2018-03-07 00:29:23 +08:00
|
|
|
import cv2 as cv
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
|
2018-09-20 22:59:04 +08:00
|
|
|
from common import *
|
|
|
|
|
2024-11-08 13:55:46 +08:00
|
|
|
def help():
|
|
|
|
print(
|
|
|
|
'''
|
|
|
|
Firstly, download required models using `download_models.py` (if not already done). Set environment variable OPENCV_DOWNLOAD_CACHE_DIR to specify where models should be downloaded. Also, point OPENCV_SAMPLES_DATA_PATH to opencv/samples/data.\n"\n
|
|
|
|
|
|
|
|
To run:
|
|
|
|
python segmentation.py model_name(e.g. u2netp) --input=path/to/your/input/image/or/video (don't give --input flag if want to use device camera)
|
|
|
|
|
|
|
|
Model path can also be specified using --model argument
|
|
|
|
'''
|
|
|
|
)
|
|
|
|
|
|
|
|
def get_args_parser(func_args):
|
|
|
|
backends = ("default", "openvino", "opencv", "vkcom", "cuda")
|
|
|
|
targets = ("cpu", "opencl", "opencl_fp16", "ncs2_vpu", "hddl_vpu", "vulkan", "cuda", "cuda_fp16")
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(add_help=False)
|
|
|
|
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
|
|
|
help='An optional path to file with preprocessing parameters.')
|
|
|
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
|
|
|
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
|
|
|
|
'An every color is represented with three values from 0 to 255 in BGR channels order.')
|
|
|
|
parser.add_argument('--backend', default="default", type=str, choices=backends,
|
2018-03-07 00:29:23 +08:00
|
|
|
help="Choose one of computation backends: "
|
2024-11-08 13:55:46 +08:00
|
|
|
"default: automatically (by default), "
|
|
|
|
"openvino: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
|
|
"opencv: OpenCV implementation, "
|
|
|
|
"vkcom: VKCOM, "
|
|
|
|
"cuda: CUDA, "
|
|
|
|
"webnn: WebNN")
|
|
|
|
parser.add_argument('--target', default="cpu", type=str, choices=targets,
|
|
|
|
help="Choose one of target computation devices: "
|
|
|
|
"cpu: CPU target (by default), "
|
|
|
|
"opencl: OpenCL, "
|
|
|
|
"opencl_fp16: OpenCL fp16 (half-float precision), "
|
|
|
|
"ncs2_vpu: NCS2 VPU, "
|
|
|
|
"hddl_vpu: HDDL VPU, "
|
|
|
|
"vulkan: Vulkan, "
|
|
|
|
"cuda: CUDA, "
|
|
|
|
"cuda_fp16: CUDA fp16 (half-float preprocess)")
|
|
|
|
|
|
|
|
args, _ = parser.parse_known_args()
|
|
|
|
add_preproc_args(args.zoo, parser, 'segmentation')
|
|
|
|
parser = argparse.ArgumentParser(parents=[parser],
|
|
|
|
description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
|
|
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
|
|
return parser.parse_args(func_args)
|
|
|
|
|
|
|
|
def showLegend(labels, colors, legend):
|
|
|
|
if not labels is None and legend is None:
|
2018-03-07 00:29:23 +08:00
|
|
|
blockHeight = 30
|
2024-11-08 13:55:46 +08:00
|
|
|
assert(len(labels) == len(colors))
|
2018-03-07 00:29:23 +08:00
|
|
|
|
|
|
|
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
|
2024-11-08 13:55:46 +08:00
|
|
|
for i in range(len(labels)):
|
2018-03-07 00:29:23 +08:00
|
|
|
block = legend[i * blockHeight:(i + 1) * blockHeight]
|
|
|
|
block[:,:] = colors[i]
|
2024-11-08 13:55:46 +08:00
|
|
|
cv.putText(block, labels[i], (0, blockHeight//2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
|
2018-03-07 00:29:23 +08:00
|
|
|
|
2024-11-08 13:55:46 +08:00
|
|
|
cv.namedWindow('Legend', cv.WINDOW_AUTOSIZE)
|
2018-03-07 00:29:23 +08:00
|
|
|
cv.imshow('Legend', legend)
|
2024-11-08 13:55:46 +08:00
|
|
|
labels = None
|
|
|
|
|
|
|
|
def main(func_args=None):
|
|
|
|
args = get_args_parser(func_args)
|
|
|
|
if args.alias is None or hasattr(args, 'help'):
|
|
|
|
help()
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
args.model = findModel(args.model, args.sha1)
|
|
|
|
if args.labels is not None:
|
|
|
|
args.labels = findFile(args.labels)
|
|
|
|
|
|
|
|
np.random.seed(324)
|
|
|
|
|
|
|
|
stdSize = 0.8
|
|
|
|
stdWeight = 2
|
|
|
|
stdImgSize = 512
|
|
|
|
imgWidth = -1 # Initialization
|
|
|
|
fontSize = 1.5
|
|
|
|
fontThickness = 1
|
|
|
|
|
|
|
|
# Load names of labels
|
|
|
|
labels = None
|
|
|
|
if args.labels:
|
|
|
|
with open(args.labels, 'rt') as f:
|
|
|
|
labels = f.read().rstrip('\n').split('\n')
|
|
|
|
|
|
|
|
# Load colors
|
|
|
|
colors = None
|
|
|
|
if args.colors:
|
|
|
|
with open(args.colors, 'rt') as f:
|
|
|
|
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
|
|
|
|
|
|
|
|
# Load a network
|
|
|
|
engine = cv.dnn.ENGINE_AUTO
|
|
|
|
if args.backend != "default" or args.target != "cpu":
|
|
|
|
engine = cv.dnn.ENGINE_CLASSIC
|
|
|
|
net = cv.dnn.readNetFromONNX(args.model, engine)
|
|
|
|
net.setPreferableBackend(get_backend_id(args.backend))
|
|
|
|
net.setPreferableTarget(get_target_id(args.target))
|
|
|
|
|
|
|
|
winName = 'Deep learning semantic segmentation in OpenCV'
|
|
|
|
cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
|
|
|
|
|
|
|
|
cap = cv.VideoCapture(cv.samples.findFile(args.input) if args.input else 0)
|
2024-11-18 22:17:05 +08:00
|
|
|
if not cap.isOpened():
|
|
|
|
print("Failed to open the input video")
|
|
|
|
exit(-1)
|
|
|
|
|
2024-11-08 13:55:46 +08:00
|
|
|
legend = None
|
|
|
|
while cv.waitKey(1) < 0:
|
|
|
|
hasFrame, frame = cap.read()
|
|
|
|
if not hasFrame:
|
|
|
|
cv.waitKey()
|
|
|
|
break
|
|
|
|
if imgWidth == -1:
|
|
|
|
imgWidth = max(frame.shape[:2])
|
|
|
|
fontSize = min(fontSize, (stdSize*imgWidth)/stdImgSize)
|
|
|
|
fontThickness = max(fontThickness,(stdWeight*imgWidth)//stdImgSize)
|
|
|
|
|
|
|
|
cv.imshow("Original Image", frame)
|
|
|
|
frameHeight = frame.shape[0]
|
|
|
|
frameWidth = frame.shape[1]
|
|
|
|
# Create a 4D blob from a frame.
|
|
|
|
inpWidth = args.width if args.width else frameWidth
|
|
|
|
inpHeight = args.height if args.height else frameHeight
|
|
|
|
|
|
|
|
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
|
|
|
|
net.setInput(blob)
|
|
|
|
|
|
|
|
if args.alias == 'u2netp':
|
|
|
|
output = net.forward(net.getUnconnectedOutLayersNames())
|
|
|
|
pred = output[0][0, 0, :, :]
|
|
|
|
mask = (pred * 255).astype(np.uint8)
|
|
|
|
mask = cv.resize(mask, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_AREA)
|
|
|
|
# Create overlays for foreground and background
|
|
|
|
foreground_overlay = np.zeros_like(frame, dtype=np.uint8)
|
|
|
|
# Set foreground (object) to red and background to blue
|
|
|
|
foreground_overlay[:, :, 2] = mask # Red foreground
|
|
|
|
# Blend the overlays with the original frame
|
|
|
|
frame = cv.addWeighted(frame, 0.25, foreground_overlay, 0.75, 0)
|
|
|
|
else:
|
|
|
|
score = net.forward()
|
|
|
|
|
|
|
|
numClasses = score.shape[1]
|
|
|
|
height = score.shape[2]
|
|
|
|
width = score.shape[3]
|
|
|
|
# Draw segmentation
|
|
|
|
if not colors:
|
|
|
|
# Generate colors
|
|
|
|
colors = [np.array([0, 0, 0], np.uint8)]
|
|
|
|
for i in range(1, numClasses):
|
|
|
|
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
|
|
|
|
classIds = np.argmax(score[0], axis=0)
|
|
|
|
segm = np.stack([colors[idx] for idx in classIds.flatten()])
|
|
|
|
segm = segm.reshape(height, width, 3)
|
|
|
|
|
|
|
|
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
|
|
|
|
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
|
|
|
|
|
|
|
|
showLegend(labels, colors, legend)
|
|
|
|
|
|
|
|
# Put efficiency information.
|
|
|
|
t, _ = net.getPerfProfile()
|
|
|
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
|
|
|
labelSize, _ = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, fontSize, fontThickness)
|
|
|
|
cv.rectangle(frame, (0, 0), (labelSize[0]+10, labelSize[1]), (255,255,255), cv.FILLED)
|
|
|
|
cv.putText(frame, label, (10, int(25*fontSize)), cv.FONT_HERSHEY_SIMPLEX, fontSize, (0, 0, 0), fontThickness)
|
|
|
|
|
|
|
|
cv.imshow(winName, frame)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|