( ) ) ;
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2020-10-05 14:23:47 +08:00
2019-04-20 02:01:19 +08:00
# ifdef CV_CXX11
String layerName = outputName ;
if ( layerName . empty ( ) )
2020-10-05 14:23:47 +08:00
{
std : : vector < String > layerNames = getLayerNames ( ) ;
CV_Assert ( ! layerNames . empty ( ) ) ;
layerName = layerNames . back ( ) ;
}
2019-04-20 02:01:19 +08:00
std : : vector < LayerPin > pins ( 1 , impl - > getPinByAlias ( layerName ) ) ;
impl - > setUpNet ( pins ) ;
2019-12-02 21:16:06 +08:00
if ( ! ( impl - > preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 | | impl - > preferableBackend = = DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ) )
CV_Error ( Error : : StsNotImplemented , " DNN: Asynchronous forward is supported for Inference Engine backends only " ) ;
2019-05-08 20:27:22 +08:00
2019-04-20 02:01:19 +08:00
impl - > isAsync = true ;
impl - > forwardToLayer ( impl - > getLayerData ( layerName ) ) ;
impl - > isAsync = false ;
return impl - > getBlobAsync ( layerName ) ;
# else
2019-12-02 21:16:06 +08:00
CV_Error ( Error : : StsNotImplemented , " DNN: Asynchronous forward requires build with enabled C++11 " ) ;
2019-04-20 02:01:19 +08:00
# endif // CV_CXX11
}
2017-11-16 11:20:08 +08:00
void Net : : forward ( OutputArrayOfArrays outputBlobs , const String & outputName )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2020-10-05 14:23:47 +08:00
CV_Assert ( ! empty ( ) ) ;
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2017-06-28 19:46:58 +08:00
2017-06-26 18:35:51 +08:00
String layerName = outputName ;
if ( layerName . empty ( ) )
2020-10-05 14:23:47 +08:00
{
std : : vector < String > layerNames = getLayerNames ( ) ;
CV_Assert ( ! layerNames . empty ( ) ) ;
layerName = layerNames . back ( ) ;
}
2017-06-26 18:35:51 +08:00
2018-07-04 20:50:39 +08:00
std : : vector < LayerPin > pins ( 1 , impl - > getPinByAlias ( layerName ) ) ;
impl - > setUpNet ( pins ) ;
2017-06-26 18:35:51 +08:00
impl - > forwardToLayer ( impl - > getLayerData ( layerName ) ) ;
LayerPin pin = impl - > getPinByAlias ( layerName ) ;
LayerData & ld = impl - > layers [ pin . lid ] ;
2017-11-09 12:57:37 +08:00
2017-11-16 11:20:08 +08:00
if ( outputBlobs . isUMat ( ) )
2017-11-09 12:57:37 +08:00
{
2018-10-05 20:10:58 +08:00
impl - > getBlob ( layerName ) . copyTo ( outputBlobs ) ;
2017-11-16 11:20:08 +08:00
}
else if ( outputBlobs . isMat ( ) )
{
outputBlobs . assign ( impl - > getBlob ( layerName ) ) ;
}
else if ( outputBlobs . isMatVector ( ) )
{
2018-01-11 02:50:54 +08:00
if ( impl - > preferableTarget ! = DNN_TARGET_CPU )
2017-11-16 11:20:08 +08:00
{
2018-01-11 02:50:54 +08:00
for ( int i = 0 ; i < ld . outputBlobsWrappers . size ( ) ; + + i )
{
CV_Assert ( ! ld . outputBlobsWrappers [ i ] . empty ( ) ) ;
ld . outputBlobsWrappers [ i ] - > copyToHost ( ) ;
}
2017-11-16 11:20:08 +08:00
}
2018-04-26 19:20:16 +08:00
if ( ld . outputBlobs [ 0 ] . depth ( ) = = CV_32F )
{
std : : vector < Mat > & outputvec = * ( std : : vector < Mat > * ) outputBlobs . getObj ( ) ;
outputvec = ld . outputBlobs ;
} else {
std : : vector < Mat > & outputvec = * ( std : : vector < Mat > * ) outputBlobs . getObj ( ) ;
outputvec . resize ( ld . outputBlobs . size ( ) ) ;
for ( int i = 0 ; i < outputvec . size ( ) ; i + + )
convertFp16 ( ld . outputBlobs [ i ] , outputvec [ i ] ) ;
}
2017-11-16 11:20:08 +08:00
}
else if ( outputBlobs . isUMatVector ( ) )
{
2018-01-11 02:50:54 +08:00
std : : vector < UMat > & outputvec = * ( std : : vector < UMat > * ) outputBlobs . getObj ( ) ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_OPENCL
2018-06-01 15:54:12 +08:00
if ( impl - > preferableBackend = = DNN_BACKEND_OPENCV & &
2018-04-26 19:20:16 +08:00
IS_DNN_OPENCL_TARGET ( impl - > preferableTarget ) )
2018-01-11 02:50:54 +08:00
{
2018-04-26 19:20:16 +08:00
if ( impl - > preferableTarget = = DNN_TARGET_OPENCL )
outputvec = OpenCLBackendWrapper : : getUMatVector ( ld . outputBlobsWrappers ) ;
else if ( impl - > preferableTarget = = DNN_TARGET_OPENCL_FP16 )
{
std : : vector < UMat > out_vec = OpenCLBackendWrapper : : getUMatVector ( ld . outputBlobsWrappers ) ;
outputvec . resize ( out_vec . size ( ) ) ;
for ( int i = 0 ; i < out_vec . size ( ) ; i + + )
convertFp16 ( out_vec [ i ] , outputvec [ i ] ) ;
}
2018-01-11 02:50:54 +08:00
}
else
2019-12-02 21:16:06 +08:00
# endif
2017-11-16 11:20:08 +08:00
{
2018-01-11 02:50:54 +08:00
outputvec . resize ( ld . outputBlobs . size ( ) ) ;
for ( int i = 0 ; i < outputvec . size ( ) ; + + i )
2018-10-05 20:10:58 +08:00
ld . outputBlobs [ i ] . copyTo ( outputvec [ i ] ) ;
2017-11-16 11:20:08 +08:00
}
2017-11-09 12:57:37 +08:00
}
2017-06-26 18:35:51 +08:00
}
2017-11-16 11:20:08 +08:00
void Net : : forward ( OutputArrayOfArrays outputBlobs ,
2017-06-26 18:35:51 +08:00
const std : : vector < String > & outBlobNames )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2017-06-28 19:46:58 +08:00
2017-06-26 18:35:51 +08:00
std : : vector < LayerPin > pins ;
for ( int i = 0 ; i < outBlobNames . size ( ) ; i + + )
{
2017-11-16 11:20:08 +08:00
pins . push_back ( impl - > getPinByAlias ( outBlobNames [ i ] ) ) ;
2017-06-26 18:35:51 +08:00
}
impl - > setUpNet ( pins ) ;
LayerPin out = impl - > getLatestLayerPin ( pins ) ;
impl - > forwardToLayer ( impl - > getLayerData ( out . lid ) ) ;
2017-11-16 11:20:08 +08:00
std : : vector < Mat > matvec ;
2017-06-26 18:35:51 +08:00
for ( int i = 0 ; i < pins . size ( ) ; i + + )
{
2017-11-16 11:20:08 +08:00
matvec . push_back ( impl - > getBlob ( pins [ i ] ) ) ;
2017-06-26 18:35:51 +08:00
}
2017-11-16 11:20:08 +08:00
2021-07-15 07:31:41 +08:00
outputBlobs . create ( ( int ) matvec . size ( ) , 1 , CV_32F /*FIXIT*/ , - 1 ) ; // allocate vector
outputBlobs . assign ( matvec ) ;
2017-06-26 18:35:51 +08:00
}
void Net : : forward ( std : : vector < std : : vector < Mat > > & outputBlobs ,
const std : : vector < String > & outBlobNames )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2017-06-28 19:46:58 +08:00
2017-06-26 18:35:51 +08:00
std : : vector < LayerPin > pins ;
for ( int i = 0 ; i < outBlobNames . size ( ) ; i + + )
{
2019-01-28 23:44:31 +08:00
pins . push_back ( impl - > getPinByAlias ( outBlobNames [ i ] ) ) ;
2017-06-26 18:35:51 +08:00
}
impl - > setUpNet ( pins ) ;
LayerPin out = impl - > getLatestLayerPin ( pins ) ;
impl - > forwardToLayer ( impl - > getLayerData ( out . lid ) ) ;
outputBlobs . resize ( outBlobNames . size ( ) ) ;
for ( int i = 0 ; i < outBlobNames . size ( ) ; i + + )
{
std : : vector < LayerPin > lp = impl - > getLayerOutPins ( outBlobNames [ i ] ) ;
2019-01-28 23:44:31 +08:00
outputBlobs [ i ] . resize ( lp . size ( ) ) ;
for ( int j = 0 ; j < lp . size ( ) ; j + + )
2017-06-26 18:35:51 +08:00
{
2019-01-28 23:44:31 +08:00
outputBlobs [ i ] [ j ] = impl - > getBlob ( lp [ j ] ) ;
2017-06-26 18:35:51 +08:00
}
}
}
void Net : : setPreferableBackend ( int backendId )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG ( backendId ) ;
2019-12-02 21:16:06 +08:00
# ifdef HAVE_INF_ENGINE
if ( backendId = = DNN_BACKEND_INFERENCE_ENGINE )
backendId = getInferenceEngineBackendTypeParam ( ) ;
# endif
2017-07-04 22:23:47 +08:00
if ( impl - > preferableBackend ! = backendId )
{
impl - > preferableBackend = backendId ;
impl - > netWasAllocated = false ;
impl - > clear ( ) ;
}
2017-06-26 18:35:51 +08:00
}
void Net : : setPreferableTarget ( int targetId )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG ( targetId ) ;
2017-07-04 22:23:47 +08:00
if ( impl - > preferableTarget ! = targetId )
{
impl - > preferableTarget = targetId ;
2018-04-26 19:20:16 +08:00
if ( IS_DNN_OPENCL_TARGET ( targetId ) )
{
# ifndef HAVE_OPENCL
2018-06-05 22:18:14 +08:00
# ifdef HAVE_INF_ENGINE
if ( impl - > preferableBackend = = DNN_BACKEND_OPENCV )
# else
if ( impl - > preferableBackend = = DNN_BACKEND_DEFAULT | |
impl - > preferableBackend = = DNN_BACKEND_OPENCV )
# endif // HAVE_INF_ENGINE
impl - > preferableTarget = DNN_TARGET_CPU ;
2018-04-26 19:20:16 +08:00
# else
bool fp16 = ocl : : Device : : getDefault ( ) . isExtensionSupported ( " cl_khr_fp16 " ) ;
if ( ! fp16 & & targetId = = DNN_TARGET_OPENCL_FP16 )
impl - > preferableTarget = DNN_TARGET_OPENCL ;
# endif
}
2017-07-04 22:23:47 +08:00
impl - > netWasAllocated = false ;
impl - > clear ( ) ;
}
2017-06-26 18:35:51 +08:00
}
void Net : : setInputsNames ( const std : : vector < String > & inputBlobNames )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
impl - > netInputLayer - > setNames ( inputBlobNames ) ;
}
2020-02-22 03:39:54 +08:00
void Net : : setInputShape ( const String & inputName , const MatShape & shape )
{
CV_TRACE_FUNCTION ( ) ;
impl - > netInputLayer - > setInputShape ( inputName , shape ) ;
}
2018-06-05 04:51:28 +08:00
void Net : : setInput ( InputArray blob , const String & name , double scalefactor , const Scalar & mean )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( name , " name " , name . c_str ( ) ) ;
2022-01-26 13:00:47 +08:00
FPDenormalsIgnoreHintScope fp_denormals_ignore_scope ;
2017-06-28 19:46:58 +08:00
2017-06-26 18:35:51 +08:00
LayerPin pin ;
pin . lid = 0 ;
pin . oid = impl - > resolvePinOutputName ( impl - > getLayerData ( pin . lid ) , name ) ;
if ( ! pin . valid ( ) )
CV_Error ( Error : : StsObjectNotFound , " Requested blob \" " + name + " \" not found " ) ;
2020-02-22 03:39:54 +08:00
Mat blob_ = blob . getMat ( ) ; // can't use InputArray directly due MatExpr stuff
MatShape blobShape = shape ( blob_ ) ;
if ( pin . lid = = 0 )
{
CV_Assert ( ! impl - > netInputLayer . empty ( ) ) ;
const DataLayer & netInputLayer = * impl - > netInputLayer . get ( ) ;
if ( ! netInputLayer . shapes . empty ( ) )
{
CV_CheckLT ( pin . oid , ( int ) netInputLayer . shapes . size ( ) , " " ) ;
const MatShape & inputShapeLimitation = netInputLayer . shapes [ pin . oid ] ;
if ( ! inputShapeLimitation . empty ( ) )
{
CV_CheckEQ ( inputShapeLimitation . size ( ) , blobShape . size ( ) , " " ) ;
#if 0 // TODO: DNNTestNetwork.MobileNet_SSD_Caffe_Different_Width_Height/0
const size_t dims = inputShapeLimitation . size ( ) ;
for ( size_t dim = 0 ; dim < dims ; dim + + )
{
if ( dims > = 3 & & dim = = 0 & & inputShapeLimitation [ 0 ] = = 1 )
continue ; // don't limit batch
CV_CheckEQ ( inputShapeLimitation [ dim ] , blobShape [ dim ] , " " ) ;
}
# endif
}
}
}
2017-06-26 18:35:51 +08:00
LayerData & ld = impl - > layers [ pin . lid ] ;
2018-07-09 19:35:54 +08:00
const int numInputs = std : : max ( pin . oid + 1 , ( int ) ld . requiredOutputs . size ( ) ) ;
ld . outputBlobs . resize ( numInputs ) ;
ld . outputBlobsWrappers . resize ( numInputs ) ;
impl - > netInputLayer - > inputsData . resize ( numInputs ) ;
2018-06-05 04:51:28 +08:00
impl - > netInputLayer - > scaleFactors . resize ( numInputs ) ;
impl - > netInputLayer - > means . resize ( numInputs ) ;
2018-07-09 19:35:54 +08:00
MatShape prevShape = shape ( impl - > netInputLayer - > inputsData [ pin . oid ] ) ;
2020-02-22 03:39:54 +08:00
bool oldShape = prevShape = = blobShape ;
blob_ . copyTo ( impl - > netInputLayer - > inputsData [ pin . oid ] ) ;
2021-12-23 10:37:45 +08:00
if ( ! oldShape )
2020-02-22 03:39:54 +08:00
ld . outputBlobs [ pin . oid ] = impl - > netInputLayer - > inputsData [ pin . oid ] ;
2017-06-26 18:35:51 +08:00
2017-09-06 15:34:07 +08:00
if ( ! ld . outputBlobsWrappers [ pin . oid ] . empty ( ) )
{
ld . outputBlobsWrappers [ pin . oid ] - > setHostDirty ( ) ;
}
2018-06-05 04:51:28 +08:00
impl - > netInputLayer - > scaleFactors [ pin . oid ] = scalefactor ;
impl - > netInputLayer - > means [ pin . oid ] = mean ;
2017-06-26 18:35:51 +08:00
impl - > netWasAllocated = impl - > netWasAllocated & & oldShape ;
}
2022-01-12 11:46:13 +08:00
Mat Net : : getParam ( int layer , int numParam ) const
2017-06-26 18:35:51 +08:00
{
LayerData & ld = impl - > getLayerData ( layer ) ;
2018-09-04 22:48:52 +08:00
std : : vector < Mat > & layerBlobs = ld . getLayerInstance ( ) - > blobs ;
2017-06-26 18:35:51 +08:00
CV_Assert ( numParam < ( int ) layerBlobs . size ( ) ) ;
return layerBlobs [ numParam ] ;
}
2022-01-12 11:46:13 +08:00
void Net : : setParam ( int layer , int numParam , const Mat & blob )
2017-06-26 18:35:51 +08:00
{
LayerData & ld = impl - > getLayerData ( layer ) ;
2018-09-04 22:48:52 +08:00
std : : vector < Mat > & layerBlobs = ld . getLayerInstance ( ) - > blobs ;
2017-06-26 18:35:51 +08:00
CV_Assert ( numParam < ( int ) layerBlobs . size ( ) ) ;
//we don't make strong checks, use this function carefully
layerBlobs [ numParam ] = blob ;
}
2022-01-12 11:46:13 +08:00
int Net : : getLayerId ( const String & layer ) const
2017-06-26 18:35:51 +08:00
{
return impl - > getLayerId ( layer ) ;
}
2020-02-06 03:22:37 +08:00
static
string dumpLayerParameterSize ( const string & name , const LayerParams & lp )
{
std : : ostringstream out ( name , std : : ios : : ate ) ;
2019-05-28 00:17:07 +08:00
DictValue param = lp . get ( name ) ;
2020-02-06 03:22:37 +08:00
switch ( param . size ( ) )
{
case 1 : out < < " : " ; break ;
case 2 : out < < " (HxW): " ; break ;
case 3 : out < < " (DxHxW): " ; break ;
default :
CV_LOG_INFO ( NULL , format ( " DNN/dumpLayerParameterSize(): Unsupported '%s' size = %d " , name . c_str ( ) , param . size ( ) ) ) ;
out < < " : " ;
2019-05-28 00:17:07 +08:00
}
2020-02-06 03:22:37 +08:00
for ( size_t i = 0 ; i < param . size ( ) ; i + + )
{
if ( i > 0 )
out < < " x " ;
out < < param . get < int > ( i ) ;
2019-05-28 00:17:07 +08:00
}
return out . str ( ) ;
}
2019-04-13 00:31:07 +08:00
String Net : : dump ( )
{
CV_Assert ( ! empty ( ) ) ;
2019-07-18 23:41:08 +08:00
2020-02-06 03:22:37 +08:00
bool hasInput = ! impl - > netInputLayer - > inputsData . empty ( ) ;
2019-07-18 23:41:08 +08:00
2020-02-06 03:22:37 +08:00
if ( hasInput )
{
if ( ! impl - > netWasAllocated )
impl - > setUpNet ( ) ;
}
2019-07-18 23:41:08 +08:00
2020-02-06 05:20:10 +08:00
return impl - > dump ( ) ;
}
2022-01-12 11:46:13 +08:00
string Net : : Impl : : dump ( ) const
2020-02-06 05:20:10 +08:00
{
bool hasInput = ! netInputLayer - > inputsData . empty ( ) ;
2019-04-13 00:31:07 +08:00
std : : ostringstream out ;
2020-02-06 05:20:10 +08:00
const std : : map < int , LayerData > & map = layers ;
2020-02-06 03:22:37 +08:00
2020-02-06 05:20:10 +08:00
Backend prefBackend = ( Backend ) preferableBackend ;
2019-04-13 00:31:07 +08:00
std : : vector < std : : vector < int > > skippedLayers ;
std : : vector < int > skipId ;
std : : vector < int > allLayers ( map . size ( ) , - 1 ) ;
int idPrev = - 1 ;
Ptr < BackendNode > prevNode ;
2020-02-06 03:22:37 +08:00
for ( std : : map < int , LayerData > : : const_reverse_iterator rit = map . rbegin ( ) ; rit ! = map . rend ( ) ; + + rit )
2019-04-13 00:31:07 +08:00
{
2020-02-06 03:22:37 +08:00
std : : map < int , Ptr < BackendNode > > : : const_iterator itBackend = rit - > second . backendNodes . find ( prefBackend ) ;
2019-04-13 00:31:07 +08:00
if ( prefBackend = = DNN_BACKEND_OPENCV | | itBackend = = rit - > second . backendNodes . end ( ) | |
itBackend - > second . empty ( ) )
{
if ( rit - > second . skip )
skipId . push_back ( rit - > first ) ;
else if ( ! skipId . empty ( ) )
{
if ( prefBackend = = DNN_BACKEND_OPENCV | | prevNode . empty ( ) )
skipId . push_back ( rit - > first ) ;
else if ( idPrev ! = - 1 )
skipId . push_back ( idPrev ) ;
std : : sort ( skipId . begin ( ) , skipId . end ( ) ) ;
for ( int i = 0 ; i < skipId . size ( ) ; i + + ) {
allLayers [ skipId [ i ] ] = skippedLayers . size ( ) ;
}
skippedLayers . push_back ( skipId ) ;
skipId . clear ( ) ;
}
}
else
{
if ( itBackend - > second = = prevNode )
skipId . push_back ( idPrev ) ;
else if ( ! skipId . empty ( ) )
{
skipId . push_back ( idPrev ) ;
std : : sort ( skipId . begin ( ) , skipId . end ( ) ) ;
for ( int i = 0 ; i < skipId . size ( ) ; i + + ) {
allLayers [ skipId [ i ] ] = skippedLayers . size ( ) ;
}
skippedLayers . push_back ( skipId ) ;
skipId . clear ( ) ;
}
idPrev = rit - > first ;
prevNode = itBackend - > second ;
}
}
2020-02-06 03:22:37 +08:00
string colors [ ] = { " #ffffb3 " , " #fccde5 " , " #8dd3c7 " , " #bebada " , " #80b1d3 " , " #fdb462 " } ;
string backend ;
switch ( prefBackend )
{
2019-04-13 00:31:07 +08:00
case DNN_BACKEND_DEFAULT : backend = " DEFAULT/ " ; break ;
case DNN_BACKEND_HALIDE : backend = " HALIDE/ " ; break ;
2019-12-02 21:16:06 +08:00
case DNN_BACKEND_INFERENCE_ENGINE : // fallthru
case DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 : backend = " DLIE/ " ; break ;
case DNN_BACKEND_INFERENCE_ENGINE_NGRAPH : backend = " NGRAPH/ " ; break ;
2019-04-13 00:31:07 +08:00
case DNN_BACKEND_OPENCV : backend = " OCV/ " ; break ;
2020-02-06 03:22:37 +08:00
// don't use default:
2019-04-13 00:31:07 +08:00
}
2020-02-06 03:22:37 +08:00
out < < " digraph G { \n " ;
2019-04-13 00:31:07 +08:00
// Add nodes
2020-02-06 03:22:37 +08:00
for ( std : : map < int , LayerData > : : const_iterator it = map . begin ( ) ; it ! = map . end ( ) ; + + it )
2019-04-13 00:31:07 +08:00
{
2020-02-06 03:22:37 +08:00
const LayerData & ld = it - > second ;
string name = ld . params . name ;
std : : vector < int > clusterIds ( 1 , it - > first ) ;
if ( allLayers [ it - > first ] = = - 1 & & ! name . empty ( ) )
{
out < < " \t \" " < < name < < " \" [label= \" " ;
2019-04-13 00:31:07 +08:00
}
else if ( name . empty ( ) | | it - > first ! = skippedLayers [ allLayers [ it - > first ] ] [ 0 ] )
2020-02-06 03:22:37 +08:00
{
2019-04-13 00:31:07 +08:00
continue ;
2020-02-06 03:22:37 +08:00
}
else // first node in cluster : it->first == skippedLayers[allLayers[it->first]][0]
{
2019-04-13 00:31:07 +08:00
int cluster = allLayers [ it - > first ] ;
2020-02-06 03:22:37 +08:00
out < < " \t \" " < < " cluster_ " < < cluster < < " \" [label= \" { " ;
clusterIds = skippedLayers [ allLayers [ it - > first ] ] ; // vertices in current cluster
2019-04-13 00:31:07 +08:00
}
2020-02-06 03:22:37 +08:00
for ( int i = 0 ; i < clusterIds . size ( ) ; i + + )
2019-04-13 00:31:07 +08:00
{
2020-02-06 03:22:37 +08:00
CV_DbgAssert ( map . find ( clusterIds [ i ] ) ! = map . end ( ) ) ;
const LayerParams & lp = map . find ( clusterIds [ i ] ) - > second . params ;
2019-04-13 00:31:07 +08:00
if ( ! lp . name . empty ( ) ) {
if ( i > 0 ) {
out < < " | " ;
}
2020-02-06 03:22:37 +08:00
out < < lp . name < < " \\ n " < < lp . type < < " \\ n " ; // align center
if ( lp . has ( " kernel_size " ) )
{
string kernel = dumpLayerParameterSize ( " kernel_size " , lp ) ;
2019-05-28 00:17:07 +08:00
out < < kernel ;
2020-02-06 03:22:37 +08:00
out < < " \\ l " ; // align left
2019-05-28 00:17:07 +08:00
} else if ( lp . has ( " kernel_h " ) & & lp . has ( " kernel_w " ) ) {
DictValue h = lp . get ( " kernel_h " ) ;
DictValue w = lp . get ( " kernel_w " ) ;
2020-02-06 03:22:37 +08:00
out < < " kernel (HxW): " < < h < < " x " < < w ;
out < < " \\ l " ; // align left
2019-05-28 00:17:07 +08:00
}
if ( lp . has ( " stride " ) ) {
2020-02-06 03:22:37 +08:00
string stride = dumpLayerParameterSize ( " stride " , lp ) ;
2019-05-28 00:17:07 +08:00
out < < stride ;
2020-02-06 03:22:37 +08:00
out < < " \\ l " ; // align left
2019-05-28 00:17:07 +08:00
} else if ( lp . has ( " stride_h " ) & & lp . has ( " stride_w " ) ) {
DictValue h = lp . get ( " stride_h " ) ;
DictValue w = lp . get ( " stride_w " ) ;
2020-02-06 03:22:37 +08:00
out < < " stride (HxW): " < < h < < " x " < < w ;
out < < " \\ l " ; // align left
2019-05-28 00:17:07 +08:00
}
if ( lp . has ( " dilation " ) ) {
2020-02-06 03:22:37 +08:00
string dilation = dumpLayerParameterSize ( " dilation " , lp ) ;
2019-05-28 00:17:07 +08:00
out < < dilation ;
2020-02-06 03:22:37 +08:00
out < < " \\ l " ; // align left
2019-05-28 00:17:07 +08:00
} else if ( lp . has ( " dilation_h " ) & & lp . has ( " dilation_w " ) ) {
DictValue h = lp . get ( " dilation_h " ) ;
DictValue w = lp . get ( " dilation_w " ) ;
2020-02-06 03:22:37 +08:00
out < < " dilation (HxW): " < < h < < " x " < < w ;
out < < " \\ l " ; // align left
2019-05-28 00:17:07 +08:00
}
if ( lp . has ( " pad " ) ) {
DictValue pad = lp . get ( " pad " ) ;
out < < " pad " ;
2020-02-06 03:22:37 +08:00
switch ( pad . size ( ) )
{
case 1 : out < < " : " < < pad ; break ;
case 2 :
out < < " (HxW): ( " < < pad . get < int > ( 0 ) < < " x " < < pad . get < int > ( 1 ) < < " ) " ;
break ;
case 4 :
out < < " (HxW): ( " < < pad . get < int > ( 0 ) < < " , " < < pad . get < int > ( 2 )
< < " ) x ( " < < pad . get < int > ( 1 ) < < " , " < < pad . get < int > ( 3 ) < < " ) " ;
break ;
case 6 :
out < < " (DxHxW): ( " < < pad . get < int > ( 0 ) < < " , " < < pad . get < int > ( 3 )
< < " ) x ( " < < pad . get < int > ( 1 ) < < " , " < < pad . get < int > ( 4 )
< < " ) x ( " < < pad . get < int > ( 2 ) < < " , " < < pad . get < int > ( 5 ) < < " ) " ;
break ;
2019-05-28 00:17:07 +08:00
default : CV_Error ( Error : : StsNotImplemented , format ( " Unsupported pad size = %d " , pad . size ( ) ) ) ;
}
2020-02-06 03:22:37 +08:00
out < < " \\ l " ; // align left
} else if ( lp . has ( " pad_l " ) & & lp . has ( " pad_t " ) & & lp . has ( " pad_r " ) & & lp . has ( " pad_b " ) ) {
DictValue l = lp . get ( " pad_l " ) ;
DictValue t = lp . get ( " pad_t " ) ;
DictValue r = lp . get ( " pad_r " ) ;
DictValue b = lp . get ( " pad_b " ) ;
out < < " pad (HxW): ( " < < t < < " , " < < b < < " ) x ( " < < l < < " , " < < r < < " ) " ;
out < < " \\ l " ; // align left
}
else if ( lp . has ( " pooled_w " ) | | lp . has ( " pooled_h " ) ) {
DictValue h = lp . get ( " pooled_h " ) ;
DictValue w = lp . get ( " pooled_w " ) ;
out < < " pad pooled (HxW): " < < h < < " x " < < w ;
out < < " \\ l " ; // align left
}
if ( lp . has ( " pool " ) ) {
out < < " pool: " < < lp . get ( " pool " ) ;
out < < " \\ l " ; // align left
}
if ( lp . has ( " global_pooling " ) ) {
out < < " global_pooling: " < < lp . get ( " global_pooling " ) ;
out < < " \\ l " ; // align left
}
if ( lp . has ( " group " ) ) {
out < < " group: " < < lp . get ( " group " ) ;
out < < " \\ l " ; // align left
}
}
}
if ( ! ld . outputBlobs . empty ( ) )
{
out < < " output: " < < ld . outputBlobs [ 0 ] . size ;
out < < " \\ l " ; // align left
}
Ptr < BackendNode > layerBackend ;
std : : map < int , Ptr < BackendNode > > : : const_iterator ibn = ld . backendNodes . find ( prefBackend ) ;
if ( ibn ! = ld . backendNodes . end ( ) )
layerBackend = ibn - > second ;
out < < ( ! layerBackend . empty ( ) ? backend : " OCV/ " ) ;
int colorId = 0 ;
const Target target = ld . layerInstance . empty ( )
? DNN_TARGET_CPU
: ( Target ) ( ld . layerInstance - > preferableTarget ) ; // TODO fix preferableTarget type
switch ( target )
{
case DNN_TARGET_CPU : out < < " CPU " ; colorId = layerBackend . empty ( ) ? 0 : 5 ; break ;
case DNN_TARGET_OPENCL : out < < " OCL " ; colorId = 1 ; break ;
case DNN_TARGET_OPENCL_FP16 : out < < " OCL_FP16 " ; colorId = 2 ; break ;
case DNN_TARGET_MYRIAD : out < < " MYRIAD " ; colorId = 3 ; break ;
case DNN_TARGET_FPGA : out < < " FPGA " ; colorId = 4 ; break ;
// don't use default:
}
out < < " \\ n " ; // align center
out < < ( ( clusterIds . size ( ) = = 1 ) ? " \" " : " } \" " ) ;
out < < " fillcolor= \" " < < colors [ colorId ] < < " \" " ;
out < < " style=filled " ;
out < < " shape= " < < ( ( clusterIds . size ( ) = = 1 ) ? " box " : " record " ) < < " ] \n " ;
2019-04-13 00:31:07 +08:00
}
out < < ' \n ' ;
// Add edges
2020-02-06 05:20:10 +08:00
int inputsSize = hasInput ? netInputLayer - > outNames . size ( ) : 0 ;
2020-02-06 03:22:37 +08:00
for ( std : : map < int , LayerData > : : const_iterator it = map . begin ( ) ; it ! = map . end ( ) ; + + it )
2019-04-13 00:31:07 +08:00
{
2020-02-06 03:22:37 +08:00
const LayerData & ld = it - > second ;
2019-04-13 00:31:07 +08:00
if ( allLayers [ it - > first ] = = - 1 ) // node
{
2020-02-06 03:22:37 +08:00
for ( int i = 0 ; i < ld . consumers . size ( ) ; i + + )
2019-04-13 00:31:07 +08:00
{
2020-02-06 03:22:37 +08:00
int outId = ld . consumers [ i ] . lid ;
2019-04-13 00:31:07 +08:00
if ( it = = map . begin ( ) & & inputsSize > 1 )
2020-02-06 03:22:37 +08:00
out < < " \t \" " < < ld . name < < " _ " < < i < < " \" " < < " -> " ;
2019-04-13 00:31:07 +08:00
else
2020-02-06 03:22:37 +08:00
out < < " \t \" " < < ld . name < < " \" " < < " -> " ;
2019-04-13 00:31:07 +08:00
if ( allLayers [ outId ] = = - 1 ) // node
2020-02-06 03:22:37 +08:00
{
CV_DbgAssert ( map . find ( outId ) ! = map . end ( ) ) ;
out < < " \" " < < map . find ( outId ) - > second . name < < " \" \n " ;
}
2019-04-13 00:31:07 +08:00
else // cluster
2020-02-06 03:22:37 +08:00
{
out < < " \" " < < " cluster_ " < < allLayers [ outId ] < < " \" \n " ;
}
2019-04-13 00:31:07 +08:00
}
}
else if ( it - > first = = skippedLayers [ allLayers [ it - > first ] ] . back ( ) ) // edges from last layer in cluster
{
2020-02-06 03:22:37 +08:00
for ( int i = 0 ; i < ld . consumers . size ( ) ; i + + )
2019-04-13 00:31:07 +08:00
{
2020-02-06 03:22:37 +08:00
int outId = ld . consumers [ i ] . lid ;
if ( allLayers [ outId ] = = - 1 ) // node
{
CV_DbgAssert ( map . find ( outId ) ! = map . end ( ) ) ;
out < < " \t \" " < < " cluster_ " < < allLayers [ it - > first ] < < " \" " < < " -> " ;
out < < " \" " < < map . find ( outId ) - > second . name < < " \" \n " ;
2019-04-13 00:31:07 +08:00
}
else if ( allLayers [ outId ] ! = allLayers [ it - > first ] ) { // another cluster
2020-02-06 03:22:37 +08:00
out < < " \t \" " < < " cluster_ " < < allLayers [ it - > first ] < < " \" " < < " -> " ;
out < < " \" " < < " cluster_ " < < allLayers [ outId ] < < " \" \n " ;
2019-04-13 00:31:07 +08:00
}
}
}
}
2020-02-06 03:22:37 +08:00
out < < " } \n " ;
2019-04-13 00:31:07 +08:00
return out . str ( ) ;
}
void Net : : dumpToFile ( const String & path ) {
std : : ofstream file ( path . c_str ( ) ) ;
file < < dump ( ) ;
file . close ( ) ;
}
2022-01-12 11:46:13 +08:00
Ptr < Layer > Net : : getLayer ( int layerId ) const
{
LayerData & ld = impl - > getLayerData ( layerId ) ;
return ld . getLayerInstance ( ) ;
}
Ptr < Layer > Net : : getLayer ( const LayerId & layerId ) const
2017-06-26 18:35:51 +08:00
{
LayerData & ld = impl - > getLayerData ( layerId ) ;
2017-06-27 14:52:44 +08:00
return ld . getLayerInstance ( ) ;
2017-06-26 18:35:51 +08:00
}
2022-01-12 11:46:13 +08:00
std : : vector < Ptr < Layer > > Net : : getLayerInputs ( int layerId ) const
2017-06-26 18:35:51 +08:00
{
LayerData & ld = impl - > getLayerData ( layerId ) ;
std : : vector < Ptr < Layer > > inputLayers ;
2019-11-07 02:05:35 +08:00
inputLayers . reserve ( ld . inputBlobsId . size ( ) ) ;
for ( int i = 0 ; i < ld . inputBlobsId . size ( ) ; + + i ) {
inputLayers . push_back ( getLayer ( ld . inputBlobsId [ i ] . lid ) ) ;
2017-06-26 18:35:51 +08:00
}
return inputLayers ;
}
std : : vector < String > Net : : getLayerNames ( ) const
{
2020-10-05 14:23:47 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
std : : vector < String > res ;
res . reserve ( impl - > layers . size ( ) ) ;
2022-01-12 11:46:13 +08:00
Impl : : MapIdToLayerData : : const_iterator it ;
2017-06-26 18:35:51 +08:00
for ( it = impl - > layers . begin ( ) ; it ! = impl - > layers . end ( ) ; it + + )
{
if ( it - > second . id ) //skip Data layer
res . push_back ( it - > second . name ) ;
}
return res ;
}
bool Net : : empty ( ) const
{
return impl - > layers . size ( ) < = 1 ; //first layer is default Data layer
}
std : : vector < int > Net : : getUnconnectedOutLayers ( ) const
{
2022-01-30 03:11:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_Assert ( impl ) ;
2017-06-26 18:35:51 +08:00
std : : vector < int > layersIds ;
2022-01-30 03:11:58 +08:00
// registerOutput() flow
const std : : map < std : : string , int > & outputNameToId = impl - > outputNameToId ;
if ( ! outputNameToId . empty ( ) )
{
for ( std : : map < std : : string , int > : : const_iterator it = outputNameToId . begin ( ) ; it ! = outputNameToId . end ( ) ; + + it )
{
layersIds . push_back ( it - > second ) ;
}
return layersIds ;
}
2022-01-12 11:46:13 +08:00
Impl : : MapIdToLayerData : : const_iterator it ;
2017-06-26 18:35:51 +08:00
for ( it = impl - > layers . begin ( ) ; it ! = impl - > layers . end ( ) ; it + + )
{
int lid = it - > first ;
2022-01-12 11:46:13 +08:00
const LayerData & ld = it - > second ;
2017-06-26 18:35:51 +08:00
if ( ld . requiredOutputs . size ( ) = = 0 )
layersIds . push_back ( lid ) ;
}
return layersIds ;
}
2018-09-25 23:10:45 +08:00
std : : vector < String > Net : : getUnconnectedOutLayersNames ( ) const
{
std : : vector < int > ids = getUnconnectedOutLayers ( ) ;
const size_t n = ids . size ( ) ;
std : : vector < String > names ( n ) ;
for ( size_t i = 0 ; i < n ; + + i )
{
names [ i ] = impl - > layers [ ids [ i ] ] . name ;
}
return names ;
}
2017-06-26 18:35:51 +08:00
void Net : : getLayersShapes ( const ShapesVec & netInputShapes ,
2017-08-02 22:27:58 +08:00
std : : vector < int > & layersIds ,
std : : vector < ShapesVec > & inLayersShapes ,
std : : vector < ShapesVec > & outLayersShapes ) const
2017-06-26 18:35:51 +08:00
{
2017-08-02 22:27:58 +08:00
layersIds . clear ( ) ;
inLayersShapes . clear ( ) ;
outLayersShapes . clear ( ) ;
2017-06-26 18:35:51 +08:00
Impl : : LayersShapesMap inOutShapes ;
impl - > getLayersShapes ( netInputShapes , inOutShapes ) ;
for ( Impl : : LayersShapesMap : : const_iterator it = inOutShapes . begin ( ) ;
it ! = inOutShapes . end ( ) ; it + + )
{
2017-08-02 22:27:58 +08:00
layersIds . push_back ( it - > first ) ;
inLayersShapes . push_back ( it - > second . in ) ;
outLayersShapes . push_back ( it - > second . out ) ;
2017-06-26 18:35:51 +08:00
}
}
void Net : : getLayersShapes ( const MatShape & netInputShape ,
2017-08-02 22:27:58 +08:00
std : : vector < int > & layerIds ,
std : : vector < ShapesVec > & inLayersShapes ,
std : : vector < ShapesVec > & outLayersShapes ) const
2017-06-26 18:35:51 +08:00
{
getLayersShapes ( ShapesVec ( 1 , netInputShape ) ,
layerIds , inLayersShapes , outLayersShapes ) ;
}
void Net : : getLayerShapes ( const MatShape & netInputShape ,
const int layerId ,
2017-08-02 22:27:58 +08:00
ShapesVec & inLayerShapes ,
ShapesVec & outLayerShapes ) const
2017-06-26 18:35:51 +08:00
{
getLayerShapes ( ShapesVec ( 1 , netInputShape ) ,
layerId , inLayerShapes , outLayerShapes ) ;
}
void Net : : getLayerShapes ( const ShapesVec & netInputShapes ,
const int layerId ,
2017-08-02 22:27:58 +08:00
ShapesVec & inLayerShapes ,
ShapesVec & outLayerShapes ) const
2017-06-26 18:35:51 +08:00
{
LayerShapes shapes ;
impl - > getLayerShapes ( netInputShapes , layerId , shapes ) ;
2017-08-02 22:27:58 +08:00
inLayerShapes = shapes . in ;
outLayerShapes = shapes . out ;
2017-06-26 18:35:51 +08:00
}
int64 Net : : getFLOPS ( const std : : vector < MatShape > & netInputShapes ) const
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
int64 flops = 0 ;
std : : vector < int > ids ;
std : : vector < std : : vector < MatShape > > inShapes , outShapes ;
2017-08-02 22:27:58 +08:00
getLayersShapes ( netInputShapes , ids , inShapes , outShapes ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( inShapes . size ( ) = = outShapes . size ( ) ) ;
CV_Assert ( inShapes . size ( ) = = ids . size ( ) ) ;
for ( int i = 0 ; i < ids . size ( ) ; i + + )
{
flops + = impl - > layers [ ids [ i ] ] . getLayerInstance ( ) - > getFLOPS ( inShapes [ i ] ,
outShapes [ i ] ) ;
}
return flops ;
}
int64 Net : : getFLOPS ( const MatShape & netInputShape ) const
{
return getFLOPS ( std : : vector < MatShape > ( 1 , netInputShape ) ) ;
}
int64 Net : : getFLOPS ( const int layerId ,
const std : : vector < MatShape > & netInputShapes ) const
{
2022-01-12 11:46:13 +08:00
Impl : : MapIdToLayerData : : const_iterator layer = impl - > layers . find ( layerId ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( layer ! = impl - > layers . end ( ) ) ;
LayerShapes shapes ;
impl - > getLayerShapes ( netInputShapes , layerId , shapes ) ;
2022-01-12 11:46:13 +08:00
return const_cast < LayerData & > ( layer - > second ) . getLayerInstance ( ) - > getFLOPS ( shapes . in , shapes . out ) ;
2017-06-26 18:35:51 +08:00
}
int64 Net : : getFLOPS ( const int layerId ,
const MatShape & netInputShape ) const
{
return getFLOPS ( layerId , std : : vector < MatShape > ( 1 , netInputShape ) ) ;
}
void Net : : getLayerTypes ( std : : vector < String > & layersTypes ) const
{
layersTypes . clear ( ) ;
std : : map < String , int > layers ;
2022-01-12 11:46:13 +08:00
for ( Impl : : MapIdToLayerData : : const_iterator it = impl - > layers . begin ( ) ;
2017-06-26 18:35:51 +08:00
it ! = impl - > layers . end ( ) ; it + + )
{
if ( layers . find ( it - > second . type ) = = layers . end ( ) )
layers [ it - > second . type ] = 0 ;
layers [ it - > second . type ] + + ;
}
2022-01-12 11:46:13 +08:00
for ( std : : map < String , int > : : const_iterator it = layers . begin ( ) ;
2017-06-26 18:35:51 +08:00
it ! = layers . end ( ) ; it + + )
{
layersTypes . push_back ( it - > first ) ;
}
}
int Net : : getLayersCount ( const String & layerType ) const
{
int count = 0 ;
2022-01-12 11:46:13 +08:00
for ( Impl : : MapIdToLayerData : : const_iterator it = impl - > layers . begin ( ) ;
2017-06-26 18:35:51 +08:00
it ! = impl - > layers . end ( ) ; it + + )
{
if ( it - > second . type = = layerType )
count + + ;
}
return count ;
}
void Net : : getMemoryConsumption ( const int layerId ,
const std : : vector < MatShape > & netInputShapes ,
size_t & weights , size_t & blobs ) const
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2022-01-12 11:46:13 +08:00
Impl : : MapIdToLayerData : : const_iterator layer = impl - > layers . find ( layerId ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( layer ! = impl - > layers . end ( ) ) ;
weights = blobs = 0 ;
for ( int i = 0 ; i < layer - > second . params . blobs . size ( ) ; i + + )
{
const Mat & weightsBlob = layer - > second . params . blobs [ i ] ;
weights + = weightsBlob . total ( ) * weightsBlob . elemSize ( ) ;
}
2017-08-02 22:27:58 +08:00
ShapesVec inLayerShapes , outLayerShapes ;
getLayerShapes ( netInputShapes , layerId , inLayerShapes , outLayerShapes ) ;
2017-06-26 18:35:51 +08:00
for ( int i = 0 ; i < outLayerShapes . size ( ) ; i + + )
{
blobs + = total ( outLayerShapes [ i ] ) * sizeof ( float ) ;
}
}
void Net : : getMemoryConsumption ( const std : : vector < MatShape > & netInputShapes ,
size_t & weights , size_t & blobs ) const
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
std : : vector < int > layerIds ;
std : : vector < size_t > w , b ;
getMemoryConsumption ( netInputShapes , layerIds , w , b ) ;
weights = blobs = 0 ;
for ( int i = 0 ; i < layerIds . size ( ) ; i + + )
{
weights + = w [ i ] ;
blobs + = b [ i ] ;
}
}
void Net : : getMemoryConsumption ( const int layerId ,
const MatShape & netInputShape ,
size_t & weights , size_t & blobs ) const
{
getMemoryConsumption ( layerId , std : : vector < MatShape > ( 1 , netInputShape ) ,
weights , blobs ) ;
}
void Net : : getMemoryConsumption ( const MatShape & netInputShape ,
size_t & weights , size_t & blobs ) const
{
getMemoryConsumption ( std : : vector < MatShape > ( 1 , netInputShape ) ,
weights , blobs ) ;
}
void Net : : getMemoryConsumption ( const std : : vector < MatShape > & netInputShapes ,
std : : vector < int > & layerIds , std : : vector < size_t > & weights ,
std : : vector < size_t > & blobs ) const
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
layerIds . clear ( ) ;
weights . clear ( ) ;
blobs . clear ( ) ;
2017-08-02 22:27:58 +08:00
std : : vector < std : : vector < MatShape > > inLayerShapes , outLayerShapes ;
2017-06-26 18:35:51 +08:00
2017-08-02 22:27:58 +08:00
getLayersShapes ( netInputShapes , layerIds , inLayerShapes , outLayerShapes ) ;
2017-06-26 18:35:51 +08:00
for ( int i = 0 ; i < layerIds . size ( ) ; i + + )
{
int w = 0 , b = 0 ;
2022-01-12 11:46:13 +08:00
Impl : : MapIdToLayerData : : const_iterator layer = impl - > layers . find ( layerIds [ i ] ) ;
2017-06-26 18:35:51 +08:00
CV_Assert ( layer ! = impl - > layers . end ( ) ) ;
for ( int j = 0 ; j < layer - > second . params . blobs . size ( ) ; j + + )
{
const Mat & weightsBlob = layer - > second . params . blobs [ j ] ;
w + = weightsBlob . total ( ) * weightsBlob . elemSize ( ) ;
}
for ( int j = 0 ; j < outLayerShapes [ i ] . size ( ) ; j + + )
{
b + = total ( outLayerShapes [ i ] [ j ] ) * sizeof ( float ) ;
}
weights . push_back ( w ) ;
blobs . push_back ( b ) ;
}
}
void Net : : getMemoryConsumption ( const MatShape & netInputShape , std : : vector < int > & layerIds ,
std : : vector < size_t > & weights , std : : vector < size_t > & blobs ) const
{
getMemoryConsumption ( std : : vector < MatShape > ( 1 , netInputShape ) , layerIds ,
weights , blobs ) ;
}
2017-07-04 22:23:47 +08:00
void Net : : enableFusion ( bool fusion )
{
if ( impl - > fusion ! = fusion )
{
impl - > fusion = fusion ;
impl - > netWasAllocated = false ;
impl - > clear ( ) ;
}
}
2017-06-26 18:35:51 +08:00
void Net : : setHalideScheduler ( const String & scheduler )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( scheduler , " scheduler " , scheduler . c_str ( ) ) ;
2017-06-26 18:35:51 +08:00
impl - > halideConfigFile = scheduler ;
}
2017-08-02 22:27:58 +08:00
int64 Net : : getPerfProfile ( std : : vector < double > & timings )
{
timings = std : : vector < double > ( impl - > layersTimings . begin ( ) + 1 , impl - > layersTimings . end ( ) ) ;
2018-11-07 18:54:51 +08:00
int64 total = ( int64 ) std : : accumulate ( timings . begin ( ) , timings . end ( ) , 0.0 ) ;
2017-08-02 22:27:58 +08:00
return total ;
}
2017-06-26 18:35:51 +08:00
//////////////////////////////////////////////////////////////////////////
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
Layer : : Layer ( ) { preferableTarget = DNN_TARGET_CPU ; }
2017-06-26 18:35:51 +08:00
Layer : : Layer ( const LayerParams & params )
: blobs ( params . blobs ) , name ( params . name ) , type ( params . type )
{
Merge pull request #9114 from pengli:dnn_rebase
add libdnn acceleration to dnn module (#9114)
* import libdnn code
Signed-off-by: Li Peng <peng.li@intel.com>
* add convolution layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add pooling layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add softmax layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add lrn layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add innerproduct layer ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* add HAVE_OPENCL macro
Signed-off-by: Li Peng <peng.li@intel.com>
* fix for convolution ocl
Signed-off-by: Li Peng <peng.li@intel.com>
* enable getUMat() for multi-dimension Mat
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat for ocl acceleration
Signed-off-by: Li Peng <peng.li@intel.com>
* use CV_OCL_RUN macro
Signed-off-by: Li Peng <peng.li@intel.com>
* set OPENCL target when it is available
and disable fuseLayer for OCL target for the time being
Signed-off-by: Li Peng <peng.li@intel.com>
* fix innerproduct accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* remove trailing space
Signed-off-by: Li Peng <peng.li@intel.com>
* Fixed tensorflow demo bug.
Root cause is that tensorflow has different algorithm with libdnn
to calculate convolution output dimension.
libdnn don't calculate output dimension anymore and just use one
passed in by config.
* split gemm ocl file
split it into gemm_buffer.cl and gemm_image.cl
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix compile failure
Signed-off-by: Li Peng <peng.li@intel.com>
* check env flag for auto tuning
Signed-off-by: Li Peng <peng.li@intel.com>
* switch to new ocl kernels for softmax layer
Signed-off-by: Li Peng <peng.li@intel.com>
* update softmax layer
on some platform subgroup extension may not work well,
fallback to non subgroup ocl acceleration.
Signed-off-by: Li Peng <peng.li@intel.com>
* fallback to cpu path for fc layer with multi output
Signed-off-by: Li Peng <peng.li@intel.com>
* update output message
Signed-off-by: Li Peng <peng.li@intel.com>
* update fully connected layer
fallback to gemm API if libdnn return false
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ReLU OCL implementation
* disable layer fusion for now
Signed-off-by: Li Peng <peng.li@intel.com>
* Add OCL implementation for concat layer
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
* libdnn: update license and copyrights
Also refine libdnn coding style
Signed-off-by: Wu Zhiwen <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* DNN: Don't link OpenCL library explicitly
* DNN: Make default preferableTarget to DNN_TARGET_CPU
User should set it to DNN_TARGET_OPENCL explicitly if want to
use OpenCL acceleration.
Also don't fusion when using DNN_TARGET_OPENCL
* DNN: refine coding style
* Add getOpenCLErrorString
* DNN: Use int32_t/uint32_t instread of alias
* Use namespace ocl4dnn to include libdnn things
* remove extra copyTo in softmax ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* update ReLU layer ocl path
Signed-off-by: Li Peng <peng.li@intel.com>
* Add prefer target property for layer class
It is used to indicate the target for layer forwarding,
either the default CPU target or OCL target.
Signed-off-by: Li Peng <peng.li@intel.com>
* Add cl_event based timer for cv::ocl
* Rename libdnn to ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* use UMat for ocl4dnn internal buffer
Remove allocateMemory which use clCreateBuffer directly
Signed-off-by: Li Peng <peng.li@intel.com>
Signed-off-by: wzw <zhiwen.wu@intel.com>
* enable buffer gemm in ocl4dnn innerproduct
Signed-off-by: Li Peng <peng.li@intel.com>
* replace int_tp globally for ocl4dnn kernels.
Signed-off-by: wzw <zhiwen.wu@intel.com>
Signed-off-by: Li Peng <peng.li@intel.com>
* create UMat for layer params
Signed-off-by: Li Peng <peng.li@intel.com>
* update sign ocl kernel
Signed-off-by: Li Peng <peng.li@intel.com>
* update image based gemm of inner product layer
Signed-off-by: Li Peng <peng.li@intel.com>
* remove buffer gemm of inner product layer
call cv::gemm API instead
Signed-off-by: Li Peng <peng.li@intel.com>
* change ocl4dnn forward parameter to UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine auto-tuning mechanism.
- Use OPENCV_OCL4DNN_KERNEL_CONFIG_PATH to set cache directory
for fine-tuned kernel configuration.
e.g. export OPENCV_OCL4DNN_KERNEL_CONFIG_PATH=/home/tmp,
the cache directory will be /home/tmp/spatialkernels/ on Linux.
- Define environment OPENCV_OCL4DNN_ENABLE_AUTO_TUNING to enable
auto-tuning.
- OPENCV_OPENCL_ENABLE_PROFILING is only used to enable profiling
for OpenCL command queue. This fix basic kernel get wrong running
time, i.e. 0ms.
- If creating cache directory failed, disable auto-tuning.
* Detect and create cache dir on windows
Signed-off-by: Li Peng <peng.li@intel.com>
* Refine gemm like convolution kernel.
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix redundant swizzleWeights calling when use cached kernel config.
* Fix "out of resource" bug when auto-tuning too many kernels.
* replace cl_mem with UMat in ocl4dnnConvSpatial class
* OCL4DNN: reduce the tuning kernel candidate.
This patch could reduce 75% of the tuning candidates with less
than 2% performance impact for the final result.
Signed-off-by: Zhigang Gong <zhigang.gong@intel.com>
* replace cl_mem with umat in ocl4dnn convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* remove weight_image_ of ocl4dnn inner product
Actually it is unused in the computation
Signed-off-by: Li Peng <peng.li@intel.com>
* Various fixes for ocl4dnn
1. OCL_PERFORMANCE_CHECK(ocl::Device::getDefault().isIntel())
2. Ptr<OCL4DNNInnerProduct<float> > innerProductOp
3. Code comments cleanup
4. ignore check on OCL cpu device
Signed-off-by: Li Peng <peng.li@intel.com>
* add build option for log softmax
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ocl kernels in ocl4dnn
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ocl4dnnSet with opencv setTo
Signed-off-by: Li Peng <peng.li@intel.com>
* replace ALIGN with cv::alignSize
Signed-off-by: Li Peng <peng.li@intel.com>
* check kernel build options
Signed-off-by: Li Peng <peng.li@intel.com>
* Handle program compilation fail properly.
* Use std::numeric_limits<float>::infinity() for large float number
* check ocl4dnn kernel compilation result
Signed-off-by: Li Peng <peng.li@intel.com>
* remove unused ctx_id
Signed-off-by: Li Peng <peng.li@intel.com>
* change clEnqueueNDRangeKernel to kernel.run()
Signed-off-by: Li Peng <peng.li@intel.com>
* change cl_mem to UMat in image based gemm
Signed-off-by: Li Peng <peng.li@intel.com>
* check intel subgroup support for lrn and pooling layer
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix convolution bug if group is greater than 1
Signed-off-by: Li Peng <peng.li@intel.com>
* Set default layer preferableTarget to be DNN_TARGET_CPU
Signed-off-by: Li Peng <peng.li@intel.com>
* Add ocl perf test for convolution
Signed-off-by: Li Peng <peng.li@intel.com>
* Add more ocl accuracy test
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_image with ocl::Image2D
Signed-off-by: Li Peng <peng.li@intel.com>
* Fix build failure in elementwise layer
Signed-off-by: Li Peng <peng.li@intel.com>
* use getUMat() to get blob data
Signed-off-by: Li Peng <peng.li@intel.com>
* replace cl_mem handle with ocl::KernelArg
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(build): don't use C++11, OPENCL_LIBRARIES fix
* dnn(ocl4dnn): remove unused OpenCL kernels
* dnn(ocl4dnn): extract OpenCL code into .cl files
* dnn(ocl4dnn): refine auto-tuning
Defaultly disable auto-tuning, set OPENCV_OCL4DNN_ENABLE_AUTO_TUNING
environment variable to enable it.
Use a set of pre-tuned configs as default config if auto-tuning is disabled.
These configs are tuned for Intel GPU with 48/72 EUs, and for googlenet,
AlexNet, ResNet-50
If default config is not suitable, use the first available kernel config
from the candidates. Candidate priority from high to low is gemm like kernel,
IDLF kernel, basick kernel.
* dnn(ocl4dnn): pooling doesn't use OpenCL subgroups
* dnn(ocl4dnn): fix perf test
OpenCV has default 3sec time limit for each performance test.
Warmup OpenCL backend outside of perf measurement loop.
* use ocl::KernelArg as much as possible
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): fix bias bug for gemm like kernel
* dnn(ocl4dnn): wrap cl_mem into UMat
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): Refine signature of kernel config
- Use more readable string as signture of kernel config
- Don't count device name and vendor in signature string
- Default kernel configurations are tuned for Intel GPU with
24/48/72 EUs, and for googlenet, AlexNet, ResNet-50 net model.
* dnn(ocl4dnn): swap width/height in configuration
* dnn(ocl4dnn): enable configs for Intel OpenCL runtime only
* core: make configuration helper functions accessible from non-core modules
* dnn(ocl4dnn): update kernel auto-tuning behavior
Avoid unwanted creation of directories
* dnn(ocl4dnn): simplify kernel to workaround OpenCL compiler crash
* dnn(ocl4dnn): remove redundant code
* dnn(ocl4dnn): Add more clear message for simd size dismatch.
* dnn(ocl4dnn): add const to const argument
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): force compiler use a specific SIMD size for IDLF kernel
* dnn(ocl4dnn): drop unused tuneLocalSize()
* dnn(ocl4dnn): specify OpenCL queue for Timer and convolve() method
* dnn(ocl4dnn): sanitize file names used for cache
* dnn(perf): enable Network tests with OpenCL
* dnn(ocl4dnn/conv): drop computeGlobalSize()
* dnn(ocl4dnn/conv): drop unused fields
* dnn(ocl4dnn/conv): simplify ctor
* dnn(ocl4dnn/conv): refactor kernelConfig localSize=NULL
* dnn(ocl4dnn/conv): drop unsupported double / untested half types
* dnn(ocl4dnn/conv): drop unused variable
* dnn(ocl4dnn/conv): alignSize/divUp
* dnn(ocl4dnn/conv): use enum values
* dnn(ocl4dnn): drop unused innerproduct variable
Signed-off-by: Li Peng <peng.li@intel.com>
* dnn(ocl4dnn): add an generic function to check cl option support
* dnn(ocl4dnn): run softmax subgroup version kernel first
Signed-off-by: Li Peng <peng.li@intel.com>
2017-10-02 20:38:00 +08:00
preferableTarget = DNN_TARGET_CPU ;
2017-06-26 18:35:51 +08:00
}
void Layer : : setParamsFrom ( const LayerParams & params )
{
blobs = params . blobs ;
name = params . name ;
type = params . type ;
}
int Layer : : inputNameToIndex ( String )
{
return - 1 ;
}
2018-03-12 23:42:53 +08:00
int Layer : : outputNameToIndex ( const String & )
2017-06-26 18:35:51 +08:00
{
2018-06-20 19:25:24 +08:00
return 0 ;
2017-06-26 18:35:51 +08:00
}
bool Layer : : supportBackend ( int backendId )
{
2018-06-01 15:54:12 +08:00
return backendId = = DNN_BACKEND_OPENCV ;
2017-06-26 18:35:51 +08:00
}
Ptr < BackendNode > Layer : : initHalide ( const std : : vector < Ptr < BackendWrapper > > & )
{
CV_Error ( Error : : StsNotImplemented , " Halide pipeline of " + type +
" layers is not defined. " ) ;
return Ptr < BackendNode > ( ) ;
}
2018-02-06 16:57:35 +08:00
Ptr < BackendNode > Layer : : initInfEngine ( const std : : vector < Ptr < BackendWrapper > > & )
2019-12-02 21:16:06 +08:00
{
CV_Error ( Error : : StsNotImplemented , " Inference Engine pipeline of " + type +
" layers is not defined. " ) ;
return Ptr < BackendNode > ( ) ;
}
Ptr < BackendNode > Layer : : initNgraph ( const std : : vector < Ptr < BackendWrapper > > & inputs , const std : : vector < Ptr < BackendNode > > & nodes )
2018-02-06 16:57:35 +08:00
{
CV_Error ( Error : : StsNotImplemented , " Inference Engine pipeline of " + type +
" layers is not defined. " ) ;
return Ptr < BackendNode > ( ) ;
}
2017-06-26 18:35:51 +08:00
void Layer : : applyHalideScheduler ( Ptr < BackendNode > & node , const std : : vector < Mat * > & inputs ,
const std : : vector < Mat > & outputs , int targetId ) const
{
# ifdef HAVE_HALIDE
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
Halide : : Var x ( " x " ) , y ( " y " ) , c ( " c " ) , n ( " n " ) , co ( " co " ) , ci ( " ci " ) ,
xo ( " xo " ) , xi ( " xi " ) , yo ( " yo " ) , yi ( " yi " ) , tile ( " tile " ) ;
Halide : : Func & top = node . dynamicCast < HalideBackendNode > ( ) - > funcs . back ( ) ;
int outW , outH , outC , outN ;
getCanonicalSize ( outputs [ 0 ] . size , & outW , & outH , & outC , & outN ) ;
if ( targetId = = DNN_TARGET_CPU )
{
if ( outW = = 1 & & outH = = 1 )
{
if ( outC + outN = = 1 )
return ;
if ( outC > 8 )
top . split ( c , co , ci , 8 )
. fuse ( x , y , tile ) . fuse ( co , tile , tile ) . fuse ( n , tile , tile )
. parallel ( tile )
. vectorize ( ci , 8 ) ;
else
top . fuse ( x , y , tile ) . fuse ( c , tile , tile ) . fuse ( n , tile , tile )
. parallel ( tile ) ;
}
else
{
if ( outH > 2 )
{
top . reorder ( x , c , y )
. split ( y , yo , yi , 2 )
. fuse ( yo , n , tile )
. parallel ( tile )
. unroll ( yi )
. vectorize ( x , outW > = 16 ? 16 : outW ) ;
}
}
}
else if ( targetId = = DNN_TARGET_OPENCL )
{
if ( outW = = 1 & & outH = = 1 )
{
2018-06-27 21:34:36 +08:00
int c_split = outC > 8 ? ( outC > 16 ? 8 : 4 ) : outC ;
2017-06-26 18:35:51 +08:00
top . split ( c , co , ci , c_split )
. fuse ( x , y , tile ) . fuse ( co , tile , tile ) . fuse ( n , tile , tile )
. gpu_blocks ( tile )
. gpu_threads ( ci ) ;
}
else
{
int x_split = outW > 8 ? ( outW > = 32 ? 16 : 8 ) : outW ;
int y_split = outH > 8 ? ( outH > = 32 ? 16 : 8 ) : outH ;
2018-06-27 21:34:36 +08:00
// Supported vectorization widths: 2, 3, 4, 8, 16
int c_split = outC > 8 ? ( outC > 16 ? 8 : 4 ) : std : : min ( 4 , outC ) ;
2017-06-26 18:35:51 +08:00
top . split ( x , xo , xi , x_split ) . split ( y , yo , yi , y_split )
. split ( c , co , ci , c_split )
. gpu_blocks ( xo , yo , co )
. gpu_threads ( xi , yi )
. reorder ( xi , yi , ci , xo , yo , co )
. vectorize ( ci ) ;
}
}
else
CV_Error ( Error : : StsNotImplemented , " Unknown target identifier " ) ;
# endif // HAVE_HALIDE
}
Ptr < BackendNode > Layer : : tryAttach ( const Ptr < BackendNode > & node )
{
return Ptr < BackendNode > ( ) ;
}
2017-06-28 16:15:22 +08:00
bool Layer : : setActivation ( const Ptr < ActivationLayer > & ) { return false ; }
2018-02-13 17:07:56 +08:00
bool Layer : : tryFuse ( Ptr < Layer > & ) { return false ; }
void Layer : : getScaleShift ( Mat & scale , Mat & shift ) const
{
scale = Mat ( ) ;
shift = Mat ( ) ;
}
2017-07-04 22:23:47 +08:00
void Layer : : unsetAttached ( )
{
setActivation ( Ptr < ActivationLayer > ( ) ) ;
}
2017-06-28 16:15:22 +08:00
2017-06-26 18:35:51 +08:00
template < typename T >
static void vecToPVec ( const std : : vector < T > & v , std : : vector < T * > & pv )
{
pv . resize ( v . size ( ) ) ;
for ( size_t i = 0 ; i < v . size ( ) ; i + + )
pv [ i ] = const_cast < T * > ( & v [ i ] ) ;
}
void Layer : : finalize ( const std : : vector < Mat > & inputs , std : : vector < Mat > & outputs )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2018-09-06 18:26:47 +08:00
this - > finalize ( ( InputArrayOfArrays ) inputs , ( OutputArrayOfArrays ) outputs ) ;
2017-06-26 18:35:51 +08:00
}
void Layer : : finalize ( const std : : vector < Mat * > & input , std : : vector < Mat > & output )
{
2018-09-07 19:33:52 +08:00
CV_UNUSED ( input ) ; CV_UNUSED ( output ) ;
2017-06-26 18:35:51 +08:00
}
2018-09-06 18:26:47 +08:00
void Layer : : finalize ( InputArrayOfArrays inputs_arr , OutputArrayOfArrays outputs_arr )
{
CV_TRACE_FUNCTION ( ) ;
std : : vector < Mat > inputs , outputs ;
inputs_arr . getMatVector ( inputs ) ;
outputs_arr . getMatVector ( outputs ) ;
std : : vector < Mat * > inputsp ;
vecToPVec ( inputs , inputsp ) ;
this - > finalize ( inputsp , outputs ) ;
}
2017-06-26 18:35:51 +08:00
std : : vector < Mat > Layer : : finalize ( const std : : vector < Mat > & inputs )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-06-26 18:35:51 +08:00
std : : vector < Mat > outputs ;
this - > finalize ( inputs , outputs ) ;
return outputs ;
}
2018-09-06 18:26:47 +08:00
void Layer : : forward ( std : : vector < Mat * > & input , std : : vector < Mat > & output , std : : vector < Mat > & internals )
{
// We kept this method for compatibility. DNN calls it now only to support users' implementations.
}
void Layer : : forward ( InputArrayOfArrays inputs_arr , OutputArrayOfArrays outputs_arr , OutputArrayOfArrays internals_arr )
2018-07-25 00:12:58 +08:00
{
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( name , " name " , name . c_str ( ) ) ;
2018-09-06 18:26:47 +08:00
Layer : : forward_fallback ( inputs_arr , outputs_arr , internals_arr ) ;
2018-07-25 00:12:58 +08:00
}
2017-11-09 12:57:37 +08:00
void Layer : : forward_fallback ( InputArrayOfArrays inputs_arr , OutputArrayOfArrays outputs_arr , OutputArrayOfArrays internals_arr )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2017-11-09 12:57:37 +08:00
CV_TRACE_ARG_VALUE ( name , " name " , name . c_str ( ) ) ;
2017-06-28 19:46:58 +08:00
2018-04-26 19:20:16 +08:00
if ( preferableTarget = = DNN_TARGET_OPENCL_FP16 & & inputs_arr . depth ( ) = = CV_16S )
{
std : : vector < UMat > inputs ;
std : : vector < UMat > outputs ;
std : : vector < UMat > internals ;
std : : vector < UMat > orig_inputs ;
std : : vector < UMat > orig_outputs ;
std : : vector < UMat > orig_internals ;
inputs_arr . getUMatVector ( orig_inputs ) ;
outputs_arr . getUMatVector ( orig_outputs ) ;
internals_arr . getUMatVector ( orig_internals ) ;
inputs . resize ( orig_inputs . size ( ) ) ;
for ( size_t i = 0 ; i < orig_inputs . size ( ) ; i + + )
convertFp16 ( orig_inputs [ i ] , inputs [ i ] ) ;
outputs . resize ( orig_outputs . size ( ) ) ;
for ( size_t i = 0 ; i < orig_outputs . size ( ) ; i + + )
outputs [ i ] . create ( shape ( orig_outputs [ i ] ) , CV_32F ) ;
internals . resize ( orig_internals . size ( ) ) ;
for ( size_t i = 0 ; i < orig_internals . size ( ) ; i + + )
internals [ i ] . create ( shape ( orig_internals [ i ] ) , CV_32F ) ;
forward ( inputs , outputs , internals ) ;
for ( size_t i = 0 ; i < outputs . size ( ) ; i + + )
convertFp16 ( outputs [ i ] , orig_outputs [ i ] ) ;
// sync results back
outputs_arr . assign ( orig_outputs ) ;
internals_arr . assign ( orig_internals ) ;
return ;
}
2017-11-09 12:57:37 +08:00
std : : vector < Mat > inpvec ;
std : : vector < Mat > outputs ;
std : : vector < Mat > internals ;
inputs_arr . getMatVector ( inpvec ) ;
outputs_arr . getMatVector ( outputs ) ;
internals_arr . getMatVector ( internals ) ;
std : : vector < Mat * > inputs ( inpvec . size ( ) ) ;
for ( int i = 0 ; i < inpvec . size ( ) ; i + + )
inputs [ i ] = & inpvec [ i ] ;
this - > forward ( inputs , outputs , internals ) ;
2017-11-22 19:00:58 +08:00
// sync results back
outputs_arr . assign ( outputs ) ;
internals_arr . assign ( internals ) ;
2017-06-26 18:35:51 +08:00
}
void Layer : : run ( const std : : vector < Mat > & inputs , std : : vector < Mat > & outputs , std : : vector < Mat > & internals )
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
2018-09-06 18:26:47 +08:00
this - > finalize ( inputs , outputs ) ;
this - > forward ( inputs , outputs , internals ) ;
2017-06-26 18:35:51 +08:00
}
Layer : : ~ Layer ( ) { }
bool Layer : : getMemoryShapes ( const std : : vector < MatShape > & inputs ,
const int requiredOutputs ,
std : : vector < MatShape > & outputs ,
std : : vector < MatShape > & internals ) const
{
CV_Assert ( inputs . size ( ) ) ;
outputs . assign ( std : : max ( requiredOutputs , ( int ) inputs . size ( ) ) , inputs [ 0 ] ) ;
return false ;
}
2020-11-17 18:31:04 +08:00
bool Layer : : updateMemoryShapes ( const std : : vector < MatShape > & inputs )
{
return true ;
}
2017-06-26 18:35:51 +08:00
//////////////////////////////////////////////////////////////////////////
2017-06-28 01:34:17 +08:00
static Mutex & getLayerFactoryMutex ( )
2017-06-26 18:35:51 +08:00
{
2017-06-28 01:34:17 +08:00
static Mutex * volatile instance = NULL ;
if ( instance = = NULL )
{
cv : : AutoLock lock ( getInitializationMutex ( ) ) ;
if ( instance = = NULL )
instance = new Mutex ( ) ;
}
return * instance ;
}
2018-04-24 19:59:59 +08:00
typedef std : : map < String , std : : vector < LayerFactory : : Constructor > > LayerFactory_Impl ;
2017-06-28 01:34:17 +08:00
static LayerFactory_Impl & getLayerFactoryImpl_ ( )
{
static LayerFactory_Impl impl ;
return impl ;
}
2017-06-26 18:35:51 +08:00
2017-06-28 01:34:17 +08:00
static LayerFactory_Impl & getLayerFactoryImpl ( )
2017-06-26 18:35:51 +08:00
{
2017-06-28 01:34:17 +08:00
static LayerFactory_Impl * volatile instance = NULL ;
if ( instance = = NULL )
{
cv : : AutoLock lock ( getLayerFactoryMutex ( ) ) ;
if ( instance = = NULL )
{
instance = & getLayerFactoryImpl_ ( ) ;
initializeLayerFactory ( ) ;
}
}
return * instance ;
2017-06-26 18:35:51 +08:00
}
2018-04-24 19:59:59 +08:00
void LayerFactory : : registerLayer ( const String & type , Constructor constructor )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( type , " type " , type . c_str ( ) ) ;
2017-06-28 01:34:17 +08:00
cv : : AutoLock lock ( getLayerFactoryMutex ( ) ) ;
2020-03-22 23:50:15 +08:00
LayerFactory_Impl : : iterator it = getLayerFactoryImpl ( ) . find ( type ) ;
2017-06-26 18:35:51 +08:00
2018-04-24 19:59:59 +08:00
if ( it ! = getLayerFactoryImpl ( ) . end ( ) )
2017-06-26 18:35:51 +08:00
{
2018-04-24 19:59:59 +08:00
if ( it - > second . back ( ) = = constructor )
2020-03-22 23:50:15 +08:00
CV_Error ( cv : : Error : : StsBadArg , " Layer \" " + type + " \" already was registered " ) ;
2018-04-24 19:59:59 +08:00
it - > second . push_back ( constructor ) ;
2017-06-26 18:35:51 +08:00
}
2020-03-22 23:50:15 +08:00
getLayerFactoryImpl ( ) . insert ( std : : make_pair ( type , std : : vector < Constructor > ( 1 , constructor ) ) ) ;
2017-06-26 18:35:51 +08:00
}
2017-06-28 19:46:58 +08:00
void LayerFactory : : unregisterLayer ( const String & type )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( type , " type " , type . c_str ( ) ) ;
2017-06-28 01:34:17 +08:00
cv : : AutoLock lock ( getLayerFactoryMutex ( ) ) ;
2018-04-24 19:59:59 +08:00
2020-03-22 23:50:15 +08:00
LayerFactory_Impl : : iterator it = getLayerFactoryImpl ( ) . find ( type ) ;
2018-04-24 19:59:59 +08:00
if ( it ! = getLayerFactoryImpl ( ) . end ( ) )
{
if ( it - > second . size ( ) > 1 )
it - > second . pop_back ( ) ;
else
getLayerFactoryImpl ( ) . erase ( it ) ;
}
2017-06-26 18:35:51 +08:00
}
2017-06-28 19:46:58 +08:00
Ptr < Layer > LayerFactory : : createLayerInstance ( const String & type , LayerParams & params )
2017-06-26 18:35:51 +08:00
{
2017-06-28 19:46:58 +08:00
CV_TRACE_FUNCTION ( ) ;
CV_TRACE_ARG_VALUE ( type , " type " , type . c_str ( ) ) ;
2017-06-28 01:34:17 +08:00
cv : : AutoLock lock ( getLayerFactoryMutex ( ) ) ;
2020-03-22 23:50:15 +08:00
LayerFactory_Impl : : const_iterator it = getLayerFactoryImpl ( ) . find ( type ) ;
2017-06-26 18:35:51 +08:00
2017-06-28 01:34:17 +08:00
if ( it ! = getLayerFactoryImpl ( ) . end ( ) )
2017-06-26 18:35:51 +08:00
{
2018-04-24 19:59:59 +08:00
CV_Assert ( ! it - > second . empty ( ) ) ;
return it - > second . back ( ) ( params ) ;
2017-06-26 18:35:51 +08:00
}
else
{
return Ptr < Layer > ( ) ; //NULL
}
}
BackendNode : : BackendNode ( int backendId ) : backendId ( backendId ) { }
BackendNode : : ~ BackendNode ( ) { } ;
BackendWrapper : : BackendWrapper ( int backendId , int targetId )
: backendId ( backendId ) , targetId ( targetId ) { }
BackendWrapper : : BackendWrapper ( int targetId , const cv : : Mat & m )
{
CV_Error ( Error : : StsNotImplemented ,
" Constructor of backend wrapper must be implemented " ) ;
}
BackendWrapper : : BackendWrapper ( const Ptr < BackendWrapper > & base , const MatShape & shape )
{
CV_Error ( Error : : StsNotImplemented ,
" Constructor of backend wrapper must be implemented " ) ;
}
BackendWrapper : : ~ BackendWrapper ( ) { }
2018-03-12 23:42:53 +08:00
Net readNet ( const String & _model , const String & _config , const String & _framework )
2018-03-04 00:29:37 +08:00
{
2018-03-12 23:42:53 +08:00
String framework = _framework . toLowerCase ( ) ;
String model = _model ;
String config = _config ;
2018-03-04 00:29:37 +08:00
const std : : string modelExt = model . substr ( model . rfind ( ' . ' ) + 1 ) ;
const std : : string configExt = config . substr ( config . rfind ( ' . ' ) + 1 ) ;
if ( framework = = " caffe " | | modelExt = = " caffemodel " | | configExt = = " caffemodel " | |
modelExt = = " prototxt " | | configExt = = " prototxt " )
{
if ( modelExt = = " prototxt " | | configExt = = " caffemodel " )
std : : swap ( model , config ) ;
return readNetFromCaffe ( config , model ) ;
}
if ( framework = = " tensorflow " | | modelExt = = " pb " | | configExt = = " pb " | |
modelExt = = " pbtxt " | | configExt = = " pbtxt " )
{
if ( modelExt = = " pbtxt " | | configExt = = " pb " )
std : : swap ( model , config ) ;
return readNetFromTensorflow ( model , config ) ;
}
if ( framework = = " torch " | | modelExt = = " t7 " | | modelExt = = " net " | |
configExt = = " t7 " | | configExt = = " net " )
{
return readNetFromTorch ( model . empty ( ) ? config : model ) ;
}
if ( framework = = " darknet " | | modelExt = = " weights " | | configExt = = " weights " | |
modelExt = = " cfg " | | configExt = = " cfg " )
{
if ( modelExt = = " cfg " | | configExt = = " weights " )
std : : swap ( model , config ) ;
return readNetFromDarknet ( config , model ) ;
}
2018-03-17 00:27:04 +08:00
if ( framework = = " dldt " | | modelExt = = " bin " | | configExt = = " bin " | |
modelExt = = " xml " | | configExt = = " xml " )
{
if ( modelExt = = " xml " | | configExt = = " bin " )
std : : swap ( model , config ) ;
return readNetFromModelOptimizer ( config , model ) ;
}
2018-09-11 02:07:51 +08:00
if ( framework = = " onnx " | | modelExt = = " onnx " )
{
return readNetFromONNX ( model ) ;
}
2018-04-24 00:02:39 +08:00
CV_Error ( Error : : StsError , " Cannot determine an origin framework of files: " +
2018-03-28 21:34:37 +08:00
model + ( config . empty ( ) ? " " : " , " + config ) ) ;
2018-03-04 00:29:37 +08:00
}
2018-07-11 17:48:34 +08:00
Net readNet ( const String & _framework , const std : : vector < uchar > & bufferModel ,
const std : : vector < uchar > & bufferConfig )
2018-07-04 23:15:31 +08:00
{
String framework = _framework . toLowerCase ( ) ;
if ( framework = = " caffe " )
return readNetFromCaffe ( bufferConfig , bufferModel ) ;
else if ( framework = = " tensorflow " )
return readNetFromTensorflow ( bufferModel , bufferConfig ) ;
else if ( framework = = " darknet " )
return readNetFromDarknet ( bufferConfig , bufferModel ) ;
else if ( framework = = " torch " )
CV_Error ( Error : : StsNotImplemented , " Reading Torch models from buffers " ) ;
else if ( framework = = " dldt " )
2019-11-27 22:31:38 +08:00
return readNetFromModelOptimizer ( bufferConfig , bufferModel ) ;
2018-07-04 23:15:31 +08:00
CV_Error ( Error : : StsError , " Cannot determine an origin framework with a name " + framework ) ;
}
2018-03-17 00:27:04 +08:00
Net readNetFromModelOptimizer ( const String & xml , const String & bin )
{
return Net : : readFromModelOptimizer ( xml , bin ) ;
}
2019-11-27 22:31:38 +08:00
Net readNetFromModelOptimizer ( const std : : vector < uchar > & bufferCfg , const std : : vector < uchar > & bufferModel )
{
return Net : : readFromModelOptimizer ( bufferCfg , bufferModel ) ;
}
Net readNetFromModelOptimizer (
const uchar * bufferModelConfigPtr , size_t bufferModelConfigSize ,
const uchar * bufferWeightsPtr , size_t bufferWeightsSize
)
{
return Net : : readFromModelOptimizer (
bufferModelConfigPtr , bufferModelConfigSize ,
bufferWeightsPtr , bufferWeightsSize
) ;
}
2017-06-29 03:59:02 +08:00
CV__DNN_EXPERIMENTAL_NS_END
} } // namespace