opencv/modules/gpu/src/cuda/imgproc.cu

1161 lines
44 KiB
Plaintext
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "internal_shared.hpp"
#include "opencv2/gpu/device/border_interpolate.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
/////////////////////////////////// Remap ///////////////////////////////////////////////
namespace cv { namespace gpu { namespace imgproc
{
texture<unsigned char, 2, cudaReadModeNormalizedFloat> tex_remap;
__global__ void remap_1c(const float* mapx, const float* mapy, size_t map_step, uchar* out, size_t out_step, int width, int height)
{
int x = blockDim.x * blockIdx.x + threadIdx.x;
int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < width && y < height)
{
int idx = y * (map_step >> 2) + x; /* map_step >> 2 <=> map_step / sizeof(float)*/
float xcoo = mapx[idx];
float ycoo = mapy[idx];
out[y * out_step + x] = (unsigned char)(255.f * tex2D(tex_remap, xcoo, ycoo));
}
}
__global__ void remap_3c(const uchar* src, size_t src_step, const float* mapx, const float* mapy,
size_t map_step, uchar* dst, size_t dst_step, int width, int height)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < width && y < height)
{
const int idx = y * (map_step >> 2) + x; /* map_step >> 2 <=> map_step / sizeof(float)*/
const float xcoo = mapx[idx];
const float ycoo = mapy[idx];
uchar3 out = make_uchar3(0, 0, 0);
if (xcoo >= 0 && xcoo < width - 1 && ycoo >= 0 && ycoo < height - 1)
{
const int x1 = __float2int_rd(xcoo);
const int y1 = __float2int_rd(ycoo);
const int x2 = x1 + 1;
const int y2 = y1 + 1;
2010-08-26 20:30:41 +08:00
uchar src_reg = *(src + y1 * src_step + 3 * x1);
out.x += src_reg * (x2 - xcoo) * (y2 - ycoo);
src_reg = *(src + y1 * src_step + 3 * x1 + 1);
out.y += src_reg * (x2 - xcoo) * (y2 - ycoo);
src_reg = *(src + y1 * src_step + 3 * x1 + 2);
out.z += src_reg * (x2 - xcoo) * (y2 - ycoo);
2010-08-26 20:30:41 +08:00
src_reg = *(src + y1 * src_step + 3 * x2);
out.x += src_reg * (xcoo - x1) * (y2 - ycoo);
src_reg = *(src + y1 * src_step + 3 * x2 + 1);
out.y += src_reg * (xcoo - x1) * (y2 - ycoo);
src_reg = *(src + y1 * src_step + 3 * x2 + 2);
out.z += src_reg * (xcoo - x1) * (y2 - ycoo);
2010-08-26 20:30:41 +08:00
src_reg = *(src + y2 * src_step + 3 * x1);
out.x += src_reg * (x2 - xcoo) * (ycoo - y1);
src_reg = *(src + y2 * src_step + 3 * x1 + 1);
out.y += src_reg * (x2 - xcoo) * (ycoo - y1);
src_reg = *(src + y2 * src_step + 3 * x1 + 2);
out.z += src_reg * (x2 - xcoo) * (ycoo - y1);
2010-08-26 20:30:41 +08:00
src_reg = *(src + y2 * src_step + 3 * x2);
out.x += src_reg * (xcoo - x1) * (ycoo - y1);
src_reg = *(src + y2 * src_step + 3 * x2 + 1);
out.y += src_reg * (xcoo - x1) * (ycoo - y1);
src_reg = *(src + y2 * src_step + 3 * x2 + 2);
out.z += src_reg * (xcoo - x1) * (ycoo - y1);
}
2010-08-26 20:30:41 +08:00
/**(uchar3*)(dst + y * dst_step + 3 * x) = out;*/
*(dst + y * dst_step + 3 * x) = out.x;
*(dst + y * dst_step + 3 * x + 1) = out.y;
*(dst + y * dst_step + 3 * x + 2) = out.z;
}
}
void remap_gpu_1c(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(dst.cols, threads.x);
grid.y = divUp(dst.rows, threads.y);
tex_remap.filterMode = cudaFilterModeLinear;
tex_remap.addressMode[0] = tex_remap.addressMode[1] = cudaAddressModeWrap;
cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
cudaSafeCall( cudaBindTexture2D(0, tex_remap, src.data, desc, src.cols, src.rows, src.step) );
remap_1c<<<grid, threads>>>(xmap.data, ymap.data, xmap.step, dst.data, dst.step, dst.cols, dst.rows);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaUnbindTexture(tex_remap) );
}
void remap_gpu_3c(const DevMem2D& src, const DevMem2Df& xmap, const DevMem2Df& ymap, DevMem2D dst)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(dst.cols, threads.x);
grid.y = divUp(dst.rows, threads.y);
remap_3c<<<grid, threads>>>(src.data, src.step, xmap.data, ymap.data, xmap.step, dst.data, dst.step, dst.cols, dst.rows);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
/////////////////////////////////// MeanShiftfiltering ///////////////////////////////////////////////
texture<uchar4, 2> tex_meanshift;
2010-10-11 22:25:30 +08:00
__device__ short2 do_mean_shift(int x0, int y0, unsigned char* out,
int out_step, int cols, int rows,
int sp, int sr, int maxIter, float eps)
{
2010-10-11 22:25:30 +08:00
int isr2 = sr*sr;
uchar4 c = tex2D(tex_meanshift, x0, y0 );
2010-10-11 22:25:30 +08:00
// iterate meanshift procedure
for( int iter = 0; iter < maxIter; iter++ )
{
2010-10-11 22:25:30 +08:00
int count = 0;
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
float icount;
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
int minx = x0-sp;
int miny = y0-sp;
int maxx = x0+sp;
int maxy = y0+sp;
for( int y = miny; y <= maxy; y++)
{
2010-10-11 22:25:30 +08:00
int rowCount = 0;
for( int x = minx; x <= maxx; x++ )
{
uchar4 t = tex2D( tex_meanshift, x, y );
int norm2 = (t.x - c.x) * (t.x - c.x) + (t.y - c.y) * (t.y - c.y) + (t.z - c.z) * (t.z - c.z);
if( norm2 <= isr2 )
{
s0 += t.x; s1 += t.y; s2 += t.z;
sx += x; rowCount++;
}
}
2010-10-11 22:25:30 +08:00
count += rowCount;
sy += y*rowCount;
}
2010-10-11 22:25:30 +08:00
if( count == 0 )
break;
2010-10-11 22:25:30 +08:00
icount = 1.f/count;
int x1 = __float2int_rz(sx*icount);
int y1 = __float2int_rz(sy*icount);
s0 = __float2int_rz(s0*icount);
s1 = __float2int_rz(s1*icount);
s2 = __float2int_rz(s2*icount);
2010-10-11 22:25:30 +08:00
int norm2 = (s0 - c.x) * (s0 - c.x) + (s1 - c.y) * (s1 - c.y) + (s2 - c.z) * (s2 - c.z);
2010-10-11 22:25:30 +08:00
bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1-x0) + abs(y1-y0) + norm2 <= eps);
2010-10-11 22:25:30 +08:00
x0 = x1; y0 = y1;
c.x = s0; c.y = s1; c.z = s2;
2010-10-11 22:25:30 +08:00
if( stopFlag )
break;
}
int base = (blockIdx.y * blockDim.y + threadIdx.y) * out_step + (blockIdx.x * blockDim.x + threadIdx.x) * 4 * sizeof(uchar);
*(uchar4*)(out + base) = c;
return make_short2((short)x0, (short)y0);
}
extern "C" __global__ void meanshift_kernel( unsigned char* out, int out_step, int cols, int rows,
int sp, int sr, int maxIter, float eps )
{
int x0 = blockIdx.x * blockDim.x + threadIdx.x;
int y0 = blockIdx.y * blockDim.y + threadIdx.y;
if( x0 < cols && y0 < rows )
do_mean_shift(x0, y0, out, out_step, cols, rows, sp, sr, maxIter, eps);
}
extern "C" __global__ void meanshiftproc_kernel( unsigned char* outr, int outrstep,
unsigned char* outsp, int outspstep,
int cols, int rows,
int sp, int sr, int maxIter, float eps )
{
int x0 = blockIdx.x * blockDim.x + threadIdx.x;
int y0 = blockIdx.y * blockDim.y + threadIdx.y;
2010-10-11 22:25:30 +08:00
if( x0 < cols && y0 < rows )
{
int basesp = (blockIdx.y * blockDim.y + threadIdx.y) * outspstep + (blockIdx.x * blockDim.x + threadIdx.x) * 2 * sizeof(short);
*(short2*)(outsp + basesp) = do_mean_shift(x0, y0, outr, outrstep, cols, rows, sp, sr, maxIter, eps);
}
}
extern "C" void meanShiftFiltering_gpu(const DevMem2D& src, DevMem2D dst, int sp, int sr, int maxIter, float eps)
{
dim3 grid(1, 1, 1);
dim3 threads(32, 8, 1);
grid.x = divUp(src.cols, threads.x);
grid.y = divUp(src.rows, threads.y);
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>();
cudaSafeCall( cudaBindTexture2D( 0, tex_meanshift, src.data, desc, src.cols, src.rows, src.step ) );
meanshift_kernel<<< grid, threads >>>( dst.data, dst.step, dst.cols, dst.rows, sp, sr, maxIter, eps );
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
}
2010-10-11 22:25:30 +08:00
extern "C" void meanShiftProc_gpu(const DevMem2D& src, DevMem2D dstr, DevMem2D dstsp, int sp, int sr, int maxIter, float eps)
{
dim3 grid(1, 1, 1);
dim3 threads(32, 8, 1);
2010-10-11 22:25:30 +08:00
grid.x = divUp(src.cols, threads.x);
grid.y = divUp(src.rows, threads.y);
cudaChannelFormatDesc desc = cudaCreateChannelDesc<uchar4>();
cudaSafeCall( cudaBindTexture2D( 0, tex_meanshift, src.data, desc, src.cols, src.rows, src.step ) );
2010-10-11 22:25:30 +08:00
meanshiftproc_kernel<<< grid, threads >>>( dstr.data, dstr.step, dstsp.data, dstsp.step, dstr.cols, dstr.rows, sp, sr, maxIter, eps );
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall( cudaUnbindTexture( tex_meanshift ) );
2010-10-11 22:25:30 +08:00
}
/////////////////////////////////// drawColorDisp ///////////////////////////////////////////////
template <typename T>
__device__ unsigned int cvtPixel(T d, int ndisp, float S = 1, float V = 1)
{
unsigned int H = ((ndisp-d) * 240)/ndisp;
unsigned int hi = (H/60) % 6;
float f = H/60.f - H/60;
float p = V * (1 - S);
float q = V * (1 - f * S);
float t = V * (1 - (1 - f) * S);
float3 res;
if (hi == 0) //R = V, G = t, B = p
{
res.x = p;
res.y = t;
res.z = V;
}
if (hi == 1) // R = q, G = V, B = p
{
res.x = p;
res.y = V;
res.z = q;
}
if (hi == 2) // R = p, G = V, B = t
{
res.x = t;
res.y = V;
res.z = p;
}
if (hi == 3) // R = p, G = q, B = V
{
res.x = V;
res.y = q;
res.z = p;
}
if (hi == 4) // R = t, G = p, B = V
{
res.x = V;
res.y = p;
res.z = t;
}
if (hi == 5) // R = V, G = p, B = q
{
res.x = q;
res.y = p;
res.z = V;
}
const unsigned int b = (unsigned int)(max(0.f, min (res.x, 1.f)) * 255.f);
const unsigned int g = (unsigned int)(max(0.f, min (res.y, 1.f)) * 255.f);
const unsigned int r = (unsigned int)(max(0.f, min (res.z, 1.f)) * 255.f);
const unsigned int a = 255U;
return (a << 24) + (r << 16) + (g << 8) + b;
}
__global__ void drawColorDisp(uchar* disp, size_t disp_step, uchar* out_image, size_t out_step, int width, int height, int ndisp)
{
const int x = (blockIdx.x * blockDim.x + threadIdx.x) << 2;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if(x < width && y < height)
{
uchar4 d4 = *(uchar4*)(disp + y * disp_step + x);
uint4 res;
res.x = cvtPixel(d4.x, ndisp);
res.y = cvtPixel(d4.y, ndisp);
res.z = cvtPixel(d4.z, ndisp);
res.w = cvtPixel(d4.w, ndisp);
uint4* line = (uint4*)(out_image + y * out_step);
line[x >> 2] = res;
}
}
__global__ void drawColorDisp(short* disp, size_t disp_step, uchar* out_image, size_t out_step, int width, int height, int ndisp)
{
const int x = (blockIdx.x * blockDim.x + threadIdx.x) << 1;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if(x < width && y < height)
{
short2 d2 = *(short2*)(disp + y * disp_step + x);
uint2 res;
res.x = cvtPixel(d2.x, ndisp);
res.y = cvtPixel(d2.y, ndisp);
uint2* line = (uint2*)(out_image + y * out_step);
line[x >> 1] = res;
}
}
void drawColorDisp_gpu(const DevMem2D& src, const DevMem2D& dst, int ndisp, const cudaStream_t& stream)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(src.cols, threads.x << 2);
grid.y = divUp(src.rows, threads.y);
drawColorDisp<<<grid, threads, 0, stream>>>(src.data, src.step, dst.data, dst.step, src.cols, src.rows, ndisp);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void drawColorDisp_gpu(const DevMem2D_<short>& src, const DevMem2D& dst, int ndisp, const cudaStream_t& stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(src.cols, threads.x << 1);
grid.y = divUp(src.rows, threads.y);
drawColorDisp<<<grid, threads, 0, stream>>>(src.data, src.step / sizeof(short), dst.data, dst.step, src.cols, src.rows, ndisp);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
2010-08-23 22:19:22 +08:00
}
/////////////////////////////////// reprojectImageTo3D ///////////////////////////////////////////////
2010-08-23 22:19:22 +08:00
__constant__ float cq[16];
template <typename T>
__global__ void reprojectImageTo3D(const T* disp, size_t disp_step, float* xyzw, size_t xyzw_step, int rows, int cols)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (y < rows && x < cols)
{
float qx = cq[1] * y + cq[3], qy = cq[5] * y + cq[7];
float qz = cq[9] * y + cq[11], qw = cq[13] * y + cq[15];
qx += x * cq[0];
qy += x * cq[4];
qz += x * cq[8];
qw += x * cq[12];
T d = *(disp + disp_step * y + x);
float iW = 1.f / (qw + cq[14] * d);
float4 v;
v.x = (qx + cq[2] * d) * iW;
v.y = (qy + cq[6] * d) * iW;
v.z = (qz + cq[10] * d) * iW;
v.w = 1.f;
*(float4*)(xyzw + xyzw_step * y + (x * 4)) = v;
}
}
template <typename T>
inline void reprojectImageTo3D_caller(const DevMem2D_<T>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream)
2010-08-23 22:19:22 +08:00
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(disp.cols, threads.x);
grid.y = divUp(disp.rows, threads.y);
cudaSafeCall( cudaMemcpyToSymbol(cq, q, 16 * sizeof(float)) );
2010-08-23 22:19:22 +08:00
reprojectImageTo3D<<<grid, threads, 0, stream>>>(disp.data, disp.step / sizeof(T), xyzw.data, xyzw.step / sizeof(float), disp.rows, disp.cols);
cudaSafeCall( cudaGetLastError() );
2010-08-23 22:19:22 +08:00
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
2010-08-23 22:19:22 +08:00
}
void reprojectImageTo3D_gpu(const DevMem2D& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream)
2010-08-23 22:19:22 +08:00
{
reprojectImageTo3D_caller(disp, xyzw, q, stream);
2010-08-23 22:19:22 +08:00
}
void reprojectImageTo3D_gpu(const DevMem2D_<short>& disp, const DevMem2Df& xyzw, const float* q, const cudaStream_t& stream)
2010-08-23 22:19:22 +08:00
{
reprojectImageTo3D_caller(disp, xyzw, q, stream);
}
//////////////////////////////////////// Extract Cov Data ////////////////////////////////////////////////
__global__ void extractCovData_kernel(const int cols, const int rows, const PtrStepf Dx,
const PtrStepf Dy, PtrStepf dst)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < cols && y < rows)
{
float dx = Dx.ptr(y)[x];
float dy = Dy.ptr(y)[x];
dst.ptr(y)[x] = dx * dx;
dst.ptr(y + rows)[x] = dx * dy;
dst.ptr(y + (rows << 1))[x] = dy * dy;
}
}
void extractCovData_caller(const DevMem2Df Dx, const DevMem2Df Dy, PtrStepf dst)
{
dim3 threads(32, 8);
dim3 grid(divUp(Dx.cols, threads.x), divUp(Dx.rows, threads.y));
extractCovData_kernel<<<grid, threads>>>(Dx.cols, Dx.rows, Dx, Dy, dst);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
/////////////////////////////////////////// Corner Harris /////////////////////////////////////////////////
texture<float, 2> harrisDxTex;
texture<float, 2> harrisDyTex;
__global__ void cornerHarris_kernel(const int cols, const int rows, const int block_size, const float k,
PtrStep dst)
{
const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < cols && y < rows)
{
float a = 0.f;
float b = 0.f;
float c = 0.f;
const int ibegin = y - (block_size / 2);
const int jbegin = x - (block_size / 2);
const int iend = ibegin + block_size;
const int jend = jbegin + block_size;
for (int i = ibegin; i < iend; ++i)
{
for (int j = jbegin; j < jend; ++j)
{
float dx = tex2D(harrisDxTex, j, i);
float dy = tex2D(harrisDyTex, j, i);
a += dx * dx;
b += dx * dy;
c += dy * dy;
}
}
((float*)dst.ptr(y))[x] = a * c - b * b - k * (a + c) * (a + c);
}
}
template <typename B>
__global__ void cornerHarris_kernel(const int cols, const int rows, const int block_size, const float k,
PtrStep dst, B border_row, B border_col)
{
const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < cols && y < rows)
{
float a = 0.f;
float b = 0.f;
float c = 0.f;
const int ibegin = y - (block_size / 2);
const int jbegin = x - (block_size / 2);
const int iend = ibegin + block_size;
const int jend = jbegin + block_size;
for (int i = ibegin; i < iend; ++i)
{
int y = border_col.idx(i);
for (int j = jbegin; j < jend; ++j)
{
int x = border_row.idx(j);
float dx = tex2D(harrisDxTex, x, y);
float dy = tex2D(harrisDyTex, x, y);
a += dx * dx;
b += dx * dy;
c += dy * dy;
}
}
((float*)dst.ptr(y))[x] = a * c - b * b - k * (a + c) * (a + c);
}
}
void cornerHarris_caller(const int block_size, const float k, const DevMem2D Dx, const DevMem2D Dy, DevMem2D dst,
int border_type)
{
const int rows = Dx.rows;
const int cols = Dx.cols;
dim3 threads(32, 8);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();
cudaBindTexture2D(0, harrisDxTex, Dx.data, desc, Dx.cols, Dx.rows, Dx.step);
cudaBindTexture2D(0, harrisDyTex, Dy.data, desc, Dy.cols, Dy.rows, Dy.step);
harrisDxTex.filterMode = cudaFilterModePoint;
harrisDyTex.filterMode = cudaFilterModePoint;
switch (border_type)
{
case BORDER_REFLECT101_GPU:
cornerHarris_kernel<<<grid, threads>>>(
cols, rows, block_size, k, dst, BrdReflect101(cols), BrdReflect101(rows));
break;
case BORDER_REPLICATE_GPU:
harrisDxTex.addressMode[0] = cudaAddressModeClamp;
harrisDxTex.addressMode[1] = cudaAddressModeClamp;
harrisDyTex.addressMode[0] = cudaAddressModeClamp;
harrisDyTex.addressMode[1] = cudaAddressModeClamp;
cornerHarris_kernel<<<grid, threads>>>(cols, rows, block_size, k, dst);
break;
}
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
cudaSafeCall(cudaUnbindTexture(harrisDxTex));
cudaSafeCall(cudaUnbindTexture(harrisDyTex));
}
/////////////////////////////////////////// Corner Min Eigen Val /////////////////////////////////////////////////
texture<float, 2> minEigenValDxTex;
texture<float, 2> minEigenValDyTex;
__global__ void cornerMinEigenVal_kernel(const int cols, const int rows, const int block_size,
PtrStep dst)
{
const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < cols && y < rows)
{
float a = 0.f;
float b = 0.f;
float c = 0.f;
const int ibegin = y - (block_size / 2);
const int jbegin = x - (block_size / 2);
const int iend = ibegin + block_size;
const int jend = jbegin + block_size;
for (int i = ibegin; i < iend; ++i)
{
for (int j = jbegin; j < jend; ++j)
{
float dx = tex2D(minEigenValDxTex, j, i);
float dy = tex2D(minEigenValDyTex, j, i);
a += dx * dx;
b += dx * dy;
c += dy * dy;
}
}
a *= 0.5f;
c *= 0.5f;
((float*)dst.ptr(y))[x] = (a + c) - sqrtf((a - c) * (a - c) + b * b);
}
}
template <typename B>
__global__ void cornerMinEigenVal_kernel(const int cols, const int rows, const int block_size,
PtrStep dst, B border_row, B border_col)
{
const unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < cols && y < rows)
{
float a = 0.f;
float b = 0.f;
float c = 0.f;
const int ibegin = y - (block_size / 2);
const int jbegin = x - (block_size / 2);
const int iend = ibegin + block_size;
const int jend = jbegin + block_size;
for (int i = ibegin; i < iend; ++i)
{
int y = border_col.idx(i);
for (int j = jbegin; j < jend; ++j)
{
int x = border_row.idx(j);
float dx = tex2D(minEigenValDxTex, x, y);
float dy = tex2D(minEigenValDyTex, x, y);
a += dx * dx;
b += dx * dy;
c += dy * dy;
}
}
a *= 0.5f;
c *= 0.5f;
((float*)dst.ptr(y))[x] = (a + c) - sqrtf((a - c) * (a - c) + b * b);
}
}
void cornerMinEigenVal_caller(const int block_size, const DevMem2D Dx, const DevMem2D Dy, DevMem2D dst,
int border_type)
{
const int rows = Dx.rows;
const int cols = Dx.cols;
dim3 threads(32, 8);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
cudaChannelFormatDesc desc = cudaCreateChannelDesc<float>();
cudaBindTexture2D(0, minEigenValDxTex, Dx.data, desc, Dx.cols, Dx.rows, Dx.step);
cudaBindTexture2D(0, minEigenValDyTex, Dy.data, desc, Dy.cols, Dy.rows, Dy.step);
minEigenValDxTex.filterMode = cudaFilterModePoint;
minEigenValDyTex.filterMode = cudaFilterModePoint;
switch (border_type)
{
case BORDER_REFLECT101_GPU:
cornerMinEigenVal_kernel<<<grid, threads>>>(
cols, rows, block_size, dst, BrdReflect101(cols), BrdReflect101(rows));
break;
case BORDER_REPLICATE_GPU:
minEigenValDxTex.addressMode[0] = cudaAddressModeClamp;
minEigenValDxTex.addressMode[1] = cudaAddressModeClamp;
minEigenValDyTex.addressMode[0] = cudaAddressModeClamp;
minEigenValDyTex.addressMode[1] = cudaAddressModeClamp;
cornerMinEigenVal_kernel<<<grid, threads>>>(cols, rows, block_size, dst);
break;
}
cudaSafeCall( cudaGetLastError() );
cudaSafeCall(cudaDeviceSynchronize());
cudaSafeCall(cudaUnbindTexture(minEigenValDxTex));
cudaSafeCall(cudaUnbindTexture(minEigenValDyTex));
}
////////////////////////////// Column Sum //////////////////////////////////////
2011-01-19 18:54:58 +08:00
__global__ void column_sumKernel_32F(int cols, int rows, const PtrStep src, const PtrStep dst)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
if (x < cols)
{
2010-12-09 00:51:12 +08:00
const unsigned char* src_data = src.data + x * sizeof(float);
unsigned char* dst_data = dst.data + x * sizeof(float);
float sum = 0.f;
for (int y = 0; y < rows; ++y)
{
2010-12-09 00:51:12 +08:00
sum += *(const float*)src_data;
*(float*)dst_data = sum;
src_data += src.step;
dst_data += dst.step;
}
}
}
void columnSum_32F(const DevMem2D src, const DevMem2D dst)
{
dim3 threads(256);
dim3 grid(divUp(src.cols, threads.x));
2011-01-19 18:54:58 +08:00
column_sumKernel_32F<<<grid, threads>>>(src.cols, src.rows, src, dst);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//////////////////////////////////////////////////////////////////////////
// mulSpectrums
__global__ void mulSpectrumsKernel(const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
DevMem2D_<cufftComplex> c)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
{
c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
}
}
void mulSpectrums(const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
DevMem2D_<cufftComplex> c)
{
dim3 threads(256);
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
mulSpectrumsKernel<<<grid, threads>>>(a, b, c);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//////////////////////////////////////////////////////////////////////////
// mulSpectrums_CONJ
__global__ void mulSpectrumsKernel_CONJ(
const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
DevMem2D_<cufftComplex> c)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
{
c.ptr(y)[x] = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
}
}
void mulSpectrums_CONJ(const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
DevMem2D_<cufftComplex> c)
{
dim3 threads(256);
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
mulSpectrumsKernel_CONJ<<<grid, threads>>>(a, b, c);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//////////////////////////////////////////////////////////////////////////
// mulAndScaleSpectrums
__global__ void mulAndScaleSpectrumsKernel(
const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
float scale, DevMem2D_<cufftComplex> c)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
{
cufftComplex v = cuCmulf(a.ptr(y)[x], b.ptr(y)[x]);
c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
}
}
void mulAndScaleSpectrums(const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
float scale, DevMem2D_<cufftComplex> c)
{
dim3 threads(256);
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
mulAndScaleSpectrumsKernel<<<grid, threads>>>(a, b, scale, c);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
//////////////////////////////////////////////////////////////////////////
// mulAndScaleSpectrums_CONJ
__global__ void mulAndScaleSpectrumsKernel_CONJ(
const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
float scale, DevMem2D_<cufftComplex> c)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < c.cols && y < c.rows)
{
cufftComplex v = cuCmulf(a.ptr(y)[x], cuConjf(b.ptr(y)[x]));
c.ptr(y)[x] = make_cuFloatComplex(cuCrealf(v) * scale, cuCimagf(v) * scale);
}
}
void mulAndScaleSpectrums_CONJ(const PtrStep_<cufftComplex> a, const PtrStep_<cufftComplex> b,
float scale, DevMem2D_<cufftComplex> c)
{
dim3 threads(256);
dim3 grid(divUp(c.cols, threads.x), divUp(c.rows, threads.y));
mulAndScaleSpectrumsKernel_CONJ<<<grid, threads>>>(a, b, scale, c);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
/////////////////////////////////////////////////////////////////////////
// downsample
template <typename T, int cn>
__global__ void downsampleKernel(const PtrStep_<T> src, DevMem2D_<T> dst)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
{
int ch_x = x / cn;
dst.ptr(y)[x] = src.ptr(y*2)[ch_x*2*cn + x - ch_x*cn];
}
}
template <typename T, int cn>
void downsampleCaller(const DevMem2D src, DevMem2D dst, cudaStream_t stream)
{
dim3 threads(32, 8);
dim3 grid(divUp(dst.cols, threads.x), divUp(dst.rows, threads.y));
downsampleKernel<T,cn><<<grid, threads, 0, stream>>>(DevMem2D_<T>(src), DevMem2D_<T>(dst));
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
template void downsampleCaller<uchar,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<uchar,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<uchar,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<uchar,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<short,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void downsampleCaller<float,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////
// upsample
template <typename T, int cn>
__global__ void upsampleKernel(const PtrStep_<T> src, DevMem2D_<T> dst)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < dst.cols && y < dst.rows)
{
int ch_x = x / cn;
T val = ((ch_x & 1) || (y & 1)) ? 0 : src.ptr(y/2)[ch_x/2*cn + x - ch_x*cn];
dst.ptr(y)[x] = val;
}
}
template <typename T, int cn>
void upsampleCaller(const DevMem2D src, DevMem2D dst, cudaStream_t stream)
{
dim3 threads(32, 8);
dim3 grid(divUp(dst.cols, threads.x), divUp(dst.rows, threads.y));
upsampleKernel<T,cn><<<grid, threads, 0, stream>>>(DevMem2D_<T>(src), DevMem2D_<T>(dst));
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
template void upsampleCaller<uchar,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<uchar,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<uchar,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<uchar,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<short,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,1>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,2>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,3>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
template void upsampleCaller<float,4>(const DevMem2D src, DevMem2D dst, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////
// buildWarpMaps
namespace build_warp_maps
{
__constant__ float cr[9];
__constant__ float crinv[9];
__constant__ float cf, cs;
__constant__ float chalf_w, chalf_h;
__constant__ float cdist;
}
class PlaneMapper
{
public:
static __device__ __forceinline__ void mapBackward(float u, float v, float &x, float &y)
{
using namespace build_warp_maps;
float x_ = u / cs;
float y_ = v / cs;
float z;
x = crinv[0]*x_ + crinv[1]*y_ + crinv[2]*cdist;
y = crinv[3]*x_ + crinv[4]*y_ + crinv[5]*cdist;
z = crinv[6]*x_ + crinv[7]*y_ + crinv[8]*cdist;
x = cf*x/z + chalf_w;
y = cf*y/z + chalf_h;
}
};
class CylindricalMapper
{
public:
static __device__ __forceinline__ void mapBackward(float u, float v, float &x, float &y)
{
using namespace build_warp_maps;
u /= cs;
float x_ = sinf(u);
float y_ = v / cs;
float z_ = cosf(u);
float z;
x = crinv[0]*x_ + crinv[1]*y_ + crinv[2]*z_;
y = crinv[3]*x_ + crinv[4]*y_ + crinv[5]*z_;
z = crinv[6]*x_ + crinv[7]*y_ + crinv[8]*z_;
x = cf*x/z + chalf_w;
y = cf*y/z + chalf_h;
}
};
class SphericalMapper
{
public:
static __device__ __forceinline__ void mapBackward(float u, float v, float &x, float &y)
{
using namespace build_warp_maps;
v /= cs;
u /= cs;
float sinv = sinf(v);
float x_ = sinv * sinf(u);
float y_ = -cosf(v);
float z_ = sinv * cosf(u);
float z;
x = crinv[0]*x_ + crinv[1]*y_ + crinv[2]*z_;
y = crinv[3]*x_ + crinv[4]*y_ + crinv[5]*z_;
z = crinv[6]*x_ + crinv[7]*y_ + crinv[8]*z_;
x = cf*x/z + chalf_w;
y = cf*y/z + chalf_h;
}
};
template <typename Mapper>
__global__ void buildWarpMapsKernel(int tl_u, int tl_v, int cols, int rows,
PtrStepf map_x, PtrStepf map_y)
{
int du = blockIdx.x * blockDim.x + threadIdx.x;
int dv = blockIdx.y * blockDim.y + threadIdx.y;
if (du < cols && dv < rows)
{
float u = tl_u + du;
float v = tl_v + dv;
float x, y;
Mapper::mapBackward(u, v, x, y);
map_x.ptr(dv)[du] = x;
map_y.ptr(dv)[du] = y;
}
}
void buildWarpPlaneMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
const float r[9], const float rinv[9], float f, float s, float dist,
float half_w, float half_h, cudaStream_t stream)
{
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cr, r, 9*sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::crinv, rinv, 9*sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cf, &f, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cs, &s, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::chalf_w, &half_w, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::chalf_h, &half_h, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cdist, &dist, sizeof(float)));
int cols = map_x.cols;
int rows = map_x.rows;
dim3 threads(32, 8);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
buildWarpMapsKernel<PlaneMapper><<<grid,threads>>>(tl_u, tl_v, cols, rows, map_x, map_y);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
void buildWarpCylindricalMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
const float r[9], const float rinv[9], float f, float s,
float half_w, float half_h, cudaStream_t stream)
{
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cr, r, 9*sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::crinv, rinv, 9*sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cf, &f, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cs, &s, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::chalf_w, &half_w, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::chalf_h, &half_h, sizeof(float)));
int cols = map_x.cols;
int rows = map_x.rows;
dim3 threads(32, 8);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
buildWarpMapsKernel<CylindricalMapper><<<grid,threads>>>(tl_u, tl_v, cols, rows, map_x, map_y);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
void buildWarpSphericalMaps(int tl_u, int tl_v, DevMem2Df map_x, DevMem2Df map_y,
const float r[9], const float rinv[9], float f, float s,
float half_w, float half_h, cudaStream_t stream)
{
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cr, r, 9*sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::crinv, rinv, 9*sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cf, &f, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::cs, &s, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::chalf_w, &half_w, sizeof(float)));
cudaSafeCall(cudaMemcpyToSymbol(build_warp_maps::chalf_h, &half_h, sizeof(float)));
int cols = map_x.cols;
int rows = map_x.rows;
dim3 threads(32, 8);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
buildWarpMapsKernel<SphericalMapper><<<grid,threads>>>(tl_u, tl_v, cols, rows, map_x, map_y);
cudaSafeCall(cudaGetLastError());
if (stream == 0)
cudaSafeCall(cudaDeviceSynchronize());
}
}}}