opencv/modules/objdetect/src/qrcode.cpp

751 lines
26 KiB
C++
Raw Normal View History

2018-06-27 21:37:10 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "opencv2/objdetect.hpp"
// #include "opencv2/calib3d.hpp"
#include <limits>
#include <cmath>
#include <iostream>
namespace cv
{
2018-07-11 01:24:09 +08:00
using std::vector;
2018-06-27 21:37:10 +08:00
class QRDecode
{
2018-07-11 01:24:09 +08:00
public:
void init(Mat src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
2018-06-27 21:37:10 +08:00
void binarization();
bool localization();
bool transformation();
Mat getBinBarcode() { return bin_barcode; }
Mat getStraightBarcode() { return straight_barcode; }
2018-07-11 01:24:09 +08:00
vector<Point2f> getTransformationPoints() { return transformation_points; }
protected:
bool computeTransformationPoints();
vector<Vec3d> searchVerticalLines();
vector<Point2f> separateHorizontalLines(vector<Vec3d> list_lines);
void fixationPoints(vector<Point2f> &local_point);
Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2);
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
bool testBypassRoute(vector<Point2f> hull, int start, int finish);
2018-08-01 22:49:43 +08:00
inline double getCosVectors(Point2f a, Point2f b, Point2f c);
2018-07-11 01:24:09 +08:00
Mat barcode, bin_barcode, straight_barcode;
vector<Point2f> localization_points, transformation_points;
double eps_vertical, eps_horizontal, coeff_expansion;
2018-06-27 21:37:10 +08:00
};
2018-07-11 01:24:09 +08:00
2018-06-27 21:37:10 +08:00
void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_)
{
2018-07-11 01:24:09 +08:00
double min_side = std::min(src.size().width, src.size().height);
if (min_side < 512.0)
{
coeff_expansion = 512.0 / min_side;
int width = static_cast<int>(src.size().width * coeff_expansion);
int height = static_cast<int>(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size);
}
else
{
coeff_expansion = 1.0;
barcode = src;
}
2018-06-27 21:37:10 +08:00
eps_vertical = eps_vertical_;
eps_horizontal = eps_horizontal_;
}
void QRDecode::binarization()
{
Mat filter_barcode;
GaussianBlur(barcode, filter_barcode, Size(3, 3), 0);
2018-08-01 22:49:43 +08:00
threshold(filter_barcode, bin_barcode, 100, 255, THRESH_BINARY + THRESH_OTSU);
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
vector<Vec3d> QRDecode::searchVerticalLines()
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
vector<Vec3d> result;
2018-06-27 21:37:10 +08:00
int temp_length = 0;
2018-07-11 01:24:09 +08:00
uint8_t next_pixel, future_pixel;
vector<double> test_lines;
2018-06-27 21:37:10 +08:00
for (int x = 0; x < bin_barcode.rows; x++)
{
for (int y = 0; y < bin_barcode.cols; y++)
{
if (bin_barcode.at<uint8_t>(x, y) > 0) { continue; }
// --------------- Search vertical lines --------------- //
test_lines.clear();
future_pixel = 255;
for (int i = x; i < bin_barcode.rows - 1; i++)
{
next_pixel = bin_barcode.at<uint8_t>(i + 1, y);
temp_length++;
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 5) { break; }
}
}
// --------------- Compute vertical lines --------------- //
if (test_lines.size() == 5)
{
2018-07-11 01:24:09 +08:00
double length = 0.0, weight = 0.0;
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
CV_Assert(length > 0);
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i == 2) { weight += fabs((test_lines[i] / length) - 3.0/7.0); }
else { weight += fabs((test_lines[i] / length) - 1.0/7.0); }
2018-06-27 21:37:10 +08:00
}
if (weight < eps_vertical)
{
Vec3d line;
line[0] = x; line[1] = y, line[2] = length;
result.push_back(line);
}
}
}
}
return result;
}
2018-07-11 01:24:09 +08:00
vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
vector<Vec3d> result;
2018-06-27 21:37:10 +08:00
int temp_length = 0;
2018-07-11 01:24:09 +08:00
uint8_t next_pixel, future_pixel;
vector<double> test_lines;
2018-06-27 21:37:10 +08:00
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
{
2018-08-01 22:49:43 +08:00
int x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] * 0.5);
2018-07-11 01:24:09 +08:00
int y = static_cast<int>(list_lines[pnt][1]);
2018-06-27 21:37:10 +08:00
// --------------- Search horizontal up-lines --------------- //
test_lines.clear();
future_pixel = 255;
for (int j = y; j < bin_barcode.cols - 1; j++)
{
next_pixel = bin_barcode.at<uint8_t>(x, j + 1);
temp_length++;
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 3) { break; }
}
}
// --------------- Search horizontal down-lines --------------- //
future_pixel = 255;
for (int j = y; j >= 1; j--)
{
next_pixel = bin_barcode.at<uint8_t>(x, j - 1);
temp_length++;
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 6) { break; }
}
}
// --------------- Compute horizontal lines --------------- //
if (test_lines.size() == 6)
{
2018-07-11 01:24:09 +08:00
double length = 0.0, weight = 0.0;
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
CV_Assert(length > 0);
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i % 3 == 0) { weight += fabs((test_lines[i] / length) - 3.0/14.0); }
else { weight += fabs((test_lines[i] / length) - 1.0/ 7.0); }
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
if(weight < eps_horizontal)
{
result.push_back(list_lines[pnt]);
}
2018-06-27 21:37:10 +08:00
}
}
2018-07-11 01:24:09 +08:00
vector<Point2f> point2f_result;
for (size_t i = 0; i < result.size(); i++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
point2f_result.push_back(
Point2f(static_cast<float>(result[i][1]),
2018-08-01 22:49:43 +08:00
static_cast<float>(result[i][0] + result[i][2] * 0.5)));
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
return point2f_result;
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
void QRDecode::fixationPoints(vector<Point2f> &local_point)
2018-06-27 21:37:10 +08:00
{
double cos_angles[3], norm_triangl[3];
norm_triangl[0] = norm(local_point[1] - local_point[2]);
norm_triangl[1] = norm(local_point[0] - local_point[2]);
norm_triangl[2] = norm(local_point[1] - local_point[0]);
cos_angles[0] = (pow(norm_triangl[1], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[0], 2))
2018-07-11 01:24:09 +08:00
/ (2 * norm_triangl[1] * norm_triangl[2]);
2018-06-27 21:37:10 +08:00
cos_angles[1] = (pow(norm_triangl[0], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[1], 2))
2018-07-11 01:24:09 +08:00
/ (2 * norm_triangl[0] * norm_triangl[2]);
2018-06-27 21:37:10 +08:00
cos_angles[2] = (pow(norm_triangl[0], 2) + pow(norm_triangl[1], 2) - pow(norm_triangl[2], 2))
2018-07-11 01:24:09 +08:00
/ (2 * norm_triangl[0] * norm_triangl[1]);
size_t i_min_cos =
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
std::swap(local_point[0], local_point[i_min_cos]);
Point2f rpt = local_point[0], bpt = local_point[1], gpt = local_point[2];
Matx22f m(rpt.x - bpt.x, rpt.y - bpt.y, gpt.x - rpt.x, gpt.y - rpt.y);
if( determinant(m) > 0 )
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
std::swap(local_point[1], local_point[2]);
2018-06-27 21:37:10 +08:00
}
}
2018-07-11 01:24:09 +08:00
bool QRDecode::localization()
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
Point2f begin, end;
vector<Vec3d> list_lines_x = searchVerticalLines();
if( list_lines_x.empty() ) { return false; }
vector<Point2f> list_lines_y = separateHorizontalLines(list_lines_x);
if( list_lines_y.empty() ) { return false; }
vector<Point2f> centers;
Mat labels;
if (list_lines_y.size() < 3) { return false; }
2018-07-11 01:24:09 +08:00
kmeans(list_lines_y, 3, labels,
TermCriteria( TermCriteria::EPS+TermCriteria::COUNT, 10, 1.0),
3, KMEANS_PP_CENTERS, localization_points);
fixationPoints(localization_points);
2018-06-27 21:37:10 +08:00
if (localization_points.size() != 3) { return false; }
2018-07-11 01:24:09 +08:00
if (coeff_expansion > 1.0)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
int width = static_cast<int>(bin_barcode.size().width / coeff_expansion);
int height = static_cast<int>(bin_barcode.size().height / coeff_expansion);
Size new_size(width, height);
Mat intermediate;
resize(bin_barcode, intermediate, new_size);
bin_barcode = intermediate.clone();
for (size_t i = 0; i < localization_points.size(); i++)
{
localization_points[i] /= coeff_expansion;
}
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
for (size_t i = 0; i < localization_points.size(); i++)
{
for (size_t j = i + 1; j < localization_points.size(); j++)
{
if (norm(localization_points[i] - localization_points[j]) < 10)
{
return false;
}
}
}
2018-06-27 21:37:10 +08:00
return true;
2018-07-11 01:24:09 +08:00
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
bool QRDecode::computeTransformationPoints()
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
if (localization_points.size() != 3) { return false; }
2018-06-27 21:37:10 +08:00
2018-07-11 01:24:09 +08:00
vector<Point> locations, non_zero_elem[3], newHull;
vector<Point2f> new_non_zero_elem[3];
for (size_t i = 0; i < 3; i++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
uint8_t next_pixel, future_pixel = 255;
int count_test_lines = 0, index = static_cast<int>(localization_points[i].x);
for (; index < bin_barcode.cols - 1; index++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
next_pixel = bin_barcode.at<uint8_t>(
static_cast<int>(localization_points[i].y), index + 1);
if (next_pixel == future_pixel)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
future_pixel = 255 - future_pixel;
count_test_lines++;
if (count_test_lines == 2)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
floodFill(bin_barcode, mask,
Point(index + 1, static_cast<int>(localization_points[i].y)), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
break;
2018-06-27 21:37:10 +08:00
}
}
}
2018-07-11 01:24:09 +08:00
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
findNonZero(mask_roi, non_zero_elem[i]);
newHull.insert(newHull.end(), non_zero_elem[i].begin(), non_zero_elem[i].end());
}
convexHull(Mat(newHull), locations);
for (size_t i = 0; i < locations.size(); i++)
{
for (size_t j = 0; j < 3; j++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
for (size_t k = 0; k < non_zero_elem[j].size(); k++)
{
if (locations[i] == non_zero_elem[j][k])
{
new_non_zero_elem[j].push_back(locations[i]);
}
}
2018-06-27 21:37:10 +08:00
}
}
2018-07-11 01:24:09 +08:00
double pentagon_diag_norm = -1;
Point2f down_left_edge_point, up_right_edge_point, up_left_edge_point;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
for (size_t j = 0; j < new_non_zero_elem[2].size(); j++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
double temp_norm = norm(new_non_zero_elem[1][i] - new_non_zero_elem[2][j]);
if (temp_norm > pentagon_diag_norm)
{
down_left_edge_point = new_non_zero_elem[1][i];
up_right_edge_point = new_non_zero_elem[2][j];
pentagon_diag_norm = temp_norm;
}
2018-06-27 21:37:10 +08:00
}
}
2018-07-11 01:24:09 +08:00
if (down_left_edge_point == Point2f(0, 0) ||
up_right_edge_point == Point2f(0, 0)) { return false; }
2018-06-27 21:37:10 +08:00
2018-07-11 01:24:09 +08:00
double max_area = -1;
up_left_edge_point = new_non_zero_elem[0][0];
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
{
2018-08-01 22:49:43 +08:00
vector<Point2f> list_edge_points;
list_edge_points.push_back(new_non_zero_elem[0][i]);
list_edge_points.push_back(down_left_edge_point);
list_edge_points.push_back(up_right_edge_point);
double temp_area = contourArea(list_edge_points);
2018-07-11 01:24:09 +08:00
if (max_area < temp_area)
{
up_left_edge_point = new_non_zero_elem[0][i];
max_area = temp_area;
}
}
Point2f down_max_delta_point, up_max_delta_point;
double norm_down_max_delta = -1, norm_up_max_delta = -1;
for (size_t i = 0; i < new_non_zero_elem[1].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[1][i])
+ norm(down_left_edge_point - new_non_zero_elem[1][i]);
if (norm_down_max_delta < temp_norm_delta)
{
down_max_delta_point = new_non_zero_elem[1][i];
norm_down_max_delta = temp_norm_delta;
}
}
for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
{
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i])
+ norm(up_right_edge_point - new_non_zero_elem[2][i]);
if (norm_up_max_delta < temp_norm_delta)
{
up_max_delta_point = new_non_zero_elem[2][i];
norm_up_max_delta = temp_norm_delta;
}
}
transformation_points.push_back(down_left_edge_point);
transformation_points.push_back(up_left_edge_point);
transformation_points.push_back(up_right_edge_point);
transformation_points.push_back(
intersectionLines(down_left_edge_point, down_max_delta_point,
up_right_edge_point, up_max_delta_point));
vector<Point2f> quadrilateral = getQuadrilateral(transformation_points);
transformation_points = quadrilateral;
return true;
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
Point2f QRDecode::intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
Point2f result_square_angle(
((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) -
(b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x)),
((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) -
(b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x))
);
2018-06-27 21:37:10 +08:00
return result_square_angle;
}
2018-07-11 01:24:09 +08:00
// test function (if true then ------> else <------ )
bool QRDecode::testBypassRoute(vector<Point2f> hull, int start, int finish)
{
int index_hull = start, next_index_hull, hull_size = (int)hull.size();
double test_length[2] = { 0.0, 0.0 };
do
{
next_index_hull = index_hull + 1;
if (next_index_hull == hull_size) { next_index_hull = 0; }
test_length[0] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
index_hull = start;
do
{
next_index_hull = index_hull - 1;
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
test_length[1] += norm(hull[index_hull] - hull[next_index_hull]);
index_hull = next_index_hull;
}
while(index_hull != finish);
if (test_length[0] < test_length[1]) { return true; } else { return false; }
}
vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
2018-06-27 21:37:10 +08:00
{
size_t angle_size = angle_list.size();
uint8_t value, mask_value;
2018-07-11 01:24:09 +08:00
Mat mask = Mat::zeros(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
Mat fill_bin_barcode = bin_barcode.clone();
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < angle_size; i++)
{
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size],
angle_list[(i + 1) % angle_size]);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
value = bin_barcode.at<uint8_t>(line_iter.pos());
mask_value = mask.at<uint8_t>(line_iter.pos() + Point(1, 1));
if (value == 0 && mask_value == 0)
{
2018-07-11 01:24:09 +08:00
floodFill(fill_bin_barcode, mask, line_iter.pos(), 255,
0, Scalar(), Scalar(), FLOODFILL_MASK_ONLY);
2018-06-27 21:37:10 +08:00
}
}
}
2018-07-11 01:24:09 +08:00
vector<Point> locations;
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1), Range(1, bin_barcode.cols - 1));
2018-06-27 21:37:10 +08:00
cv::findNonZero(mask_roi, locations);
for (size_t i = 0; i < angle_list.size(); i++)
{
2018-07-11 01:24:09 +08:00
int x = static_cast<int>(angle_list[i].x);
int y = static_cast<int>(angle_list[i].y);
locations.push_back(Point(x, y));
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
vector<Point> integer_hull;
convexHull(Mat(locations), integer_hull);
int hull_size = (int)integer_hull.size();
vector<Point2f> hull(hull_size);
for (int i = 0; i < hull_size; i++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
float x = static_cast<float>(integer_hull[i].x);
float y = static_cast<float>(integer_hull[i].y);
hull[i] = Point2f(x, y);
2018-06-27 21:37:10 +08:00
}
2018-08-01 22:49:43 +08:00
const double experimental_area = contourArea(hull);
2018-07-11 01:24:09 +08:00
vector<Point2f> result_hull_point(angle_size);
double min_norm;
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < angle_size; i++)
{
min_norm = std::numeric_limits<double>::max();
Point closest_pnt;
2018-07-11 01:24:09 +08:00
for (int j = 0; j < hull_size; j++)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
double temp_norm = norm(hull[j] - angle_list[i]);
if (min_norm > temp_norm)
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
min_norm = temp_norm;
closest_pnt = hull[j];
2018-06-27 21:37:10 +08:00
}
}
result_hull_point[i] = closest_pnt;
}
2018-07-11 01:24:09 +08:00
int start_line[2] = { 0, 0 }, finish_line[2] = { 0, 0 }, unstable_pnt = 0;
2018-06-27 21:37:10 +08:00
for (int i = 0; i < hull_size; i++)
{
2018-07-11 01:24:09 +08:00
if (result_hull_point[2] == hull[i]) { start_line[0] = i; }
if (result_hull_point[1] == hull[i]) { finish_line[0] = start_line[1] = i; }
if (result_hull_point[0] == hull[i]) { finish_line[1] = i; }
if (result_hull_point[3] == hull[i]) { unstable_pnt = i; }
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull;
2018-06-27 21:37:10 +08:00
Point result_side_begin[4], result_side_end[4];
2018-07-11 01:24:09 +08:00
bool bypass_orientation = testBypassRoute(hull, start_line[0], finish_line[0]);
bool extra_bypass_orientation;
2018-06-27 21:37:10 +08:00
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[0];
do
{
2018-07-11 01:24:09 +08:00
if (bypass_orientation) { next_index_hull = index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
2018-07-11 01:24:09 +08:00
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[1]) >
norm(hull[index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
2018-06-27 21:37:10 +08:00
Point intrsc_line_hull =
2018-07-11 01:24:09 +08:00
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[1], angle_list[2]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
2018-06-27 21:37:10 +08:00
if (min_norm > temp_norm &&
2018-07-11 01:24:09 +08:00
norm(hull[index_hull] - hull[next_index_hull]) >
2018-08-01 22:49:43 +08:00
norm(angle_list[1] - angle_list[2]) * 0.1)
2018-06-27 21:37:10 +08:00
{
min_norm = temp_norm;
2018-07-11 01:24:09 +08:00
result_side_begin[0] = hull[index_hull];
result_side_end[0] = hull[next_index_hull];
2018-06-27 21:37:10 +08:00
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[0]);
if (min_norm == std::numeric_limits<double>::max())
{
2018-07-11 01:24:09 +08:00
result_side_begin[0] = angle_list[1];
result_side_end[0] = angle_list[2];
2018-06-27 21:37:10 +08:00
}
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[1];
2018-07-11 01:24:09 +08:00
bypass_orientation = testBypassRoute(hull, start_line[1], finish_line[1]);
2018-06-27 21:37:10 +08:00
do
{
2018-07-11 01:24:09 +08:00
if (bypass_orientation) { next_index_hull = index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
2018-07-11 01:24:09 +08:00
Point angle_closest_pnt = norm(hull[index_hull] - angle_list[0]) >
norm(hull[index_hull] - angle_list[1]) ? angle_list[1] : angle_list[0];
2018-06-27 21:37:10 +08:00
Point intrsc_line_hull =
2018-07-11 01:24:09 +08:00
intersectionLines(hull[index_hull], hull[next_index_hull],
angle_list[0], angle_list[1]);
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
2018-06-27 21:37:10 +08:00
if (min_norm > temp_norm &&
2018-07-11 01:24:09 +08:00
norm(hull[index_hull] - hull[next_index_hull]) >
2018-08-01 22:49:43 +08:00
norm(angle_list[0] - angle_list[1]) * 0.05)
2018-06-27 21:37:10 +08:00
{
min_norm = temp_norm;
2018-07-11 01:24:09 +08:00
result_side_begin[1] = hull[index_hull];
result_side_end[1] = hull[next_index_hull];
2018-06-27 21:37:10 +08:00
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[1]);
if (min_norm == std::numeric_limits<double>::max())
{
2018-07-11 01:24:09 +08:00
result_side_begin[1] = angle_list[0];
result_side_end[1] = angle_list[1];
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
bypass_orientation = testBypassRoute(hull, start_line[0], unstable_pnt);
extra_bypass_orientation = testBypassRoute(hull, finish_line[1], unstable_pnt);
2018-06-27 21:37:10 +08:00
2018-07-11 01:24:09 +08:00
vector<Point2f> result_angle_list(4), test_result_angle_list(4);
double min_diff_area = std::numeric_limits<double>::max(), test_diff_area;
2018-06-27 21:37:10 +08:00
index_hull = start_line[0];
double standart_norm = std::max(
norm(result_side_begin[0] - result_side_end[0]),
norm(result_side_begin[1] - result_side_end[1]));
2018-06-27 21:37:10 +08:00
do
{
2018-07-11 01:24:09 +08:00
if (bypass_orientation) { next_index_hull = index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
2018-08-01 22:49:43 +08:00
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1)
{ index_hull = next_index_hull; continue; }
2018-06-27 21:37:10 +08:00
extra_index_hull = finish_line[1];
do
{
2018-07-11 01:24:09 +08:00
if (extra_bypass_orientation) { extra_next_index_hull = extra_index_hull + 1; }
2018-06-27 21:37:10 +08:00
else { extra_next_index_hull = extra_index_hull - 1; }
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
2018-08-01 22:49:43 +08:00
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1)
{ extra_index_hull = extra_next_index_hull; continue; }
2018-06-27 21:37:10 +08:00
test_result_angle_list[0]
2018-07-11 01:24:09 +08:00
= intersectionLines(result_side_begin[0], result_side_end[0],
result_side_begin[1], result_side_end[1]);
2018-06-27 21:37:10 +08:00
test_result_angle_list[1]
2018-07-11 01:24:09 +08:00
= intersectionLines(result_side_begin[1], result_side_end[1],
hull[extra_index_hull], hull[extra_next_index_hull]);
2018-06-27 21:37:10 +08:00
test_result_angle_list[2]
2018-07-11 01:24:09 +08:00
= intersectionLines(hull[extra_index_hull], hull[extra_next_index_hull],
hull[index_hull], hull[next_index_hull]);
2018-06-27 21:37:10 +08:00
test_result_angle_list[3]
2018-07-11 01:24:09 +08:00
= intersectionLines(hull[index_hull], hull[next_index_hull],
result_side_begin[0], result_side_end[0]);
2018-08-01 22:49:43 +08:00
test_diff_area = fabs(contourArea(test_result_angle_list) - experimental_area);
if (min_diff_area > test_diff_area)
2018-06-27 21:37:10 +08:00
{
min_diff_area = test_diff_area;
2018-06-27 21:37:10 +08:00
for (size_t i = 0; i < test_result_angle_list.size(); i++)
{
result_angle_list[i] = test_result_angle_list[i];
}
}
extra_index_hull = extra_next_index_hull;
}
while(extra_index_hull != unstable_pnt);
index_hull = next_index_hull;
}
while(index_hull != unstable_pnt);
return result_angle_list;
}
// / | b
// / |
// / |
// a/ | c
2018-08-01 22:49:43 +08:00
inline double QRDecode::getCosVectors(Point2f a, Point2f b, Point2f c)
2018-06-27 21:37:10 +08:00
{
2018-08-01 22:49:43 +08:00
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
2018-06-27 21:37:10 +08:00
}
2018-07-11 01:24:09 +08:00
bool QRDecode::transformation()
2018-06-27 21:37:10 +08:00
{
2018-07-11 01:24:09 +08:00
if(!computeTransformationPoints()) { return false; }
double max_length_norm = -1;
size_t transform_size = transformation_points.size();
for (size_t i = 0; i < transform_size; i++)
{
double len_norm = norm(transformation_points[i % transform_size] -
transformation_points[(i + 1) % transform_size]);
2018-07-11 01:24:09 +08:00
max_length_norm = std::max(max_length_norm, len_norm);
}
Point2f transformation_points_[] =
{
transformation_points[0],
transformation_points[1],
transformation_points[2],
transformation_points[3]
};
Point2f perspective_points[] =
{
Point2f(0.f, 0.f), Point2f(0.f, (float)max_length_norm),
Point2f((float)max_length_norm, (float)max_length_norm),
Point2f((float)max_length_norm, 0.f)
};
Mat H = getPerspectiveTransform(transformation_points_, perspective_points);
warpPerspective(bin_barcode, straight_barcode, H,
Size(static_cast<int>(max_length_norm),
static_cast<int>(max_length_norm)));
return true;
}
struct QRCodeDetector::Impl
{
public:
Impl() { epsX = 0.2; epsY = 0.1; }
~Impl() {}
double epsX, epsY;
};
QRCodeDetector::QRCodeDetector() : p(new Impl) {}
QRCodeDetector::~QRCodeDetector() {}
void QRCodeDetector::setEpsX(double epsX) { p->epsX = epsX; }
void QRCodeDetector::setEpsY(double epsY) { p->epsY = epsY; }
bool QRCodeDetector::detect(InputArray in, OutputArray points) const
{
Mat inarr = in.getMat();
CV_Assert(!inarr.empty());
CV_Assert(inarr.type() == CV_8UC1);
2018-06-27 21:37:10 +08:00
QRDecode qrdec;
2018-07-11 01:24:09 +08:00
qrdec.init(inarr, p->epsX, p->epsY);
2018-06-27 21:37:10 +08:00
qrdec.binarization();
if (!qrdec.localization()) { return false; }
if (!qrdec.transformation()) { return false; }
2018-07-11 01:24:09 +08:00
vector<Point2f> pnts2f = qrdec.getTransformationPoints();
Mat(pnts2f).convertTo(points, points.fixedType() ? points.type() : CV_32FC2);
2018-06-27 21:37:10 +08:00
return true;
}
2018-07-11 01:24:09 +08:00
CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double eps_x, double eps_y)
{
QRCodeDetector qrdetector;
qrdetector.setEpsX(eps_x);
qrdetector.setEpsY(eps_y);
return qrdetector.detect(in, points);
}
2018-06-27 21:37:10 +08:00
}