opencv/modules/objdetect/src/qrcode.cpp

1092 lines
39 KiB
C++
Raw Normal View History

2018-06-27 21:37:10 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "opencv2/objdetect.hpp"
2018-08-18 00:01:02 +08:00
#include "opencv2/calib3d.hpp"
#ifdef HAVE_QUIRC
#include "quirc.h"
#endif
2018-06-27 21:37:10 +08:00
#include <limits>
#include <cmath>
#include <iostream>
2018-08-18 00:01:02 +08:00
#include <queue>
2018-06-27 21:37:10 +08:00
namespace cv
{
2018-07-11 01:24:09 +08:00
using std::vector;
class QRDetect
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
public:
void init(const Mat& src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
2018-06-27 21:37:10 +08:00
bool localization();
bool computeTransformationPoints();
2018-06-27 21:37:10 +08:00
Mat getBinBarcode() { return bin_barcode; }
Mat getStraightBarcode() { return straight_barcode; }
2018-07-11 01:24:09 +08:00
vector<Point2f> getTransformationPoints() { return transformation_points; }
2018-08-18 00:01:02 +08:00
static Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2);
2018-07-11 01:24:09 +08:00
protected:
vector<Vec3d> searchHorizontalLines();
vector<Point2f> separateVerticalLines(const vector<Vec3d> &list_lines);
2018-07-11 01:24:09 +08:00
void fixationPoints(vector<Point2f> &local_point);
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
bool testBypassRoute(vector<Point2f> hull, int start, int finish);
2018-08-01 22:49:43 +08:00
inline double getCosVectors(Point2f a, Point2f b, Point2f c);
2018-07-11 01:24:09 +08:00
Mat barcode, bin_barcode, straight_barcode;
vector<Point2f> localization_points, transformation_points;
double eps_vertical, eps_horizontal, coeff_expansion;
2018-06-27 21:37:10 +08:00
};
2018-07-11 01:24:09 +08:00
void QRDetect::init(const Mat& src, double eps_vertical_, double eps_horizontal_)
2018-06-27 21:37:10 +08:00
{
CV_Assert(!src.empty());
const double min_side = std::min(src.size().width, src.size().height);
2018-07-11 01:24:09 +08:00
if (min_side < 512.0)
{
coeff_expansion = 512.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
2018-07-11 01:24:09 +08:00
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
2018-07-11 01:24:09 +08:00
}
else
{
coeff_expansion = 1.0;
barcode = src;
}
2018-06-27 21:37:10 +08:00
eps_vertical = eps_vertical_;
eps_horizontal = eps_horizontal_;
adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
2018-08-18 00:01:02 +08:00
2018-06-27 21:37:10 +08:00
}
vector<Vec3d> QRDetect::searchHorizontalLines()
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
vector<Vec3d> result;
const int height_bin_barcode = bin_barcode.rows;
const int width_bin_barcode = bin_barcode.cols;
const size_t test_lines_size = 5;
double test_lines[test_lines_size];
const size_t count_pixels_position = 1024;
size_t pixels_position[count_pixels_position];
size_t index = 0;
for (int y = 0; y < height_bin_barcode; y++)
2018-06-27 21:37:10 +08:00
{
const uint8_t *bin_barcode_row = bin_barcode.ptr<uint8_t>(y);
2018-06-27 21:37:10 +08:00
int pos = 0;
for (; pos < width_bin_barcode; pos++) { if (bin_barcode_row[pos] == 0) break; }
if (pos == width_bin_barcode) { continue; }
2018-06-27 21:37:10 +08:00
index = 0;
pixels_position[index] = pixels_position[index + 1] = pixels_position[index + 2] = pos;
index +=3;
2018-06-27 21:37:10 +08:00
uint8_t future_pixel = 255;
for (int x = pos; x < width_bin_barcode; x++)
{
if (bin_barcode_row[x] == future_pixel)
2018-06-27 21:37:10 +08:00
{
future_pixel = 255 - future_pixel;
pixels_position[index] = x;
index++;
2018-06-27 21:37:10 +08:00
}
}
pixels_position[index] = width_bin_barcode - 1;
index++;
for (size_t i = 2; i < index - 4; i+=2)
{
test_lines[0] = static_cast<double>(pixels_position[i - 1] - pixels_position[i - 2]);
test_lines[1] = static_cast<double>(pixels_position[i ] - pixels_position[i - 1]);
test_lines[2] = static_cast<double>(pixels_position[i + 1] - pixels_position[i ]);
test_lines[3] = static_cast<double>(pixels_position[i + 2] - pixels_position[i + 1]);
test_lines[4] = static_cast<double>(pixels_position[i + 3] - pixels_position[i + 2]);
2018-06-27 21:37:10 +08:00
double length = 0.0, weight = 0.0;
2018-06-27 21:37:10 +08:00
for (size_t j = 0; j < test_lines_size; j++) { length += test_lines[j]; }
2018-06-27 21:37:10 +08:00
if (length == 0) { continue; }
for (size_t j = 0; j < test_lines_size; j++)
{
if (j == 2) { weight += fabs((test_lines[j] / length) - 3.0/7.0); }
else { weight += fabs((test_lines[j] / length) - 1.0/7.0); }
}
2018-06-27 21:37:10 +08:00
if (weight < eps_vertical)
{
Vec3d line;
line[0] = static_cast<double>(pixels_position[i - 2]);
line[1] = y;
line[2] = length;
result.push_back(line);
2018-06-27 21:37:10 +08:00
}
}
}
return result;
}
vector<Point2f> QRDetect::separateVerticalLines(const vector<Vec3d> &list_lines)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
vector<Vec3d> result;
2018-06-27 21:37:10 +08:00
int temp_length = 0;
uint8_t next_pixel;
2018-07-11 01:24:09 +08:00
vector<double> test_lines;
2018-06-27 21:37:10 +08:00
2018-06-27 21:37:10 +08:00
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
{
const int x = cvRound(list_lines[pnt][0] + list_lines[pnt][2] * 0.5);
const int y = cvRound(list_lines[pnt][1]);
// --------------- Search vertical up-lines --------------- //
2018-06-27 21:37:10 +08:00
test_lines.clear();
uint8_t future_pixel_up = 255;
2018-06-27 21:37:10 +08:00
for (int j = y; j < bin_barcode.rows - 1; j++)
2018-06-27 21:37:10 +08:00
{
next_pixel = bin_barcode.at<uint8_t>(j + 1, x);
2018-06-27 21:37:10 +08:00
temp_length++;
if (next_pixel == future_pixel_up)
2018-06-27 21:37:10 +08:00
{
future_pixel_up = 255 - future_pixel_up;
2018-06-27 21:37:10 +08:00
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 3) { break; }
}
}
// --------------- Search vertical down-lines --------------- //
2018-06-27 21:37:10 +08:00
uint8_t future_pixel_down = 255;
2018-06-27 21:37:10 +08:00
for (int j = y; j >= 1; j--)
{
next_pixel = bin_barcode.at<uint8_t>(j - 1, x);
2018-06-27 21:37:10 +08:00
temp_length++;
if (next_pixel == future_pixel_down)
2018-06-27 21:37:10 +08:00
{
future_pixel_down = 255 - future_pixel_down;
2018-06-27 21:37:10 +08:00
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 6) { break; }
}
}
// --------------- Compute vertical lines --------------- //
2018-06-27 21:37:10 +08:00
if (test_lines.size() == 6)
{
2018-07-11 01:24:09 +08:00
double length = 0.0, weight = 0.0;
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
CV_Assert(length > 0);
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i % 3 == 0) { weight += fabs((test_lines[i] / length) - 3.0/14.0); }
else { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); }
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
if(weight < eps_horizontal)
{
result.push_back(list_lines[pnt]);
}
2018-06-27 21:37:10 +08:00
}
}
2018-07-11 01:24:09 +08:00
vector<Point2f> point2f_result;
for (size_t i = 0; i < result.size(); i++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
point2f_result.push_back(
Point2f(static_cast<float>(result[i][0] + result[i][2] * 0.5),
static_cast<float>(result[i][1])));
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
return point2f_result;
2018-06-27 21:37:10 +08:00
}
void QRDetect::fixationPoints(vector<Point2f> &local_point)
2018-06-27 21:37:10 +08:00
{
2018-06-27 21:37:10 +08:00
double cos_angles[3], norm_triangl[3];
norm_triangl[0] = norm(local_point[1] - local_point[2]);
norm_triangl[1] = norm(local_point[0] - local_point[2]);
norm_triangl[2] = norm(local_point[1] - local_point[0]);
cos_angles[0] = (norm_triangl[1] * norm_triangl[1] + norm_triangl[2] * norm_triangl[2]
- norm_triangl[0] * norm_triangl[0]) / (2 * norm_triangl[1] * norm_triangl[2]);
cos_angles[1] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[2] * norm_triangl[2]
- norm_triangl[1] * norm_triangl[1]) / (2 * norm_triangl[0] * norm_triangl[2]);
cos_angles[2] = (norm_triangl[0] * norm_triangl[0] + norm_triangl[1] * norm_triangl[1]
- norm_triangl[2] * norm_triangl[2]) / (2 * norm_triangl[0] * norm_triangl[1]);
const double angle_barrier = 0.85;
if (fabs(cos_angles[0]) > angle_barrier || fabs(cos_angles[1]) > angle_barrier || fabs(cos_angles[2]) > angle_barrier)
{
local_point.clear();
return;
}
2018-07-11 01:24:09 +08:00
size_t i_min_cos =
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
2018-07-11 01:24:09 +08:00
size_t index_max = 0;
double max_area = std::numeric_limits<double>::min();
for (size_t i = 0; i < local_point.size(); i++)
{
const size_t current_index = i % 3;
const size_t left_index = (i + 1) % 3;
const size_t right_index = (i + 2) % 3;
const Point2f current_point(local_point[current_index]),
left_point(local_point[left_index]), right_point(local_point[right_index]),
central_point(intersectionLines(current_point,
Point2f(static_cast<float>((local_point[left_index].x + local_point[right_index].x) * 0.5),
static_cast<float>((local_point[left_index].y + local_point[right_index].y) * 0.5)),
Point2f(0, static_cast<float>(bin_barcode.rows - 1)),
Point2f(static_cast<float>(bin_barcode.cols - 1),
static_cast<float>(bin_barcode.rows - 1))));
vector<Point2f> list_area_pnt;
list_area_pnt.push_back(current_point);
vector<LineIterator> list_line_iter;
list_line_iter.push_back(LineIterator(bin_barcode, current_point, left_point));
list_line_iter.push_back(LineIterator(bin_barcode, current_point, central_point));
list_line_iter.push_back(LineIterator(bin_barcode, current_point, right_point));
2018-07-11 01:24:09 +08:00
for (size_t k = 0; k < list_line_iter.size(); k++)
{
uint8_t future_pixel = 255, count_index = 0;
for(int j = 0; j < list_line_iter[k].count; j++, ++list_line_iter[k])
{
if (list_line_iter[k].pos().x >= bin_barcode.cols ||
list_line_iter[k].pos().y >= bin_barcode.rows) { break; }
const uint8_t value = bin_barcode.at<uint8_t>(list_line_iter[k].pos());
if (value == future_pixel)
{
future_pixel = 255 - future_pixel;
count_index++;
if (count_index == 3)
{
list_area_pnt.push_back(list_line_iter[k].pos());
break;
}
}
}
}
const double temp_check_area = contourArea(list_area_pnt);
if (temp_check_area > max_area)
{
index_max = current_index;
max_area = temp_check_area;
}
}
if (index_max == i_min_cos) { std::swap(local_point[0], local_point[index_max]); }
else { local_point.clear(); return; }
const Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
2018-07-11 01:24:09 +08:00
Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
if( determinant(m) > 0 )
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
std::swap(local_point[1], local_point[2]);
2018-06-27 21:37:10 +08:00
}
}
bool QRDetect::localization()
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
Point2f begin, end;
vector<Vec3d> list_lines_x = searchHorizontalLines();
2018-07-11 01:24:09 +08:00
if( list_lines_x.empty() ) { return false; }
vector<Point2f> list_lines_y = separateVerticalLines(list_lines_x);
if( list_lines_y.size() < 3 ) { return false; }
2018-07-11 01:24:09 +08:00
vector<Point2f> centers;
Mat labels;
kmeans(list_lines_y, 3, labels,
TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1),
2018-07-11 01:24:09 +08:00
3, KMEANS_PP_CENTERS, localization_points);
fixationPoints(localization_points);
2018-06-27 21:37:10 +08:00
if (localization_points.size() != 3) { return false; }
2018-07-11 01:24:09 +08:00
if (coeff_expansion > 1.0)
2018-06-27 21:37:10 +08:00
{
const int width = cvRound(bin_barcode.size().width / coeff_expansion);
const int height = cvRound(bin_barcode.size().height / coeff_expansion);
2018-07-11 01:24:09 +08:00
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size, 0, 0, INTER_LINEAR);
2018-07-11 01:24:09 +08:00
bin_barcode = intermediate.clone();
for (size_t i = 0; i < localization_points.size(); i++)
{
localization_points[i] /= coeff_expansion;
}
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
for (size_t i = 0; i < localization_points.size(); i++)
{
for (size_t j = i + 1; j < localization_points.size(); j++)
{
if (norm(localization_points[i] - localization_points[j]) < 10)
{
return false;
}
}
}
2018-06-27 21:37:10 +08:00
return true;
2018-07-11 01:24:09 +08:00
2018-06-27 21:37:10 +08:00
}
bool QRDetect::computeTransformationPoints()
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
if (localization_points.size() != 3) { return false; }
2018-06-27 21:37:10 +08:00
2018-07-11 01:24:09 +08:00
vector<Point> locations, non_zero_elem[3], newHull;
vector<Point2f> new_non_zero_elem[3];
for (size_t i = 0; i < 3; i++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
uint8_t next_pixel, future_pixel = 255;
int count_test_lines = 0, index = cvRound(localization_points[i].x);
2018-07-11 01:24:09 +08:00
for (; index < bin_barcode.cols - 1; index++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
next_pixel = bin_barcode.at<uint8_t>(
cvRound(localization_points[i].y), index + 1);
2018-07-11 01:24:09 +08:00
if (next_pixel == future_pixel)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
future_pixel = 255 - future_pixel;
count_test_lines++;
if (count_test_lines == 2)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
floodFill(bin_barcode, mask,
Point(index + 1, cvRound(localization_points[i].y)), 255,
2018-07-11 01:24:09 +08:00
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
break;
2018-06-27 21:37:10 +08:00
}
}
}
2018-07-11 01:24:09 +08:00
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
findNonZero(mask_roi, non_zero_elem[i]);
newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
}
convexHull(Mat(newHull), locations);
for (size_t i = 0; i < locations.size(); i++)
{
for (size_t j = 0; j < 3; j++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
for (size_t k = 0; k < non_zero_elem[j].size(); k++)
{
if (locations[i] == non_zero_elem[j][k])
{
new_non_zero_elem[j].push_back(locations[i]);
}
}
2018-06-27 21:37:10 +08:00
}
}
2018-07-11 01:24:09 +08:00
double pentagon_diag_norm = -1;
Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
if (temp_norm > pentagon_diag_norm)
{
down_left_edge_point = new_non_zero_elem[1][i];
up_right_edge_point = new_non_zero_elem[2][j];
pentagon_diag_norm = temp_norm;
}
2018-06-27 21:37:10 +08:00
}
}
2018-08-06 01:55:15 +08:00
2018-07-11 01:24:09 +08:00
if (down_left_edge_point == Point2f(0, 0) ||
2018-08-06 01:55:15 +08:00
up_right_edge_point == Point2f(0, 0) ||
new_non_zero_elem[0].size() == 0) { return false; }
2018-06-27 21:37:10 +08:00
2018-07-11 01:24:09 +08:00
double max_area = -1;
up_left_edge_point = new_non_zero_elem[0][0];
2018-08-06 01:55:15 +08:00
2018-07-11 01:24:09 +08:00
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
{
2018-08-01 22:49:43 +08:00
vector<Point2f> list_edge_points;
list_edge_points.push_back(new_non_zero_elem[0][i]);
list_edge_points.push_back(down_left_edge_point);
list_edge_points.push_back(up_right_edge_point);
2018-08-06 01:55:15 +08:00
double temp_area = fabs(contourArea(list_edge_points));
2018-07-11 01:24:09 +08:00
if (max_area < temp_area)
{
up_left_edge_point = new_non_zero_elem[0][i];
max_area = temp_area;
}
}
Point2f down_max_delta_point, up_max_delta_point;
double norm_down_max_delta = -1, norm_up_max_delta = -1;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i])
+ norm(down_left_edge_point - new_non_zero_elem[1][i]);
if (norm_down_max_delta < temp_norm_delta)
{
down_max_delta_point = new_non_zero_elem[1][i];
norm_down_max_delta = temp_norm_delta;
}
}
2018-08-06 01:55:15 +08:00
2018-07-11 01:24:09 +08:00
for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i])
+ norm(up_right_edge_point - new_non_zero_elem[2][i]);
if (norm_up_max_delta < temp_norm_delta)
{
up_max_delta_point = new_non_zero_elem[2][i];
norm_up_max_delta = temp_norm_delta;
}
}
transformation_points.push_back(down_left_edge_point);
transformation_points.push_back(up_left_edge_point);
transformation_points.push_back(up_right_edge_point);
transformation_points.push_back(
intersectionLines(down_left_edge_point, down_max_delta_point,
up_right_edge_point, up_max_delta_point));
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points);
transformation_points = quadrilateral;
return true;
2018-06-27 21:37:10 +08:00
}
Point2f QRDetect::intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
Point2f result_square_angle(
((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) -
(b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x)),
((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) -
(b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x))
);
2018-06-27 21:37:10 +08:00
return result_square_angle;
}
2018-07-11 01:24:09 +08:00
// test function (if true then ------> else <------ )
bool QRDetect::testBypassRoute(vector<Point2f> hull, int start, int finish)
2018-07-11 01:24:09 +08:00
{
int index_hull = start, next_index_hull, hull_size = (int)hull.size();
double test_length[2] = { 0.0, 0.0 };
do
{
next_index_hull = index_hull + 1;
if (next_index_hull == hull_size) { next_index_hull = 0; }
test_length[0] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
index_hull = start;
do
{
next_index_hull = index_hull - 1;
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
test_length[1] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
if (test_length[0] < test_length[1]) { return true; } else { return false; }
}
vector<Point2f> QRDetect::getQuadrilateral(vector<Point2f> angle_list)
2018-06-27 21:37:10 +08:00
{
size_t angle_size = angle_list.size();
uint8_t value, mask_value;
2018-07-11 01:24:09 +08:00
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
Mat fill_bin_barcode = bin_barcode.clone();
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < angle_size; i++)
{
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size],
angle_list[(i + 1) % angle_size]);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
value = bin_barcode.at<uint8_t>(line_iter.pos());
mask_value = mask.at<uint8_t>(line_iter.pos() + Point(1, 1));
if (value == 0 && mask_value == 0)
{
2018-07-11 01:24:09 +08:00
floodFill(fill_bin_barcode, mask, line_iter.pos(), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
2018-06-27 21:37:10 +08:00
}
}
}
2018-07-11 01:24:09 +08:00
vector<Point> locations;
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
2018-06-27 21:37:10 +08:00
2018-08-18 00:01:02 +08:00
findNonZero(mask_roi, locations);
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < angle_list.size(); i++)
{
int x = cvRound(angle_list[i].x);
int y = cvRound(angle_list[i].y);
2018-07-11 01:24:09 +08:00
locations.push_back(Point(x, y));
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
vector<Point> integer_hull;
convexHull(Mat(locations), integer_hull);
int hull_size = (int)integer_hull.size();
vector<Point2f> hull(hull_size);
for (int i = 0; i < hull_size; i++)
2018-06-27 21:37:10 +08:00
{
float x = saturate_cast<float>(integer_hull[i].x);
float y = saturate_cast<float>(integer_hull[i].y);
2018-07-11 01:24:09 +08:00
hull[i] = Point2f(x, y);
2018-06-27 21:37:10 +08:00
}
2018-08-06 01:55:15 +08:00
const double experimental_area = fabs(contourArea(hull));
2018-07-11 01:24:09 +08:00
vector<Point2f> result_hull_point(angle_size);
double min_norm;
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < angle_size; i++)
{
min_norm = std::numeric_limits<double>::max();
Point closest_pnt;
2018-07-11 01:24:09 +08:00
for (int j = 0; j < hull_size; j++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
double temp_norm = norm(hull[j] - angle_list[i]);
if (min_norm > temp_norm)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
min_norm = temp_norm;
closest_pnt = hull[j];
2018-06-27 21:37:10 +08:00
}
}
result_hull_point[i] = closest_pnt;
}
2018-07-11 01:24:09 +08:00
int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0;
2018-06-27 21:37:10 +08:00
for (int i = 0; i < hull_size; i++)
{
2018-07-11 01:24:09 +08:00
if (result_hull_point[2] == hull[i]) { start_line[0] = i; }
if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; }
if (result_hull_point[0] == hull[i]) { finish_line[1] = i; }
if (result_hull_point[3] == hull[i]) { unstable_pnt = i; }
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull;
2018-06-27 21:37:10 +08:00
Point result_side_begin[4], result_side_end[4];
2018-07-11 01:24:09 +08:00
bool bypass_orientation = testBypassRoute(hull, start_line[0], finish_line[0]);
2018-06-27 21:37:10 +08:00
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[0];
do
{
2018-07-11 01:24:09 +08:00
if (bypass_orientation) { next_index_hull = index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
2018-07-11 01:24:09 +08:00
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[1]) >
norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
2018-06-27 21:37:10 +08:00
Point intrsc_line_hull =
2018-07-11 01:24:09 +08:00
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[1], angle_list[2]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
2018-06-27 21:37:10 +08:00
if (min_norm > temp_norm &&
2018-07-11 01:24:09 +08:00
norm(hull[index_hull] - hull[next_index_hull]) >
2018-08-01 22:49:43 +08:00
norm(angle_list[1] - angle_list[2]) * 0.1)
2018-06-27 21:37:10 +08:00
{
min_norm = temp_norm;
2018-07-11 01:24:09 +08:00
result_side_begin[0] = hull[index_hull];
result_side_end[0] = hull[next_index_hull];
2018-06-27 21:37:10 +08:00
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[0]);
if (min_norm == std::numeric_limits<double>::max())
{
2018-07-11 01:24:09 +08:00
result_side_begin[0] = angle_list[1];
result_side_end[0] = angle_list[2];
2018-06-27 21:37:10 +08:00
}
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[1];
2018-07-11 01:24:09 +08:00
bypass_orientation = testBypassRoute(hull, start_line[1], finish_line[1]);
2018-06-27 21:37:10 +08:00
do
{
2018-07-11 01:24:09 +08:00
if (bypass_orientation) { next_index_hull = index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
2018-07-11 01:24:09 +08:00
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[0]) >
norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0];
2018-06-27 21:37:10 +08:00
Point intrsc_line_hull =
2018-07-11 01:24:09 +08:00
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[0], angle_list[1]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
2018-06-27 21:37:10 +08:00
if (min_norm > temp_norm &&
2018-07-11 01:24:09 +08:00
norm(hull[index_hull] - hull[next_index_hull]) >
2018-08-01 22:49:43 +08:00
norm(angle_list[0] - angle_list[1]) * 0.05)
2018-06-27 21:37:10 +08:00
{
min_norm = temp_norm;
2018-07-11 01:24:09 +08:00
result_side_begin[1] = hull[index_hull];
result_side_end[1] = hull[next_index_hull];
2018-06-27 21:37:10 +08:00
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[1]);
if (min_norm == std::numeric_limits<double>::max())
{
2018-07-11 01:24:09 +08:00
result_side_begin[1] = angle_list[0];
result_side_end[1] = angle_list[1];
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
bypass_orientation = testBypassRoute(hull, start_line[0], unstable_pnt);
const bool extra_bypass_orientation = testBypassRoute(hull, finish_line[1], unstable_pnt);
2018-06-27 21:37:10 +08:00
2018-07-11 01:24:09 +08:00
vector<Point2f> result_angle_list(4), test_result_angle_list(4);
double min_diff_area = std::numeric_limits<double>::max();
2018-06-27 21:37:10 +08:00
index_hull = start_line[0];
const double standart_norm = std::max(
norm(result_side_begin[0] - result_side_end[0]),
norm(result_side_begin[1] - result_side_end[1]));
2018-06-27 21:37:10 +08:00
do
{
2018-07-11 01:24:09 +08:00
if (bypass_orientation) { next_index_hull = index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
2018-08-01 22:49:43 +08:00
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1)
{ index_hull = next_index_hull; continue; }
2018-06-27 21:37:10 +08:00
extra_index_hull = finish_line[1];
do
{
2018-07-11 01:24:09 +08:00
if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { extra_next_index_hull = extra_index_hull - 1; }
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
2018-08-01 22:49:43 +08:00
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1)
{ extra_index_hull = extra_next_index_hull; continue; }
2018-06-27 21:37:10 +08:00
test_result_angle_list[0]
2018-07-11 01:24:09 +08:00
= intersectionLines(result_side_begin[0], result_side_end[0],
result_side_begin[1], result_side_end[1]);
2018-06-27 21:37:10 +08:00
test_result_angle_list[1]
2018-07-11 01:24:09 +08:00
= intersectionLines(result_side_begin[1], result_side_end[1],
hull[extra_index_hull], hull[extra_next_index_hull]);
2018-06-27 21:37:10 +08:00
test_result_angle_list[2]
2018-07-11 01:24:09 +08:00
= intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull],
hull[index_hull], hull[next_index_hull]);
2018-06-27 21:37:10 +08:00
test_result_angle_list[3]
2018-07-11 01:24:09 +08:00
= intersectionLines(hull[index_hull], hull[next_index_hull],
result_side_begin[0], result_side_end[0]);
const double test_diff_area
= fabs(fabs(contourArea(test_result_angle_list)) - experimental_area);
if (min_diff_area > test_diff_area)
2018-06-27 21:37:10 +08:00
{
min_diff_area = test_diff_area;
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_result_angle_list.size(); i++)
{
result_angle_list[i] = test_result_angle_list[i];
}
}
extra_index_hull = extra_next_index_hull;
}
while(extra_index_hull != unstable_pnt);
index_hull = next_index_hull;
}
while(index_hull != unstable_pnt);
2018-08-06 01:55:15 +08:00
// check label points
2018-08-06 01:55:15 +08:00
if (norm(result_angle_list[0] - angle_list[1]) > 2) { result_angle_list[0] = angle_list[1]; }
if (norm(result_angle_list[1] - angle_list[0]) > 2) { result_angle_list[1] = angle_list[0]; }
if (norm(result_angle_list[3] - angle_list[2]) > 2) { result_angle_list[3] = angle_list[2]; }
// check calculation point
if (norm(result_angle_list[2] - angle_list[3]) >
(norm(result_angle_list[0] - result_angle_list[1]) +
norm(result_angle_list[0] - result_angle_list[3])) * 0.5 )
{ result_angle_list[2] = angle_list[3]; }
2018-06-27 21:37:10 +08:00
return result_angle_list;
}
// / | b
// / |
// / |
// a/ | c
inline double QRDetect::getCosVectors(Point2f a, Point2f b, Point2f c)
2018-06-27 21:37:10 +08:00
{
2018-08-01 22:49:43 +08:00
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
struct QRCodeDetector::Impl
{
public:
Impl() { epsX = 0.2; epsY = 0.1; }
~Impl() {}
double epsX, epsY;
};
QRCodeDetector::QRCodeDetector() : p(new Impl) {}
QRCodeDetector::~QRCodeDetector() {}
void QRCodeDetector::setEpsX(double epsX) { p->epsX = epsX; }
void QRCodeDetector::setEpsY(double epsY) { p->epsY = epsY; }
bool QRCodeDetector::detect(InputArray in, OutputArray points) const
{
Mat inarr = in.getMat();
CV_Assert(!inarr.empty());
CV_Assert(inarr.type() == CV_8UC1);
QRDetect qrdet;
qrdet.init(inarr, p->epsX, p->epsY);
if (!qrdet.localization()) { return false; }
if (!qrdet.computeTransformationPoints()) { return false; }
vector<Point2f> pnts2f = qrdet.getTransformationPoints();
2018-07-11 01:24:09 +08:00
Mat(pnts2f).convertTo(points, points.fixedType() ? points.type() : CV_32FC2);
2018-06-27 21:37:10 +08:00
return true;
}
2018-08-18 00:01:02 +08:00
CV_EXPORTS bool detectQRCode(InputArray in, vector<Point> &points, double eps_x, double eps_y)
2018-07-11 01:24:09 +08:00
{
QRCodeDetector qrdetector;
qrdetector.setEpsX(eps_x);
qrdetector.setEpsY(eps_y);
return qrdetector.detect(in, points);
}
2018-08-18 00:01:02 +08:00
class QRDecode
{
public:
void init(const Mat &src, const vector<Point2f> &points);
Mat getIntermediateBarcode() { return intermediate; }
Mat getStraightBarcode() { return straight; }
size_t getVersion() { return version; }
std::string getDecodeInformation() { return result_info; }
bool fullDecodingProcess();
protected:
bool updatePerspective();
bool versionDefinition();
bool samplingForVersion();
bool decodingProcess();
Mat original, no_border_intermediate, intermediate, straight;
vector<Point2f> original_points;
std::string result_info;
uint8_t version, version_size;
float test_perspective_size;
};
void QRDecode::init(const Mat &src, const vector<Point2f> &points)
{
original = src.clone();
intermediate = Mat::zeros(src.size(), CV_8UC1);
original_points = points;
version = 0;
version_size = 0;
test_perspective_size = 251;
result_info = "";
}
bool QRDecode::updatePerspective()
{
const Point2f centerPt = QRDetect::intersectionLines(original_points[0], original_points[2],
original_points[1], original_points[3]);
if (cvIsNaN(centerPt.x) || cvIsNaN(centerPt.y))
return false;
2018-08-18 00:01:02 +08:00
const Size temporary_size(cvRound(test_perspective_size), cvRound(test_perspective_size));
vector<Point2f> perspective_points;
perspective_points.push_back(Point2f(0.f, 0.f));
perspective_points.push_back(Point2f(test_perspective_size, 0.f));
perspective_points.push_back(Point2f(test_perspective_size, test_perspective_size));
perspective_points.push_back(Point2f(0.f, test_perspective_size));
perspective_points.push_back(Point2f(test_perspective_size * 0.5f, test_perspective_size * 0.5f));
vector<Point2f> pts = original_points;
pts.push_back(centerPt);
Mat H = findHomography(pts, perspective_points);
Mat bin_original;
2018-08-18 00:01:02 +08:00
adaptiveThreshold(original, bin_original, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 83, 2);
Mat temp_intermediate;
2018-08-18 00:01:02 +08:00
warpPerspective(bin_original, temp_intermediate, H, temporary_size, INTER_NEAREST);
no_border_intermediate = temp_intermediate(Range(1, temp_intermediate.rows), Range(1, temp_intermediate.cols));
const int border = cvRound(0.1 * test_perspective_size);
const int borderType = BORDER_CONSTANT;
copyMakeBorder(no_border_intermediate, intermediate, border, border, border, border, borderType, Scalar(255));
return true;
}
inline Point computeOffset(const vector<Point>& v)
{
// compute the width/height of convex hull
Rect areaBox = boundingRect(v);
// compute the good offset
// the box is consisted by 7 steps
// to pick the middle of the stripe, it needs to be 1/14 of the size
const int cStep = 7 * 2;
Point offset = Point(areaBox.width, areaBox.height);
offset /= cStep;
return offset;
}
2018-08-18 00:01:02 +08:00
bool QRDecode::versionDefinition()
{
LineIterator line_iter(intermediate, Point2f(0, 0), Point2f(test_perspective_size, test_perspective_size));
Point black_point = Point(0, 0);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
const uint8_t value = intermediate.at<uint8_t>(line_iter.pos());
if (value == 0) { black_point = line_iter.pos(); break; }
}
Mat mask = Mat::zeros(intermediate.rows + 2, intermediate.cols + 2, CV_8UC1);
floodFill(intermediate, mask, black_point, 255, 0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
vector<Point> locations, non_zero_elem;
Mat mask_roi = mask(Range(1, intermediate.rows - 1), Range(1, intermediate.cols - 1));
findNonZero(mask_roi, non_zero_elem);
convexHull(Mat(non_zero_elem), locations);
Point offset = computeOffset(locations);
2018-08-18 00:01:02 +08:00
Point temp_remote = locations[0], remote_point;
const Point delta_diff = offset;
2018-08-18 00:01:02 +08:00
for (size_t i = 0; i < locations.size(); i++)
{
if (norm(black_point - temp_remote) <= norm(black_point - locations[i]))
2018-08-18 00:01:02 +08:00
{
const uint8_t value = intermediate.at<uint8_t>(temp_remote - delta_diff);
temp_remote = locations[i];
if (value == 0) { remote_point = temp_remote - delta_diff; }
else { remote_point = temp_remote - (delta_diff / 2); }
2018-08-18 00:01:02 +08:00
}
}
size_t transition_x = 0 , transition_y = 0;
uint8_t future_pixel = 255;
const uint8_t *intermediate_row = intermediate.ptr<uint8_t>(remote_point.y);
for(int i = remote_point.x; i < intermediate.cols; i++)
{
if (intermediate_row[i] == future_pixel)
{
future_pixel = 255 - future_pixel;
transition_x++;
}
}
future_pixel = 255;
for(int j = remote_point.y; j < intermediate.rows; j++)
{
const uint8_t value = intermediate.at<uint8_t>(Point(j, remote_point.x));
if (value == future_pixel)
{
future_pixel = 255 - future_pixel;
transition_y++;
}
}
version = saturate_cast<uint8_t>((std::min(transition_x, transition_y) - 1) * 0.25 - 1);
if ( !( 0 < version && version <= 40 ) ) { return false; }
version_size = 21 + (version - 1) * 4;
return true;
}
bool QRDecode::samplingForVersion()
{
const double multiplyingFactor = (version < 3) ? 1 :
(version == 3) ? 1.5 :
version * (5 + version - 4);
const Size newFactorSize(
cvRound(no_border_intermediate.size().width * multiplyingFactor),
cvRound(no_border_intermediate.size().height * multiplyingFactor));
Mat postIntermediate(newFactorSize, CV_8UC1);
resize(no_border_intermediate, postIntermediate, newFactorSize, 0, 0, INTER_AREA);
const int no_inter_rows = postIntermediate.rows;
const int no_inter_cols = postIntermediate.cols;
const int delta_rows = cvRound((no_inter_rows * 1.0) / version_size);
const int delta_cols = cvRound((no_inter_cols * 1.0) / version_size);
vector<double> listFrequencyElem;
for (int r = 0; r < no_inter_rows; r += delta_rows)
{
for (int c = 0; c < no_inter_cols; c += delta_cols)
{
Mat tile = postIntermediate(
Range(r, min(r + delta_rows, no_inter_rows)),
Range(c, min(c + delta_cols, no_inter_cols)));
const double frequencyElem = (countNonZero(tile) * 1.0) / tile.total();
listFrequencyElem.push_back(frequencyElem);
}
}
double dispersionEFE = std::numeric_limits<double>::max();
double experimentalFrequencyElem = 0;
for (double expVal = 0; expVal < 1; expVal+=0.001)
{
double testDispersionEFE = 0.0;
for (size_t i = 0; i < listFrequencyElem.size(); i++)
{
testDispersionEFE += (listFrequencyElem[i] - expVal) *
(listFrequencyElem[i] - expVal);
}
testDispersionEFE /= (listFrequencyElem.size() - 1);
if (dispersionEFE > testDispersionEFE)
{
dispersionEFE = testDispersionEFE;
experimentalFrequencyElem = expVal;
}
}
straight = Mat(Size(version_size, version_size), CV_8UC1, Scalar(0));
size_t k = 0;
for (int r = 0; r < no_inter_rows &&
k < listFrequencyElem.size() &&
floor((r * 1.0) / delta_rows) < version_size; r += delta_rows)
{
for (int c = 0; c < no_inter_cols &&
k < listFrequencyElem.size() &&
floor((c * 1.0) / delta_cols) < version_size; c += delta_cols, k++)
{
Mat tile = postIntermediate(
Range(r, min(r + delta_rows, no_inter_rows)),
Range(c, min(c + delta_cols, no_inter_cols)));
if (listFrequencyElem[k] < experimentalFrequencyElem) { tile.setTo(0); }
else
{
tile.setTo(255);
straight.at<uint8_t>(cvRound(floor((r * 1.0) / delta_rows)),
cvRound(floor((c * 1.0) / delta_cols))) = 255;
}
}
}
return true;
}
bool QRDecode::decodingProcess()
{
#ifdef HAVE_QUIRC
if (straight.empty()) { return false; }
quirc_code qr_code;
memset(&qr_code, 0, sizeof(qr_code));
qr_code.size = straight.size().width;
for (int x = 0; x < qr_code.size; x++)
{
for (int y = 0; y < qr_code.size; y++)
{
int position = y * qr_code.size + x;
qr_code.cell_bitmap[position >> 3]
|= straight.at<uint8_t>(y, x) ? 0 : (1 << (position & 7));
}
}
quirc_data qr_code_data;
quirc_decode_error_t errorCode = quirc_decode(&qr_code, &qr_code_data);
if (errorCode != 0) { return false; }
for (int i = 0; i < qr_code_data.payload_len; i++)
{
result_info += qr_code_data.payload[i];
}
return true;
#else
return false;
#endif
}
bool QRDecode::fullDecodingProcess()
{
#ifdef HAVE_QUIRC
if (!updatePerspective()) { return false; }
if (!versionDefinition()) { return false; }
if (!samplingForVersion()) { return false; }
if (!decodingProcess()) { return false; }
return true;
#else
std::cout << "Library QUIRC is not linked. No decoding is performed. Take it to the OpenCV repository." << std::endl;
return false;
#endif
}
CV_EXPORTS bool decodeQRCode(InputArray in, InputArray points, std::string &decoded_info, OutputArray straight_qrcode)
{
Mat inarr = in.getMat();
CV_Assert(!inarr.empty());
inarr.convertTo(inarr, CV_8UC1);
CV_Assert(points.isVector());
vector<Point2f> src_points;
points.copyTo(src_points);
CV_Assert(src_points.size() == 4);
CV_CheckGT(contourArea(src_points), 0.0, "Invalid QR code source points");
2018-08-18 00:01:02 +08:00
QRDecode qrdec;
qrdec.init(inarr, src_points);
bool exit_flag = qrdec.fullDecodingProcess();
decoded_info = qrdec.getDecodeInformation();
if (exit_flag && straight_qrcode.needed())
2018-08-18 00:01:02 +08:00
{
qrdec.getStraightBarcode().convertTo(straight_qrcode,
straight_qrcode.fixedType() ?
straight_qrcode.type() : CV_32FC2);
}
return exit_flag;
}
2018-06-27 21:37:10 +08:00
}