2024-02-29 16:42:19 +08:00
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2024, OpenCV Team, all rights reserved.
// Third party copyrights are property of their respective owners.
# include "test_precomp.hpp"
# include <opencv2/dnn/shape_utils.hpp>
# include <opencv2/dnn/all_layers.hpp>
# include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
namespace opencv_test { namespace {
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
class Layer_Test_01D : public testing : : TestWithParam < tuple < std : : vector < int > > >
2024-02-29 16:42:19 +08:00
{
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
public :
std : : vector < int > input_shape ;
std : : vector < int > output_shape ;
float inp_value ;
Mat input ;
2024-02-29 16:42:19 +08:00
LayerParams lp ;
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
void SetUp ( )
{
input_shape = get < 0 > ( GetParam ( ) ) ;
output_shape = input_shape ;
// generate random positeve value from 1 to 10
RNG & rng = TS : : ptr ( ) - > get_rng ( ) ;
inp_value = rng . uniform ( 1.0 , 10.0 ) ; // random uniform value
input = Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , inp_value ) ;
}
void TestLayer ( Ptr < Layer > layer , std : : vector < Mat > & inputs , const Mat & output_ref ) {
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
} ;
TEST_P ( Layer_Test_01D , Scale )
{
2024-02-29 16:42:19 +08:00
lp . type = " Scale " ;
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
lp . name = " ScaleLayer " ;
2024-02-29 16:42:19 +08:00
lp . set ( " axis " , 0 ) ;
lp . set ( " mode " , " scale " ) ;
lp . set ( " bias_term " , false ) ;
Ptr < ScaleLayer > layer = ScaleLayer : : create ( lp ) ;
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
Mat weight = Mat ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , 2.0 ) ;
std : : vector < Mat > inputs { input , weight } ;
Mat output_ref = input . mul ( weight ) ;
2024-02-29 16:42:19 +08:00
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
TestLayer ( layer , inputs , output_ref ) ;
}
2024-02-29 16:42:19 +08:00
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
TEST_P ( Layer_Test_01D , ReLU6 )
{
2024-02-29 16:42:19 +08:00
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
lp . type = " ReLU6 " ;
lp . name = " ReLU6Layer " ;
lp . set ( " min_value " , 0.0 ) ;
lp . set ( " max_value " , 1.0 ) ;
Ptr < ReLU6Layer > layer = ReLU6Layer : : create ( lp ) ;
2024-02-29 16:42:19 +08:00
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , 1.0 ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Clip )
{
lp . type = " Clip " ;
lp . name = " ClipLayer " ;
lp . set ( " min_value " , 0.0 ) ;
lp . set ( " max_value " , 1.0 ) ;
Ptr < ReLU6Layer > layer = ReLU6Layer : : create ( lp ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , 1.0 ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , ReLU )
{
lp . type = " ReLU " ;
lp . name = " ReluLayer " ;
lp . set ( " negative_slope " , 0.0 ) ;
Ptr < ReLULayer > layer = ReLULayer : : create ( lp ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , inp_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Gelu )
{
lp . type = " Gelu " ;
lp . name = " GeluLayer " ;
Ptr < GeluLayer > layer = GeluLayer : : create ( lp ) ;
float value = inp_value * 0.5 * ( std : : erf ( inp_value * 1 / std : : sqrt ( 2.0 ) ) + 1.0 ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , GeluApprox )
{
lp . type = " GeluApprox " ;
lp . name = " GeluApproxLayer " ;
Ptr < GeluApproximationLayer > layer = GeluApproximationLayer : : create ( lp ) ;
float value = inp_value * 0.5 * ( 1.0 + std : : tanh ( std : : sqrt ( 2.0 / M_PI ) * ( inp_value + 0.044715 * std : : pow ( inp_value , 3 ) ) ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Sigmoid )
{
lp . type = " Sigmoid " ;
lp . name = " SigmoidLayer " ;
Ptr < SigmoidLayer > layer = SigmoidLayer : : create ( lp ) ;
float value = 1.0 / ( 1.0 + std : : exp ( - inp_value ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Tanh )
{
lp . type = " TanH " ;
lp . name = " TanHLayer " ;
Ptr < Layer > layer = TanHLayer : : create ( lp ) ;
float value = std : : tanh ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Swish )
{
lp . type = " Swish " ;
lp . name = " SwishLayer " ;
Ptr < Layer > layer = SwishLayer : : create ( lp ) ;
float value = inp_value / ( 1 + std : : exp ( - inp_value ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Mish )
{
lp . type = " Mish " ;
lp . name = " MishLayer " ;
Ptr < Layer > layer = MishLayer : : create ( lp ) ;
float value = inp_value * std : : tanh ( std : : log ( 1 + std : : exp ( inp_value ) ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , ELU )
{
lp . type = " ELU " ;
lp . name = " EluLayer " ;
lp . set ( " alpha " , 1.0 ) ;
Ptr < Layer > layer = ELULayer : : create ( lp ) ;
float value = inp_value > 0 ? inp_value : std : : exp ( inp_value ) - 1 ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Abs )
{
lp . type = " Abs " ;
lp . name = " AbsLayer " ;
Ptr < Layer > layer = AbsLayer : : create ( lp ) ;
float value = std : : abs ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , BNLL )
{
lp . type = " BNLL " ;
lp . name = " BNLLLayer " ;
Ptr < Layer > layer = BNLLLayer : : create ( lp ) ;
float value = std : : log ( 1 + std : : exp ( inp_value ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Ceil )
{
lp . type = " Ceil " ;
lp . name = " CeilLayer " ;
Ptr < Layer > layer = CeilLayer : : create ( lp ) ;
float value = std : : ceil ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Floor )
{
lp . type = " Floor " ;
lp . name = " FloorLayer " ;
Ptr < Layer > layer = FloorLayer : : create ( lp ) ;
float value = std : : floor ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Log )
{
lp . type = " Log " ;
lp . name = " LogLayer " ;
Ptr < Layer > layer = LogLayer : : create ( lp ) ;
float value = std : : log ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Round )
{
lp . type = " Round " ;
lp . name = " RoundLayer " ;
Ptr < Layer > layer = RoundLayer : : create ( lp ) ;
float value = std : : round ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Sqrt )
{
lp . type = " Sqrt " ;
lp . name = " SqrtLayer " ;
Ptr < Layer > layer = SqrtLayer : : create ( lp ) ;
float value = std : : sqrt ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Acos )
{
lp . type = " Acos " ;
lp . name = " AcosLayer " ;
Ptr < Layer > layer = AcosLayer : : create ( lp ) ;
inp_value = 0.5 + static_cast < float > ( inp_value ) / ( static_cast < float > ( RAND_MAX / ( 1 - 0.5 ) ) ) ;
input = Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , inp_value ) ;
float value = std : : acos ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Acosh )
{
lp . type = " Acosh " ;
lp . name = " AcoshLayer " ;
Ptr < Layer > layer = AcoshLayer : : create ( lp ) ;
float value = std : : acosh ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Asin )
{
lp . type = " Asin " ;
lp . name = " AsinLayer " ;
Ptr < Layer > layer = AsinLayer : : create ( lp ) ;
inp_value = 0.5 + static_cast < float > ( inp_value ) / ( static_cast < float > ( RAND_MAX / ( 1 - 0.5 ) ) ) ;
input = Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , inp_value ) ;
float value = std : : asin ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Asinh )
{
lp . type = " Asinh " ;
lp . name = " AsinhLayer " ;
Ptr < Layer > layer = AsinhLayer : : create ( lp ) ;
float value = std : : asinh ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Atan )
{
lp . type = " Atan " ;
lp . name = " AtanLayer " ;
Ptr < Layer > layer = AtanLayer : : create ( lp ) ;
float value = std : : atan ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Cos )
{
lp . type = " Cos " ;
lp . name = " CosLayer " ;
Ptr < Layer > layer = CosLayer : : create ( lp ) ;
float value = std : : cos ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Cosh )
{
lp . type = " Cosh " ;
lp . name = " CoshLayer " ;
Ptr < Layer > layer = CoshLayer : : create ( lp ) ;
float value = std : : cosh ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Sin )
{
lp . type = " Sin " ;
lp . name = " SinLayer " ;
Ptr < Layer > layer = SinLayer : : create ( lp ) ;
float value = std : : sin ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
2024-02-29 16:42:19 +08:00
}
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
TEST_P ( Layer_Test_01D , Sinh )
{
lp . type = " Sinh " ;
lp . name = " SinhLayer " ;
Ptr < Layer > layer = SinhLayer : : create ( lp ) ;
float value = std : : sinh ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Tan )
{
lp . type = " Tan " ;
lp . name = " TanLayer " ;
Ptr < Layer > layer = TanLayer : : create ( lp ) ;
float value = std : : tan ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Erf )
{
lp . type = " Erf " ;
lp . name = " ErfLayer " ;
Ptr < Layer > layer = ErfLayer : : create ( lp ) ;
float out_value = std : : erf ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Reciprocal )
{
lp . type = " Reciprocal " ;
lp . name = " ReciprocalLayer " ;
Ptr < Layer > layer = ReciprocalLayer : : create ( lp ) ;
float out_value = 1 / inp_value ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , HardSwish )
{
lp . type = " HardSwish " ;
lp . name = " HardSwishLayer " ;
Ptr < Layer > layer = HardSwishLayer : : create ( lp ) ;
float out_value = inp_value * std : : max ( 0.0f , std : : min ( 6.0f , inp_value + 3.0f ) ) / 6.0f ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Softplus )
{
lp . type = " Softplus " ;
lp . name = " SoftplusLayer " ;
Ptr < Layer > layer = SoftplusLayer : : create ( lp ) ;
float out_value = std : : log ( 1 + std : : exp ( inp_value ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , SoftSign )
{
lp . type = " Softsign " ;
lp . name = " SoftsignLayer " ;
Ptr < Layer > layer = SoftsignLayer : : create ( lp ) ;
float out_value = inp_value / ( 1 + std : : abs ( inp_value ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , CELU )
{
lp . type = " CELU " ;
lp . name = " CeluLayer " ;
lp . set ( " alpha " , 1.0 ) ;
Ptr < Layer > layer = CeluLayer : : create ( lp ) ;
float out_value = inp_value < 0 ? std : : exp ( inp_value ) - 1 : inp_value ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , HardSigmoid )
{
lp . type = " HardSigmoid " ;
lp . name = " HardSigmoidLayer " ;
Ptr < Layer > layer = HardSigmoidLayer : : create ( lp ) ;
float out_value = std : : max ( 0.0f , std : : min ( 1.0f , 0.2f * inp_value + 0.5f ) ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , SELU )
{
lp . type = " SELU " ;
lp . name = " SeluLayer " ;
lp . set ( " alpha " , 1.6732631921768188 ) ;
lp . set ( " gamma " , 1.0507009873554805 ) ;
Ptr < Layer > layer = SeluLayer : : create ( lp ) ;
double inp_value_double = static_cast < double > ( inp_value ) ; // Ensure the input is treated as double for the computation
double value_double = 1.0507009873554805 * ( inp_value_double > 0 ? inp_value_double : 1.6732631921768188 * ( std : : exp ( inp_value_double / 1.0 ) - 1 ) ) ;
float value = static_cast < float > ( value_double ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , ThresholdedReLU )
{
lp . type = " ThresholdedRelu " ;
lp . name = " ThresholdedReluLayer " ;
lp . set ( " alpha " , 1.0 ) ;
Ptr < Layer > layer = ThresholdedReluLayer : : create ( lp ) ;
float value = inp_value > 1.0 ? inp_value : 0.0 ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Power )
{
lp . type = " Power " ;
lp . name = " PowerLayer " ;
lp . set ( " power " , 2.0 ) ;
lp . set ( " scale " , 1.0 ) ;
lp . set ( " shift " , 0.0 ) ;
Ptr < Layer > layer = PowerLayer : : create ( lp ) ;
float value = std : : pow ( inp_value , 2.0 ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Exp )
{
lp . type = " Exp " ;
lp . name = " ExpLayer " ;
Ptr < Layer > layer = ExpLayer : : create ( lp ) ;
float out_value = std : : exp ( inp_value ) ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , out_value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Sign )
{
lp . type = " Sign " ;
lp . name = " SignLayer " ;
Ptr < Layer > layer = SignLayer : : create ( lp ) ;
float value = inp_value > 0 ? 1.0 : 0.0 ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , Shrink )
{
lp . type = " Shrink " ;
lp . name = " ShrinkLayer " ;
lp . set ( " lambda " , 0.5 ) ;
lp . set ( " bias " , 0.5 ) ;
Ptr < Layer > layer = ShrinkLayer : : create ( lp ) ;
float value = inp_value > 0.5 ? inp_value - 0.5 : 0.0 ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
TEST_P ( Layer_Test_01D , ChannelsPReLU )
{
lp . type = " ChannelsPReLU " ;
lp . name = " ChannelsPReLULayer " ;
Mat alpha = Mat ( 1 , 3 , CV_32F , 0.5 ) ;
lp . blobs . push_back ( alpha ) ;
Ptr < Layer > layer = ChannelsPReLULayer : : create ( lp ) ;
float value = inp_value > 0 ? inp_value : 0.5 * inp_value ;
Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , value ) ;
std : : vector < Mat > inputs { input } ;
TestLayer ( layer , inputs , output_ref ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Test_01D ,
testing : : Values (
std : : vector < int > { } ,
std : : vector < int > { 1 }
) ) ;
typedef testing : : TestWithParam < tuple < std : : vector < int > , int > > Layer_Gather_Test ;
TEST_P ( Layer_Gather_Test , Accuracy_01D ) {
2024-02-29 16:42:19 +08:00
2024-05-15 15:50:03 +08:00
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
2024-02-29 16:42:19 +08:00
int axis = get < 1 > ( GetParam ( ) ) ;
2024-05-15 15:50:03 +08:00
// skip case when axis > input shape
if ( axis > input_shape . size ( ) )
return ;
2024-02-29 16:42:19 +08:00
LayerParams lp ;
lp . type = " Gather " ;
2024-05-15 15:50:03 +08:00
lp . name = " GatherLayer " ;
2024-02-29 16:42:19 +08:00
lp . set ( " axis " , axis ) ;
lp . set ( " real_ndims " , 1 ) ;
Ptr < GatherLayer > layer = GatherLayer : : create ( lp ) ;
2024-05-15 15:50:03 +08:00
cv : : Mat input ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randu ( input , 0.0 , 1.0 ) ;
2024-02-29 16:42:19 +08:00
2024-05-15 15:50:03 +08:00
std : : vector < int > indices_shape = { 1 } ;
cv : : Mat indices = cv : : Mat ( indices_shape . size ( ) , indices_shape . data ( ) , CV_32S , 0.0 ) ;
2024-02-29 16:42:19 +08:00
2024-05-15 15:50:03 +08:00
cv : : Mat output_ref ;
if ( input_shape . size ( ) = = 0 | | input_shape . size ( ) = = 1 ) {
output_ref = input ;
} else if ( axis = = 0 ) {
output_ref = input . row ( 0 ) ;
} else if ( axis = = 1 ) {
output_ref = input . col ( 0 ) ;
}
2024-02-29 16:42:19 +08:00
std : : vector < Mat > inputs { input , indices } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-02-29 16:42:19 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Gather_Test , Combine (
2024-05-15 15:50:03 +08:00
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 4 } )
) ,
/*axis*/ testing : : Values ( 0 , 1 )
2024-02-29 16:42:19 +08:00
) ) ;
2024-05-15 15:50:03 +08:00
template < typename T >
int arg_op ( const std : : vector < T > & vec , const std : : string & operation ) {
CV_Assert ( ! vec . empty ( ) ) ;
if ( operation = = " max " ) {
return static_cast < int > ( std : : distance ( vec . begin ( ) , std : : max_element ( vec . begin ( ) , vec . end ( ) ) ) ) ;
} else if ( operation = = " min " ) {
return static_cast < int > ( std : : distance ( vec . begin ( ) , std : : min_element ( vec . begin ( ) , vec . end ( ) ) ) ) ;
} else {
CV_Error ( Error : : StsAssert , " Provided operation: " + operation + " is not supported. Please check the test instantiation. " ) ;
}
}
// Test for ArgLayer is disabled because there problem in runLayer function related to type assignment
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > , std : : string > > Layer_Arg_Test ;
TEST_P ( Layer_Arg_Test , Accuracy_01D ) {
2024-05-15 15:50:03 +08:00
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
std : : string operation = get < 1 > ( GetParam ( ) ) ;
2024-02-29 16:42:19 +08:00
LayerParams lp ;
lp . type = " Arg " ;
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
lp . name = " Arg " + operation + " _Layer " ;
2024-05-15 15:50:03 +08:00
int axis = ( input_shape . size ( ) = = 0 | | input_shape . size ( ) = = 1 ) ? 0 : 1 ;
2024-02-29 16:42:19 +08:00
lp . set ( " op " , operation ) ;
lp . set ( " axis " , axis ) ;
lp . set ( " keepdims " , 1 ) ;
lp . set ( " select_last_index " , 0 ) ;
Ptr < ArgLayer > layer = ArgLayer : : create ( lp ) ;
2024-05-15 15:50:03 +08:00
cv : : Mat input = cv : : Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
for ( int i = 0 ; i < input . total ( ) ; i + + ) {
input . at < float > ( i ) = i ;
2024-02-29 16:42:19 +08:00
}
2024-05-15 15:50:03 +08:00
// create reference output with required shape and values
int index ;
cv : : Mat output_ref ;
std : : vector < int > ref_output ;
if ( input_shape . size ( ) = = 2 ) {
int rows = input_shape [ 0 ] ;
int cols = input_shape [ 1 ] ;
ref_output . resize ( rows ) ;
for ( int i = 0 ; i < rows ; i + + ) {
std : : vector < float > row_vec ( cols ) ;
for ( int j = 0 ; j < cols ; j + + ) {
row_vec [ j ] = input . at < float > ( i , j ) ;
}
ref_output [ i ] = ( int ) arg_op ( row_vec , operation ) ;
}
output_ref = cv : : Mat ( rows , ( axis = = 1 ) ? 1 : cols , CV_32S , ref_output . data ( ) ) ;
} else if ( input_shape . size ( ) < = 1 ) {
index = arg_op ( std : : vector < float > ( input . begin < float > ( ) , input . end < float > ( ) ) , operation ) ;
output_ref = cv : : Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32FC1 , & index ) ;
2024-02-29 16:42:19 +08:00
}
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-02-29 16:42:19 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
2024-05-15 15:50:03 +08:00
// convert output_ref to float to match the output type
output_ref . convertTo ( output_ref , CV_64SC1 ) ;
2024-02-29 16:42:19 +08:00
normAssert ( output_ref , outputs [ 0 ] ) ;
}
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Arg_Test , Combine (
2024-05-15 15:50:03 +08:00
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 4 } )
) ,
2024-02-29 16:42:19 +08:00
/*operation*/ Values ( " max " , " min " )
) ) ;
2024-05-15 15:50:03 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > , std : : string > > Layer_NaryElemwise_1d_Test ;
2024-02-29 16:42:19 +08:00
TEST_P ( Layer_NaryElemwise_1d_Test , Accuracy ) {
2024-05-15 15:50:03 +08:00
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
2024-02-29 16:42:19 +08:00
std : : string operation = get < 1 > ( GetParam ( ) ) ;
LayerParams lp ;
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
lp . type = " NaryEltwise " ;
2024-02-29 16:42:19 +08:00
lp . name = operation + " _Layer " ;
lp . set ( " operation " , operation ) ;
Ptr < NaryEltwiseLayer > layer = NaryEltwiseLayer : : create ( lp ) ;
2024-05-15 15:50:03 +08:00
cv : : Mat input1 = cv : : Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : Mat input2 = cv : : Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
2024-02-29 16:42:19 +08:00
cv : : randu ( input1 , 0.0 , 1.0 ) ;
cv : : randu ( input2 , 0.0 , 1.0 ) ;
cv : : Mat output_ref ;
if ( operation = = " sum " ) {
output_ref = input1 + input2 ;
} else if ( operation = = " mul " ) {
output_ref = input1 . mul ( input2 ) ;
} else if ( operation = = " div " ) {
output_ref = input1 / input2 ;
} else if ( operation = = " sub " ) {
output_ref = input1 - input2 ;
} else {
output_ref = cv : : Mat ( ) ;
}
std : : vector < Mat > inputs { input1 , input2 } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
if ( ! output_ref . empty ( ) ) {
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-02-29 16:42:19 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
} else {
CV_Error ( Error : : StsAssert , " Provided operation: " + operation + " is not supported. Please check the test instantiation. " ) ;
}
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_NaryElemwise_1d_Test , Combine (
2024-05-15 15:50:03 +08:00
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 1 } ) ) ,
/*operation*/ testing : : Values ( " div " , " mul " , " sum " , " sub " )
2024-02-29 16:42:19 +08:00
) ) ;
2024-05-15 15:50:03 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > , std : : string > > Layer_Elemwise_1d_Test ;
TEST_P ( Layer_Elemwise_1d_Test , Accuracy_01D ) {
2024-02-29 16:42:19 +08:00
2024-05-15 15:50:03 +08:00
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
2024-02-29 16:42:19 +08:00
std : : string operation = get < 1 > ( GetParam ( ) ) ;
LayerParams lp ;
lp . type = " Eltwise " ;
lp . name = operation + " _Layer " ;
lp . set ( " operation " , operation ) ;
Ptr < EltwiseLayer > layer = EltwiseLayer : : create ( lp ) ;
2024-05-15 15:50:03 +08:00
cv : : Mat input1 ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : Mat input2 ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
2024-02-29 16:42:19 +08:00
cv : : randu ( input1 , 0.0 , 1.0 ) ;
cv : : randu ( input2 , 0.0 , 1.0 ) ;
// Dynamically select the operation
cv : : Mat output_ref ;
if ( operation = = " sum " ) {
output_ref = input1 + input2 ;
} else if ( operation = = " max " ) {
output_ref = cv : : max ( input1 , input2 ) ;
} else if ( operation = = " min " ) {
output_ref = cv : : min ( input1 , input2 ) ;
} else if ( operation = = " prod " ) {
output_ref = input1 . mul ( input2 ) ;
} else if ( operation = = " div " ) {
output_ref = input1 / input2 ;
} else {
output_ref = cv : : Mat ( ) ;
}
std : : vector < Mat > inputs { input1 , input2 } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
if ( ! output_ref . empty ( ) ) {
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-02-29 16:42:19 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
} else {
CV_Error ( Error : : StsAssert , " Provided operation: " + operation + " is not supported. Please check the test instantiation. " ) ;
}
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Elemwise_1d_Test , Combine (
2024-05-15 15:50:03 +08:00
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 4 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 1 } ) ) ,
/*operation*/ testing : : Values ( " div " , " prod " , " max " , " min " , " sum " )
2024-02-29 16:42:19 +08:00
) ) ;
2024-05-15 15:50:03 +08:00
TEST ( Layer_Reshape_Test , Accuracy_1D )
2024-03-22 08:59:08 +08:00
{
LayerParams lp ;
lp . type = " Reshape " ;
lp . name = " ReshapeLayer " ;
lp . set ( " axis " , 0 ) ; // Set axis to 0 to start reshaping from the first dimension
lp . set ( " num_axes " , - 1 ) ; // Set num_axes to -1 to indicate all following axes are included in the reshape
int newShape [ ] = { 1 } ;
lp . set ( " dim " , DictValue : : arrayInt ( newShape , 1 ) ) ;
Ptr < ReshapeLayer > layer = ReshapeLayer : : create ( lp ) ;
std : : vector < int > input_shape = { 0 } ;
Mat input ( 0 , input_shape . data ( ) , CV_32F ) ;
randn ( input , 0.0 , 1.0 ) ;
Mat output_ref ( 1 , newShape , CV_32F , input . data ) ;
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-03-22 08:59:08 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
2024-03-26 20:13:41 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > > > Layer_Split_Test ;
TEST_P ( Layer_Split_Test , Accuracy_01D )
{
LayerParams lp ;
lp . type = " Split " ;
lp . name = " SplitLayer " ;
int top_count = 2 ; // 2 is for simplicity
lp . set ( " top_count " , top_count ) ;
Ptr < SplitLayer > layer = SplitLayer : : create ( lp ) ;
std : : vector < int > input_shape = std : : get < 0 > ( GetParam ( ) ) ;
Mat input ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( input , 0.0 , 1.0 ) ;
Mat output_ref = Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , input . data ) ;
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( outputs . size ( ) , top_count ) ;
2024-03-26 20:13:41 +08:00
for ( int i = 0 ; i < top_count ; i + + )
{
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( shape ( outputs [ i ] ) , shape ( output_ref ) ) ;
2024-03-26 20:13:41 +08:00
normAssert ( output_ref , outputs [ i ] ) ;
}
}
INSTANTIATE_TEST_CASE_P ( /*nothting*/ , Layer_Split_Test ,
testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 1 , 5 } ) ,
std : : vector < int > ( { 4 , 1 } ) ,
std : : vector < int > ( { 4 , 5 } )
) ) ;
2024-04-01 21:11:10 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > , std : : vector < int > > > Layer_Expand_Test ;
TEST_P ( Layer_Expand_Test , Accuracy_ND ) {
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
std : : vector < int > target_shape = get < 1 > ( GetParam ( ) ) ;
if ( input_shape . size ( ) > = target_shape . size ( ) ) // Skip if input shape is already larger than target shape
return ;
LayerParams lp ;
lp . type = " Expand " ;
lp . name = " ExpandLayer " ;
lp . set ( " shape " , DictValue : : arrayInt ( & target_shape [ 0 ] , target_shape . size ( ) ) ) ;
Ptr < ExpandLayer > layer = ExpandLayer : : create ( lp ) ;
Mat input ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( input , 0.0 , 1.0 ) ;
cv : : Mat output_ref ( target_shape , CV_32F , input . data ) ;
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-04-01 21:11:10 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Expand_Test , Combine (
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 1 , 1 } ) ,
std : : vector < int > ( { 1 , 1 , 1 } )
) ,
/*output blob shape*/ testing : : Values (
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 1 , 1 } ) ,
std : : vector < int > ( { 1 , 1 , 1 } ) ,
std : : vector < int > ( { 1 , 1 , 1 , 1 } )
)
) ) ;
2024-04-04 15:36:00 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > > > Layer_Concat_Test ;
TEST_P ( Layer_Concat_Test , Accuracy_01D )
{
LayerParams lp ;
lp . type = " Concat " ;
lp . name = " ConcatLayer " ;
lp . set ( " axis " , 0 ) ;
Ptr < ConcatLayer > layer = ConcatLayer : : create ( lp ) ;
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
std : : vector < int > output_shape = { 3 } ;
Mat input1 ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , 1.0 ) ;
Mat input2 ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , 2.0 ) ;
Mat input3 ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , 3.0 ) ;
float data [ ] = { 1.0 , 2.0 , 3.0 } ;
Mat output_ref ( output_shape , CV_32F , data ) ;
std : : vector < Mat > inputs { input1 , input2 , input3 } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-04-04 15:36:00 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Concat_Test ,
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } )
) ) ;
2024-04-03 16:39:25 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > , int > > Layer_Softmax_Test ;
TEST_P ( Layer_Softmax_Test , Accuracy_01D ) {
int axis = get < 1 > ( GetParam ( ) ) ;
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
if ( ( input_shape . size ( ) = = 0 & & axis = = 1 ) | |
( ! input_shape . empty ( ) & & input_shape . size ( ) = = 2 & & input_shape [ 0 ] > 1 & & axis = = 1 ) | |
( ! input_shape . empty ( ) & & input_shape [ 0 ] > 1 & & axis = = 0 ) ) // skip since not valid case
return ;
LayerParams lp ;
lp . type = " Softmax " ;
lp . name = " softmaxLayer " ;
lp . set ( " axis " , axis ) ;
Ptr < SoftmaxLayer > layer = SoftmaxLayer : : create ( lp ) ;
Mat input = Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( input , 0.0 , 1.0 ) ;
Mat output_ref ;
cv : : exp ( input , output_ref ) ;
if ( axis = = 1 ) {
cv : : divide ( output_ref , cv : : sum ( output_ref ) , output_ref ) ;
} else {
cv : : divide ( output_ref , output_ref , output_ref ) ;
}
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-04-03 16:39:25 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Softmax_Test , Combine (
/*input blob shape*/
testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 4 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 1 } )
) ,
/*Axis */
testing : : Values ( 0 , 1 )
) ) ;
2024-05-15 15:50:03 +08:00
typedef testing : : TestWithParam < std : : tuple < std : : tuple < int , std : : vector < int > > , std : : string > > Layer_Scatter_Test ;
2024-04-05 20:55:23 +08:00
TEST_P ( Layer_Scatter_Test , Accuracy1D ) {
2024-05-15 15:50:03 +08:00
auto tup = get < 0 > ( GetParam ( ) ) ;
int axis = get < 0 > ( tup ) ;
std : : vector < int > input_shape = get < 1 > ( tup ) ;
2024-04-05 20:55:23 +08:00
std : : string opr = get < 1 > ( GetParam ( ) ) ;
LayerParams lp ;
lp . type = " Scatter " ;
Merge pull request #25116 from Abdurrahheem:ash/elementwise-1d-test
Element-wise test for 1D #25116
This PR introduces 1D parametrized test for element wise layer. The means that the tests covers following layer:
`Clip`, `ReLU6`, `ReLU`,
`GeLU`, `GeluApprox`, `TanH`,
`Swish`, `Mish`, `Sigmoid`,
`ELULayer`, `Abs`, `BNLL`,
`Ceil`, `Floor`, `LogLayer`,
`Round`, `Sqrt`, `Acos`,
`Acosh`, `Asin`, `Asinh`,
`Atan`, `Atanh`, `Cos`,
`Sin`, `Sinh`, `Tan`, `Erf`,
`Reciprocal`, `Cosh`, `HardSwish`,
`Softplus`, `Softsign`, `Celu`,
`HardSigmid`, `Selu`, `ThresholdedRelu`,
`Power`, `Exp`, `Sign`, `Shrink`,
`ChannelsPReLU`
Not sure if this is best way to implement this test.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2024-05-21 19:05:01 +08:00
lp . name = " ScatterLayer " ;
2024-05-15 15:50:03 +08:00
lp . set ( " axis " , axis ) ;
2024-04-05 20:55:23 +08:00
lp . set ( " reduction " , opr ) ;
Ptr < ScatterLayer > layer = ScatterLayer : : create ( lp ) ;
cv : : Mat input = cv : : Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( input , 0.0 , 1.0 ) ;
int indices [ ] = { 3 , 2 , 1 , 0 } ;
cv : : Mat indices_mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32S , indices ) ;
cv : : Mat output ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , 0.0 ) ;
// create reference output
cv : : Mat output_ref ( input_shape , CV_32F , 0.0 ) ;
2024-05-15 15:50:03 +08:00
for ( int i = 0 ; i < ( ( input_shape . size ( ) = = 1 ) ? input_shape [ 0 ] : input_shape [ 1 ] ) ; i + + ) {
2024-04-05 20:55:23 +08:00
output_ref . at < float > ( indices [ i ] ) = input . at < float > ( i ) ;
}
if ( opr = = " add " ) {
output_ref + = output ;
} else if ( opr = = " mul " ) {
output_ref = output . mul ( output_ref ) ;
} else if ( opr = = " max " ) {
cv : : max ( output_ref , output , output_ref ) ;
} else if ( opr = = " min " ) {
cv : : min ( output_ref , output , output_ref ) ;
}
std : : vector < Mat > inputs { output , indices_mat , input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-04-05 20:55:23 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
2024-05-15 15:50:03 +08:00
normAssert ( output_ref , outputs [ 0 ] ) ;
2024-04-05 20:55:23 +08:00
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Scatter_Test , Combine (
2024-05-15 15:50:03 +08:00
/*input blob shape*/ testing : : Values ( std : : make_tuple ( 0 , std : : vector < int > { 4 } ) ,
std : : make_tuple ( 1 , std : : vector < int > { 1 , 4 } ) ) ,
/*reduce*/ testing : : Values ( " none " , " add " , " mul " , " max " , " min " )
2024-04-05 20:55:23 +08:00
) ) ;
2024-07-18 00:19:18 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > , std : : string , int > > Layer_Reduce_Test ;
TEST_P ( Layer_Reduce_Test , Accuracy_01D )
{
auto reduceOperation = [ ] ( const cv : : Mat & input , const std : : string & operation , int axis ) - > cv : : Mat {
// Initialize result matrix
cv : : Mat result ;
if ( shape ( input ) . size ( ) = = 0 | | shape ( input ) . size ( ) = = 1 ) {
result = cv : : Mat ( shape ( input ) . size ( ) , shape ( input ) . data ( ) , CV_32F ) ;
int sz [ 1 ] = { 1 } ;
if ( ! shape ( input ) . empty ( ) & & shape ( input ) [ 0 ] ! = 1 ) {
result = cv : : Mat ( 1 , 1 , CV_32F ) ;
result = result . reshape ( 1 , 1 , sz ) ;
}
} else {
if ( axis = = 0 ) {
result = cv : : Mat : : zeros ( 1 , input . cols , CV_32F ) ;
} else {
result = cv : : Mat : : zeros ( input . rows , 1 , CV_32F ) ;
}
}
auto process_value = [ & ] ( float & res , float value , bool is_first ) {
if ( operation = = " max " ) {
res = is_first ? value : std : : max ( res , value ) ;
} else if ( operation = = " min " ) {
res = is_first ? value : std : : min ( res , value ) ;
} else {
if ( is_first ) {
if ( operation = = " sum " | | operation = = " l1 " | | operation = = " l2 "
| | operation = = " sum_square " | | operation = = " mean " | | operation = = " log_sum "
| | operation = = " log_sum_exp " ) res = 0 ;
else if ( operation = = " prod " ) res = 1 ;
}
if ( operation = = " sum " | | operation = = " mean " ) res + = value ;
else if ( operation = = " sum_square " ) {
res + = value * value ;
} else if ( operation = = " l1 " ) res + = std : : abs ( value ) ;
else if ( operation = = " l2 " ) res + = value * value ;
else if ( operation = = " prod " ) res * = value ;
else if ( operation = = " log_sum " ) res + = value ;
else if ( operation = = " log_sum_exp " ) res + = std : : exp ( value ) ;
}
} ;
for ( int r = 0 ; r < input . rows ; + + r ) {
for ( int c = 0 ; c < input . cols ; + + c ) {
float value = input . at < float > ( r , c ) ;
if ( shape ( input ) . size ( ) = = 1 & & shape ( input ) [ 0 ] ! = 1 & & axis = = 0 ) {
process_value ( result . at < float > ( 0 , 0 ) , value , c = = 0 ) ;
} else {
if ( axis = = 0 ) {
process_value ( result . at < float > ( 0 , c ) , value , r = = 0 ) ;
} else {
process_value ( result . at < float > ( r , 0 ) , value , c = = 0 ) ;
}
}
}
}
if ( operation = = " mean " ) {
if ( shape ( input ) . size ( ) = = 1 & & shape ( input ) [ 0 ] ! = 1 & & axis = = 0 ) {
result . at < float > ( 0 , 0 ) / = input . cols ;
} else {
if ( axis = = 0 ) {
result / = input . rows ;
} else {
result / = input . cols ;
}
}
} else if ( operation = = " l2 " ) {
cv : : sqrt ( result , result ) ;
} else if ( operation = = " log_sum_exp " | | operation = = " log_sum " ) {
cv : : log ( result , result ) ;
}
return result ;
} ;
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
std : : string reduce_operation = get < 1 > ( GetParam ( ) ) ;
int axis = get < 2 > ( GetParam ( ) ) ;
if ( ( input_shape . size ( ) = = 2 & & reduce_operation = = " log_sum " ) | |
( axis > input_shape . size ( ) ) ) // both output and reference are nans
return ;
LayerParams lp ;
lp . type = " Reduce " ;
lp . name = " reduceLayer " ;
lp . set ( " reduce " , reduce_operation ) ;
lp . set ( " axes " , axis ) ;
lp . set ( " keepdims " , true ) ;
Ptr < ReduceLayer > layer = ReduceLayer : : create ( lp ) ;
cv : : Mat input ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , 1.0 ) ;
cv : : randu ( input , 0.0 , 1.0 ) ;
cv : : Mat output_ref = reduceOperation ( input , reduce_operation , axis ) ;
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
ASSERT_EQ ( outputs . size ( ) , 1 ) ;
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Reduce_Test , Combine (
/*input blob shape*/ Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 4 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 1 } ) ,
std : : vector < int > ( { 4 , 4 } )
) ,
/*reduce operation type*/
Values ( " max " , " min " , " mean " , " sum " , " sum_square " , " l1 " , " l2 " , " prod " , " log_sum " , " log_sum_exp " ) ,
Values ( 0 , 1 ) )
) ;
2024-04-03 16:22:53 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > > > Layer_Permute_Test ;
TEST_P ( Layer_Permute_Test , Accuracy_01D )
{
LayerParams lp ;
lp . type = " Permute " ;
lp . name = " PermuteLayer " ;
int order [ ] = { 0 } ; // Since it's a 0D tensor, the order remains [0]
lp . set ( " order " , DictValue : : arrayInt ( order , 1 ) ) ;
Ptr < PermuteLayer > layer = PermuteLayer : : create ( lp ) ;
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
Mat input = Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( input , 0.0 , 1.0 ) ;
Mat output_ref = input . clone ( ) ;
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-04-03 16:22:53 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Permute_Test ,
/*input blob shape*/ testing : : Values (
std : : vector < int > { } ,
std : : vector < int > { 1 } ,
std : : vector < int > { 1 , 4 } ,
std : : vector < int > { 4 , 1 }
) ) ;
2024-04-04 16:28:57 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > > > Layer_Slice_Test ;
TEST_P ( Layer_Slice_Test , Accuracy_1D ) {
LayerParams lp ;
lp . type = " Slice " ;
lp . name = " SliceLayer " ;
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
int splits = 2 ;
int axis = ( input_shape . size ( ) > 1 ) ? 1 : 0 ;
lp . set ( " axis " , axis ) ;
lp . set ( " num_split " , splits ) ;
Ptr < SliceLayer > layer = SliceLayer : : create ( lp ) ;
std : : vector < int > output_shape ;
if ( input_shape . size ( ) > 1 )
output_shape = { 1 , input_shape [ 1 ] / splits } ;
else
output_shape = { input_shape [ 0 ] / splits } ;
cv : : Mat input = cv : : Mat ( input_shape , CV_32F ) ;
cv : : randu ( input , 0.0 , 1.0 ) ;
std : : vector < cv : : Mat > output_refs ;
for ( int i = 0 ; i < splits ; + + i ) {
output_refs . push_back ( cv : : Mat ( output_shape , CV_32F ) ) ;
if ( input_shape . size ( ) > 1 ) {
for ( int j = 0 ; j < output_shape [ 1 ] ; + + j ) {
output_refs [ i ] . at < float > ( j ) = input . at < float > ( i * output_shape [ 1 ] + j ) ;
}
} else {
for ( int j = 0 ; j < output_shape [ 0 ] ; + + j ) {
output_refs [ i ] . at < float > ( j ) = input . at < float > ( i * output_shape [ 0 ] + j ) ;
}
}
}
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( outputs . size ( ) , splits ) ;
2024-04-04 16:28:57 +08:00
for ( int i = 0 ; i < splits ; + + i ) {
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( shape ( outputs [ i ] ) , shape ( output_refs [ i ] ) ) ;
2024-04-04 16:28:57 +08:00
normAssert ( output_refs [ i ] , outputs [ i ] ) ;
}
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Slice_Test ,
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { 4 } ) ,
std : : vector < int > ( { 1 , 4 } )
) ) ;
2024-05-15 15:26:26 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > > > Layer_Padding_Test ;
TEST_P ( Layer_Padding_Test , Accuracy_01D ) {
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
float pad_value = 10 ;
LayerParams lp ;
lp . type = " Padding " ;
lp . name = " PaddingLayer " ;
std : : vector < int > paddings = { 5 , 3 } ; // Pad before and pad after for one dimension
lp . set ( " paddings " , DictValue : : arrayInt ( paddings . data ( ) , paddings . size ( ) ) ) ;
lp . set ( " value " , pad_value ) ;
lp . set ( " input_dims " , ( input_shape . size ( ) = = 1 ) ? - 1 : 0 ) ;
Ptr < PaddingLayer > layer = PaddingLayer : : create ( lp ) ;
cv : : Mat input ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( input , 0.0 , 1.0 ) ;
// Fill in the padding values manually
// Create output ref shape depending on the input shape and input_dims
std : : vector < int > output_shape ;
if ( input_shape . size ( ) = = 0 ) {
output_shape = { 1 + paddings [ 0 ] + paddings [ 1 ] } ;
} else if ( input_shape . size ( ) = = 1 ) {
output_shape = { input_shape [ 0 ] + paddings [ 0 ] + paddings [ 1 ] } ;
} else {
output_shape = { input_shape [ 0 ] , input_shape [ 1 ] + paddings [ 0 ] + paddings [ 1 ] } ;
}
cv : : Mat output_ref ( output_shape . size ( ) , output_shape . data ( ) , CV_32F , pad_value ) ;
if ( input_shape . size ( ) = = 0 ) {
output_ref . at < float > ( paddings [ 0 ] ) = input . at < float > ( 0 ) ;
} else if ( input_shape . size ( ) = = 1 ) {
for ( int i = 0 ; i < input_shape [ 0 ] ; + + i ) {
output_ref . at < float > ( i + paddings [ 0 ] ) = input . at < float > ( i ) ;
}
} else {
for ( int i = 0 ; i < input_shape [ 0 ] ; + + i ) {
for ( int j = 0 ; j < input_shape [ 1 ] ; + + j ) {
output_ref . at < float > ( i , j + paddings [ 0 ] ) = input . at < float > ( i , j ) ;
}
}
}
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Padding_Test ,
/*input blob shape*/ testing : : Values (
std : : vector < int > { } ,
std : : vector < int > { 1 } ,
std : : vector < int > { 1 , 4 } ,
std : : vector < int > { 4 , 1 }
) ) ;
2024-04-15 14:15:36 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > > > Layer_FullyConnected_Test ;
TEST_P ( Layer_FullyConnected_Test , Accuracy_01D )
{
LayerParams lp ;
lp . type = " InnerProduct " ;
lp . name = " InnerProductLayer " ;
lp . set ( " num_output " , 1 ) ;
lp . set ( " bias_term " , false ) ;
lp . set ( " axis " , 0 ) ;
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
RNG & rng = TS : : ptr ( ) - > get_rng ( ) ;
float inp_value = rng . uniform ( 0.0 , 10.0 ) ;
Mat weights ( std : : vector < int > { total ( input_shape ) , 1 } , CV_32F , inp_value ) ;
lp . blobs . push_back ( weights ) ;
Ptr < Layer > layer = LayerFactory : : createLayerInstance ( " InnerProduct " , lp ) ;
Mat input ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
randn ( input , 0 , 1 ) ;
Mat output_ref = input . reshape ( 1 , 1 ) * weights ;
2024-05-15 15:50:03 +08:00
output_ref . dims = input_shape . size ( ) ;
2024-04-15 14:15:36 +08:00
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
2024-04-15 14:15:36 +08:00
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothting*/ , Layer_FullyConnected_Test ,
testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 4 } )
) ) ;
2024-04-23 17:03:39 +08:00
typedef testing : : TestWithParam < std : : vector < int > > Layer_BatchNorm_Test ;
TEST_P ( Layer_BatchNorm_Test , Accuracy_01D )
{
std : : vector < int > input_shape = GetParam ( ) ;
// Layer parameters
LayerParams lp ;
lp . type = " BatchNorm " ;
lp . name = " BatchNormLayer " ;
lp . set ( " has_weight " , false ) ;
lp . set ( " has_bias " , false ) ;
RNG & rng = TS : : ptr ( ) - > get_rng ( ) ;
float inp_value = rng . uniform ( 0.0 , 10.0 ) ;
Mat meanMat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , inp_value ) ;
Mat varMat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , inp_value ) ;
vector < Mat > blobs = { meanMat , varMat } ;
lp . blobs = blobs ;
// Create the layer
Ptr < Layer > layer = BatchNormLayer : : create ( lp ) ;
Mat input ( input_shape . size ( ) , input_shape . data ( ) , CV_32F , 1.0 ) ;
cv : : randn ( input , 0 , 1 ) ;
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
//create output_ref to compare with outputs
Mat output_ref = input . clone ( ) ;
cv : : sqrt ( varMat + 1e-5 , varMat ) ;
output_ref = ( output_ref - meanMat ) / varMat ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-04-23 17:03:39 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothting*/ , Layer_BatchNorm_Test ,
testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 4 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 1 } )
) ) ;
2024-04-17 16:36:54 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > > > Layer_Const_Test ;
TEST_P ( Layer_Const_Test , Accuracy_01D )
{
std : : vector < int > input_shape = get < 0 > ( GetParam ( ) ) ;
LayerParams lp ;
lp . type = " Const " ;
lp . name = " ConstLayer " ;
Mat constBlob = Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( constBlob , 0.0 , 1.0 ) ;
Mat output_ref = constBlob . clone ( ) ;
lp . blobs . push_back ( constBlob ) ;
Ptr < Layer > layer = ConstLayer : : create ( lp ) ;
std : : vector < Mat > inputs ; // No inputs are needed for a ConstLayer
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
2024-05-15 15:50:03 +08:00
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
2024-04-17 16:36:54 +08:00
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Const_Test , testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 1 } ) ,
std : : vector < int > ( { 1 , 4 } ) ,
std : : vector < int > ( { 4 , 1 } )
) ) ;
2024-05-15 00:34:04 +08:00
typedef testing : : TestWithParam < std : : vector < int > > Layer_Tile_Test ;
TEST_P ( Layer_Tile_Test , Accuracy_01D ) {
std : : vector < int > input_shape = GetParam ( ) ;
std : : vector < int > repeats = { 2 , 2 } ;
LayerParams lp ;
lp . type = " Tile " ;
lp . name = " TileLayer " ;
lp . set ( " repeats " , DictValue : : arrayInt ( repeats . data ( ) , repeats . size ( ) ) ) ;
Ptr < TileLayer > layer = TileLayer : : create ( lp ) ;
cv : : Mat input = cv : : Mat ( input_shape . size ( ) , input_shape . data ( ) , CV_32F ) ;
cv : : randn ( input , 0 , 1 ) ;
std : : vector < Mat > inputs { input } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
// Manually create the expected output for verification
cv : : Mat output_ref = input . clone ( ) ;
for ( int i = 0 ; i < repeats . size ( ) ; + + i ) {
cv : : Mat tmp ;
cv : : repeat ( output_ref , ( i = = 0 ? repeats [ i ] : 1 ) , ( i = = 1 ? repeats [ i ] : 1 ) , tmp ) ;
output_ref = tmp ;
}
ASSERT_EQ ( outputs . size ( ) , 1 ) ;
ASSERT_EQ ( shape ( outputs [ 0 ] ) , shape ( output_ref ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Tile_Test ,
/*input blob shape*/ testing : : Values (
std : : vector < int > ( { } ) ,
std : : vector < int > ( { 2 } ) ,
std : : vector < int > ( { 2 , 1 } ) ,
std : : vector < int > ( { 1 , 2 } ) ,
std : : vector < int > ( { 2 , 2 } )
) ) ;
2024-05-21 18:36:12 +08:00
typedef testing : : TestWithParam < tuple < std : : vector < int > , std : : vector < int > , std : : string > > Layer_Einsum_Test ;
2024-05-14 20:45:56 +08:00
TEST_P ( Layer_Einsum_Test , Accuracy_01D )
{
auto tup = GetParam ( ) ;
2024-05-21 18:36:12 +08:00
std : : vector < int > input_shape1 = std : : get < 0 > ( tup ) ;
std : : vector < int > input_shape2 = std : : get < 1 > ( tup ) ;
std : : string equation = std : : get < 2 > ( tup ) ;
2024-05-14 20:45:56 +08:00
LayerParams lp ;
lp . type = " Einsum " ;
lp . name = " EinsumLayer " ;
lp . set ( " equation " , equation ) ;
lp . set ( " inputSize " , 2 ) ;
lp . set ( " outputSize " , 1 ) ;
2024-05-21 18:36:12 +08:00
lp . set ( " inputShapes0 " , DictValue : : arrayInt ( & input_shape1 [ 0 ] , input_shape1 . size ( ) ) ) ;
lp . set ( " inputShapes1 " , DictValue : : arrayInt ( & input_shape2 [ 0 ] , input_shape2 . size ( ) ) ) ;
2024-05-14 20:45:56 +08:00
Ptr < Layer > layer = EinsumLayer : : create ( lp ) ;
2024-05-21 18:36:12 +08:00
cv : : Mat input1 ( input_shape1 . size ( ) , input_shape1 . data ( ) , CV_32F ) ;
cv : : Mat input2 ( input_shape2 . size ( ) , input_shape2 . data ( ) , CV_32F ) ;
2024-05-14 20:45:56 +08:00
cv : : randn ( input1 , 0.0 , 1.0 ) ; cv : : randn ( input2 , 0.0 , 1.0 ) ;
std : : vector < Mat > inputs = { input1 , input2 } ;
std : : vector < Mat > outputs ;
runLayer ( layer , inputs , outputs ) ;
ASSERT_EQ ( 1 , outputs . size ( ) ) ;
// create output_ref to compare with outputs
cv : : Mat output_ref ;
int size [ ] = { 1 } ;
2024-05-21 18:36:12 +08:00
if ( equation = = " ,-> " | | equation = = " i,->i " | | equation = = " ,i->i " | | equation = = " ij,->ij " ) {
2024-05-14 20:45:56 +08:00
output_ref = input1 . mul ( input2 ) ;
2024-05-21 18:36:12 +08:00
if ( equation = = " ,i->i " )
output_ref = output_ref . reshape ( 1 , 1 , size ) ;
} else if ( equation = = " i,i->i " ) {
2024-05-14 20:45:56 +08:00
output_ref = input1 . mul ( input2 ) ;
2024-05-21 18:36:12 +08:00
} else if ( equation = = " i,i-> " ) {
2024-05-14 20:45:56 +08:00
output_ref = input1 . mul ( input2 ) ;
cv : : Scalar sum = cv : : sum ( output_ref ) ;
output_ref = cv : : Mat ( 0 , nullptr , CV_32F , sum [ 0 ] ) ;
2024-05-21 18:36:12 +08:00
} else if ( equation = = " ij,ij->ij " ) {
2024-05-14 20:45:56 +08:00
output_ref = input1 . mul ( input2 ) ;
2024-05-21 18:36:12 +08:00
} else if ( equation = = " ij,ij->i " ) {
2024-05-14 20:45:56 +08:00
output_ref = input1 . mul ( input2 ) ;
2024-05-21 18:36:12 +08:00
if ( input_shape1 [ 0 ] = = 1 ) {
2024-05-14 20:45:56 +08:00
cv : : Scalar sum = cv : : sum ( output_ref ) ;
output_ref = cv : : Mat ( 1 , size , CV_32F , sum [ 0 ] ) ;
2024-05-21 18:36:12 +08:00
} else if ( input_shape1 [ 1 ] = = 1 ) {
size [ 0 ] = input_shape1 [ 0 ] ;
2024-05-14 20:45:56 +08:00
output_ref = output_ref . reshape ( 1 , 1 , size ) ;
} else {
cv : : reduce ( output_ref , output_ref , 1 , cv : : REDUCE_SUM , CV_32F ) ;
2024-05-21 18:36:12 +08:00
size [ 0 ] = input_shape1 [ 0 ] ;
2024-05-14 20:45:56 +08:00
output_ref = output_ref . reshape ( 1 , 1 , size ) ;
}
} else {
output_ref = cv : : Mat ( ) ;
}
ASSERT_EQ ( shape ( output_ref ) , shape ( outputs [ 0 ] ) ) ;
normAssert ( output_ref , outputs [ 0 ] ) ;
}
INSTANTIATE_TEST_CASE_P ( /*nothing*/ , Layer_Einsum_Test , testing : : Values (
2024-05-21 18:36:12 +08:00
std : : make_tuple ( std : : vector < int > ( { } ) , std : : vector < int > ( { } ) , " ,-> " ) ,
std : : make_tuple ( std : : vector < int > ( { 1 } ) , std : : vector < int > ( { } ) , " i,->i " ) ,
std : : make_tuple ( std : : vector < int > ( { } ) , std : : vector < int > ( { 1 } ) , " ,i->i " ) ,
std : : make_tuple ( std : : vector < int > ( { 4 , 1 } ) , std : : vector < int > ( { } ) , " ij,->ij " ) ,
// std::make_tuple(std::vector<int>({}), std::vector<int>({4, 1}), ",ij->ij")), // mul function of arithm_op can not handle cases with different number of channels
std : : make_tuple ( std : : vector < int > ( { 1 } ) , std : : vector < int > ( { 1 } ) , " i,i->i " ) ,
std : : make_tuple ( std : : vector < int > ( { 1 } ) , std : : vector < int > ( { 1 } ) , " i,i-> " ) ,
std : : make_tuple ( std : : vector < int > ( { 4 } ) , std : : vector < int > ( { 4 } ) , " i,i->i " ) ,
std : : make_tuple ( std : : vector < int > ( { 4 } ) , std : : vector < int > ( { 4 } ) , " i,i-> " ) ,
std : : make_tuple ( std : : vector < int > ( { 1 , 4 } ) , std : : vector < int > ( { 1 , 4 } ) , " ij,ij->ij " ) ,
std : : make_tuple ( std : : vector < int > ( { 4 , 1 } ) , std : : vector < int > ( { 4 , 1 } ) , " ij,ij->ij " ) ,
std : : make_tuple ( std : : vector < int > ( { 1 , 4 } ) , std : : vector < int > ( { 1 , 4 } ) , " ij,ij->i " ) ,
std : : make_tuple ( std : : vector < int > ( { 4 , 1 } ) , std : : vector < int > ( { 4 , 1 } ) , " ij,ij->i " ) ,
std : : make_tuple ( std : : vector < int > ( { 4 , 4 } ) , std : : vector < int > ( { 4 , 4 } ) , " ij,ij->i " )
2024-05-14 20:45:56 +08:00
) ) ;
2024-02-29 16:42:19 +08:00
} }