opencv/modules/imgproc/src/deriv.cpp

999 lines
38 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
2014-08-01 22:11:20 +08:00
#include "opencl_kernels_imgproc.hpp"
/****************************************************************************************\
Sobel & Scharr Derivative Filters
\****************************************************************************************/
namespace cv
{
static void getScharrKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, bool normalize, int ktype )
{
const int ksize = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksize, 1, ktype, -1, true);
_ky.create(ksize, 1, ktype, -1, true);
Mat kx = _kx.getMat();
Mat ky = _ky.getMat();
CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int kerI[3];
if( order == 0 )
kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize || order == 1 ? 1. : 1./32;
temp.convertTo(*kernel, ktype, scale);
}
}
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
int dx, int dy, int _ksize, bool normalize, int ktype )
{
int i, j, ksizeX = _ksize, ksizeY = _ksize;
if( ksizeX == 1 && dx > 0 )
ksizeX = 3;
if( ksizeY == 1 && dy > 0 )
ksizeY = 3;
CV_Assert( ktype == CV_32F || ktype == CV_64F );
_kx.create(ksizeX, 1, ktype, -1, true);
_ky.create(ksizeY, 1, ktype, -1, true);
Mat kx = _kx.getMat();
2012-10-17 15:12:04 +08:00
Mat ky = _ky.getMat();
if( _ksize % 2 == 0 || _ksize > 31 )
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
for( int k = 0; k < 2; k++ )
{
Mat* kernel = k == 0 ? &kx : &ky;
int order = k == 0 ? dx : dy;
int ksize = k == 0 ? ksizeX : ksizeY;
CV_Assert( ksize > order );
if( ksize == 1 )
kerI[0] = 1;
else if( ksize == 3 )
{
if( order == 0 )
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
else if( order == 1 )
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
else
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
}
else
{
int oldval, newval;
kerI[0] = 1;
for( i = 0; i < ksize; i++ )
kerI[i+1] = 0;
for( i = 0; i < ksize - order - 1; i++ )
{
oldval = kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j]+kerI[j-1];
kerI[j-1] = oldval;
oldval = newval;
}
}
for( i = 0; i < order; i++ )
{
oldval = -kerI[0];
for( j = 1; j <= ksize; j++ )
{
newval = kerI[j-1] - kerI[j];
kerI[j-1] = oldval;
oldval = newval;
}
}
}
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1));
temp.convertTo(*kernel, ktype, scale);
}
}
}
void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy,
int ksize, bool normalize, int ktype )
{
if( ksize <= 0 )
getScharrKernels( kx, ky, dx, dy, normalize, ktype );
else
getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype );
}
cv::Ptr<cv::FilterEngine> cv::createDerivFilter(int srcType, int dstType,
int dx, int dy, int ksize, int borderType )
{
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F );
return createSeparableLinearFilter(srcType, dstType,
kx, ky, Point(-1,-1), 0, borderType );
}
#ifdef HAVE_IPP
namespace cv
{
static bool IPPDerivScharr(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, double scale, double delta, int borderType)
{
CV_INSTRUMENT_REGION_IPP()
#if IPP_VERSION_X100 >= 810
if ((0 > dx) || (0 > dy) || (1 != dx + dy))
return false;
2014-04-15 14:00:08 +08:00
if (fabs(delta) > FLT_EPSILON)
return false;
2014-04-15 14:00:08 +08:00
IppiBorderType ippiBorderType = ippiGetBorderType(borderType & (~BORDER_ISOLATED));
if ((int)ippiBorderType < 0)
return false;
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
int dtype = CV_MAKETYPE(ddepth, cn);
Mat src = _src.getMat();
if (0 == (BORDER_ISOLATED & borderType))
{
Size size; Point offset;
src.locateROI(size, offset);
if (0 < offset.x)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemLeft);
if (0 < offset.y)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemTop);
if (offset.x + src.cols < size.width)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemRight);
if (offset.y + src.rows < size.height)
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemBottom);
}
bool horz = (0 == dx) && (1 == dy);
IppiSize roiSize = {src.cols, src.rows};
_dst.create( _src.size(), dtype);
Mat dst = _dst.getMat();
2014-04-21 18:19:25 +08:00
IppStatus sts = ippStsErr;
if ((CV_8U == stype) && (CV_16S == dtype))
{
2014-04-21 18:19:25 +08:00
int bufferSize = 0; Ipp8u *pBuffer;
if (horz)
{
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp8u, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = CV_INSTRUMENT_FUN_IPP(ippiFilterScharrHorizMaskBorder_8u16s_C1R, src.ptr(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
else
{
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp8u, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = CV_INSTRUMENT_FUN_IPP(ippiFilterScharrVertMaskBorder_8u16s_C1R, src.ptr(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
ippsFree(pBuffer);
}
else if ((CV_16S == stype) && (CV_16S == dtype))
{
2014-04-21 18:19:25 +08:00
int bufferSize = 0; Ipp8u *pBuffer;
if (horz)
{
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp16s, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = CV_INSTRUMENT_FUN_IPP(ippiFilterScharrHorizMaskBorder_16s_C1R, src.ptr<Ipp16s>(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
else
{
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp16s, ipp16s, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = CV_INSTRUMENT_FUN_IPP(ippiFilterScharrVertMaskBorder_16s_C1R, src.ptr<Ipp16s>(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
ippsFree(pBuffer);
}
else if ((CV_32F == stype) && (CV_32F == dtype))
{
2014-04-21 18:19:25 +08:00
int bufferSize = 0; Ipp8u *pBuffer;
if (horz)
{
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp32f, ipp32f, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = CV_INSTRUMENT_FUN_IPP(ippiFilterScharrHorizMaskBorder_32f_C1R, src.ptr<Ipp32f>(), (int)src.step, dst.ptr<Ipp32f>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
else
{
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp32f, ipp32f, 1, &bufferSize))
return false;
pBuffer = ippsMalloc_8u(bufferSize);
if (NULL == pBuffer)
return false;
sts = CV_INSTRUMENT_FUN_IPP(ippiFilterScharrVertMaskBorder_32f_C1R, src.ptr<Ipp32f>(), (int)src.step, dst.ptr<Ipp32f>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
}
ippsFree(pBuffer);
if (sts < 0)
return false;;
if (FLT_EPSILON < fabs(scale - 1.0))
sts = CV_INSTRUMENT_FUN_IPP(ippiMulC_32f_C1R, dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, roiSize);
}
2014-04-21 18:19:25 +08:00
return (0 <= sts);
#else
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ddepth); CV_UNUSED(dx); CV_UNUSED(dy); CV_UNUSED(scale); CV_UNUSED(delta); CV_UNUSED(borderType);
return false;
#endif
}
2014-04-18 19:13:34 +08:00
static bool IPPDerivSobel(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType)
{
CV_INSTRUMENT_REGION_IPP()
if (((borderType & ~BORDER_ISOLATED) != BORDER_REPLICATE) || ((3 != ksize) && (5 != ksize)))
return false;
if (fabs(delta) > FLT_EPSILON)
return false;
2014-04-18 19:13:34 +08:00
if (1 != _src.channels())
return false;
int bufSize = 0;
cv::AutoBuffer<char> buffer;
Mat src = _src.getMat(), dst = _dst.getMat();
if ((borderType & BORDER_ISOLATED) == 0 && src.isSubmatrix())
return false;
if ( ddepth < 0 )
ddepth = src.depth();
IppiSize roi = {src.cols, src.rows};
IppiMaskSize kernel = (IppiMaskSize)(ksize*10+ksize);
if (src.type() == CV_8U && dst.type() == CV_16S && scale == 1)
{
if ((dx == 1) && (dy == 0))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelNegVertBorderGetBufferSize(roi, kernel, ipp8u, ipp16s, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > CV_INSTRUMENT_FUN_IPP(ippiFilterSobelNegVertBorder_8u16s_C1R, src.ptr<Ipp8u>(), (int)src.step,
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
2014-04-21 18:19:25 +08:00
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
2014-04-21 18:19:25 +08:00
return true;
}
if ((dx == 0) && (dy == 1))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelHorizBorderGetBufferSize(roi, kernel, ipp8u, ipp16s, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > CV_INSTRUMENT_FUN_IPP(ippiFilterSobelHorizBorder_8u16s_C1R, src.ptr<Ipp8u>(), (int)src.step,
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
2014-04-21 18:19:25 +08:00
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
2014-04-21 18:19:25 +08:00
return true;
}
if ((dx == 2) && (dy == 0))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelVertSecondBorderGetBufferSize(roi, kernel, ipp8u, ipp16s, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelVertSecondGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > CV_INSTRUMENT_FUN_IPP(ippiFilterSobelVertSecondBorder_8u16s_C1R, src.ptr<Ipp8u>(), (int)src.step,
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
2014-04-21 18:19:25 +08:00
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
2014-04-21 18:19:25 +08:00
return true;
}
if ((dx == 0) && (dy == 2))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelHorizSecondBorderGetBufferSize(roi, kernel, ipp8u, ipp16s, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelHorizSecondGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > CV_INSTRUMENT_FUN_IPP(ippiFilterSobelHorizSecondBorder_8u16s_C1R, src.ptr<Ipp8u>(), (int)src.step,
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
2014-04-21 18:19:25 +08:00
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
2014-04-21 18:19:25 +08:00
return true;
}
}
if (src.type() == CV_32F && dst.type() == CV_32F)
{
#if IPP_DISABLE_BLOCK
if ((dx == 1) && (dy == 0))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelNegVertBorderGetBufferSize(roi, kernel, ipp32f, ipp32f, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelNegVertGetBufferSize_32f_C1R(roi, kernel, &bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > ippiFilterSobelNegVertBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step,
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
if(scale != 1)
ippiMulC_32f_C1R(dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if ((dx == 0) && (dy == 1))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelHorizBorderGetBufferSize(roi, kernel, ipp32f, ipp32f, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelHorizGetBufferSize_32f_C1R(roi, kernel,&bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > ippiFilterSobelHorizBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step,
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
if(scale != 1)
ippiMulC_32f_C1R(dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
2014-04-08 18:37:46 +08:00
#endif
if((dx == 2) && (dy == 0))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelVertSecondBorderGetBufferSize(roi, kernel, ipp32f, ipp32f, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelVertSecondGetBufferSize_32f_C1R(roi, kernel,&bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > CV_INSTRUMENT_FUN_IPP(ippiFilterSobelVertSecondBorder_32f_C1R, src.ptr<Ipp32f>(), (int)src.step,
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
if(scale != 1)
CV_INSTRUMENT_FUN_IPP(ippiMulC_32f_C1R, dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
if((dx == 0) && (dy == 2))
{
#if IPP_VERSION_X100 >= 900
if (0 > ippiFilterSobelHorizSecondBorderGetBufferSize(roi, kernel, ipp32f, ipp32f, 1,&bufSize))
return false;
buffer.allocate(bufSize);
#else
if (0 > ippiFilterSobelHorizSecondGetBufferSize_32f_C1R(roi, kernel,&bufSize))
return false;
buffer.allocate(bufSize);
#endif
if (0 > CV_INSTRUMENT_FUN_IPP(ippiFilterSobelHorizSecondBorder_32f_C1R, src.ptr<Ipp32f>(), (int)src.step,
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
return false;
if(scale != 1)
CV_INSTRUMENT_FUN_IPP(ippiMulC_32f_C1R, dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
return true;
}
}
return false;
}
static bool ipp_sobel(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType)
{
CV_INSTRUMENT_REGION_IPP()
if (ksize < 0)
{
if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
return true;
}
else if (0 < ksize)
{
if (IPPDerivSobel(_src, _dst, ddepth, dx, dy, ksize, scale, delta, borderType))
return true;
}
return false;
}
}
#endif
#ifdef HAVE_OPENCL
namespace cv
{
static bool ocl_sepFilter3x3_8UC1(InputArray _src, OutputArray _dst, int ddepth,
InputArray _kernelX, InputArray _kernelY, double delta, int borderType)
{
const ocl::Device & dev = ocl::Device::getDefault();
int type = _src.type(), sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
if ( !(dev.isIntel() && (type == CV_8UC1) && (ddepth == CV_8U) &&
(_src.offset() == 0) && (_src.step() % 4 == 0) &&
(_src.cols() % 16 == 0) && (_src.rows() % 2 == 0)) )
return false;
Mat kernelX = _kernelX.getMat().reshape(1, 1);
if (kernelX.cols % 2 != 1)
return false;
Mat kernelY = _kernelY.getMat().reshape(1, 1);
if (kernelY.cols % 2 != 1)
return false;
if (ddepth < 0)
ddepth = sdepth;
Size size = _src.size();
size_t globalsize[2] = { 0, 0 };
size_t localsize[2] = { 0, 0 };
globalsize[0] = size.width / 16;
globalsize[1] = size.height / 2;
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", 0, "BORDER_REFLECT_101" };
char build_opts[1024];
sprintf(build_opts, "-D %s %s%s", borderMap[borderType],
ocl::kernelToStr(kernelX, CV_32F, "KERNEL_MATRIX_X").c_str(),
ocl::kernelToStr(kernelY, CV_32F, "KERNEL_MATRIX_Y").c_str());
ocl::Kernel kernel("sepFilter3x3_8UC1_cols16_rows2", cv::ocl::imgproc::sepFilter3x3_oclsrc, build_opts);
if (kernel.empty())
return false;
UMat src = _src.getUMat();
_dst.create(size, CV_MAKETYPE(ddepth, cn));
if (!(_dst.offset() == 0 && _dst.step() % 4 == 0))
return false;
UMat dst = _dst.getUMat();
int idxArg = kernel.set(0, ocl::KernelArg::PtrReadOnly(src));
idxArg = kernel.set(idxArg, (int)src.step);
idxArg = kernel.set(idxArg, ocl::KernelArg::PtrWriteOnly(dst));
idxArg = kernel.set(idxArg, (int)dst.step);
idxArg = kernel.set(idxArg, (int)dst.rows);
idxArg = kernel.set(idxArg, (int)dst.cols);
idxArg = kernel.set(idxArg, static_cast<float>(delta));
return kernel.run(2, globalsize, (localsize[0] == 0) ? NULL : localsize, false);
}
}
#endif
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
int ksize, double scale, double delta, int borderType )
{
CV_INSTRUMENT_REGION()
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
2011-05-10 14:24:44 +08:00
if (ddepth < 0)
ddepth = sdepth;
2014-04-16 23:45:35 +08:00
int dtype = CV_MAKE_TYPE(ddepth, cn);
_dst.create( _src.size(), dtype );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
return;
if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
2012-10-17 15:12:04 +08:00
CV_IPP_RUN(!(ocl::useOpenCL() && _dst.isUMat()), ipp_sobel(_src, _dst, ddepth, dx, dy, ksize, scale, delta, borderType));
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && ksize == 3 &&
(size_t)_src.rows() > ky.total() && (size_t)_src.cols() > kx.total(),
ocl_sepFilter3x3_8UC1(_src, _dst, ddepth, kx, ky, delta, borderType));
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
double scale, double delta, int borderType )
{
CV_INSTRUMENT_REGION()
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
2014-04-16 23:45:35 +08:00
int dtype = CV_MAKETYPE(ddepth, cn);
_dst.create( _src.size(), dtype );
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && scale == 1.0 && delta == 0)
{
Mat src = _src.getMat(), dst = _dst.getMat();
if (tegra::scharr(src, dst, dx, dy, borderType))
return;
}
#endif
2012-10-17 15:12:04 +08:00
CV_IPP_RUN(!(ocl::useOpenCL() && _dst.isUMat()), IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType));
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
Mat kx, ky;
getScharrKernels( kx, ky, dx, dy, false, ktype );
if( scale != 1 )
{
// usually the smoothing part is the slowest to compute,
// so try to scale it instead of the faster differenciating part
if( dx == 0 )
kx *= scale;
else
ky *= scale;
}
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 &&
(size_t)_src.rows() > ky.total() && (size_t)_src.cols() > kx.total(),
ocl_sepFilter3x3_8UC1(_src, _dst, ddepth, kx, ky, delta, borderType));
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
}
#ifdef HAVE_OPENCL
namespace cv {
#define LAPLACIAN_LOCAL_MEM(tileX, tileY, ksize, elsize) (((tileX) + 2 * (int)((ksize) / 2)) * (3 * (tileY) + 2 * (int)((ksize) / 2)) * elsize)
static bool ocl_Laplacian5(InputArray _src, OutputArray _dst,
const Mat & kd, const Mat & ks, double scale, double delta,
int borderType, int depth, int ddepth)
{
const size_t tileSizeX = 16;
const size_t tileSizeYmin = 8;
const ocl::Device dev = ocl::Device::getDefault();
int stype = _src.type();
int sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), esz = CV_ELEM_SIZE(stype);
bool doubleSupport = dev.doubleFPConfig() > 0;
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
return false;
Mat kernelX = kd.reshape(1, 1);
if (kernelX.cols % 2 != 1)
return false;
Mat kernelY = ks.reshape(1, 1);
if (kernelY.cols % 2 != 1)
return false;
CV_Assert(kernelX.cols == kernelY.cols);
size_t wgs = dev.maxWorkGroupSize();
size_t lmsz = dev.localMemSize();
size_t src_step = _src.step(), src_offset = _src.offset();
2014-09-02 21:25:25 +08:00
const size_t tileSizeYmax = wgs / tileSizeX;
// workaround for Nvidia: 3 channel vector type takes 4*elem_size in local memory
int loc_mem_cn = dev.vendorID() == ocl::Device::VENDOR_NVIDIA && cn == 3 ? 4 : cn;
if (((src_offset % src_step) % esz == 0) &&
(
(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE) ||
2014-08-26 17:29:56 +08:00
((borderType == BORDER_REFLECT || borderType == BORDER_WRAP || borderType == BORDER_REFLECT_101) &&
2014-09-02 21:25:25 +08:00
(_src.cols() >= (int) (kernelX.cols + tileSizeX) && _src.rows() >= (int) (kernelY.cols + tileSizeYmax)))
) &&
2014-09-02 21:25:25 +08:00
(tileSizeX * tileSizeYmin <= wgs) &&
(LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeYmin, kernelX.cols, loc_mem_cn * 4) <= lmsz)
)
{
Size size = _src.size(), wholeSize;
Point origin;
int dtype = CV_MAKE_TYPE(ddepth, cn);
int wdepth = CV_32F;
2014-09-02 21:25:25 +08:00
size_t tileSizeY = tileSizeYmax;
while ((tileSizeX * tileSizeY > wgs) || (LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeY, kernelX.cols, loc_mem_cn * 4) > lmsz))
{
tileSizeY /= 2;
}
size_t lt2[2] = { tileSizeX, tileSizeY};
size_t gt2[2] = { lt2[0] * (1 + (size.width - 1) / lt2[0]), lt2[1] };
char cvt[2][40];
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
"BORDER_REFLECT_101" };
String opts = cv::format("-D BLK_X=%d -D BLK_Y=%d -D RADIUS=%d%s%s"
" -D convertToWT=%s -D convertToDT=%s"
2014-08-26 17:29:56 +08:00
" -D %s -D srcT1=%s -D dstT1=%s -D WT1=%s"
" -D srcT=%s -D dstT=%s -D WT=%s"
" -D CN=%d ",
(int)lt2[0], (int)lt2[1], kernelX.cols / 2,
ocl::kernelToStr(kernelX, wdepth, "KERNEL_MATRIX_X").c_str(),
ocl::kernelToStr(kernelY, wdepth, "KERNEL_MATRIX_Y").c_str(),
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]),
2014-08-26 17:29:56 +08:00
borderMap[borderType],
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), ocl::typeToStr(wdepth),
ocl::typeToStr(CV_MAKETYPE(sdepth, cn)),
ocl::typeToStr(CV_MAKETYPE(ddepth, cn)),
ocl::typeToStr(CV_MAKETYPE(wdepth, cn)),
cn);
ocl::Kernel k("laplacian", ocl::imgproc::laplacian5_oclsrc, opts);
if (k.empty())
return false;
UMat src = _src.getUMat();
_dst.create(size, dtype);
UMat dst = _dst.getUMat();
int src_offset_x = static_cast<int>((src_offset % src_step) / esz);
int src_offset_y = static_cast<int>(src_offset / src_step);
src.locateROI(wholeSize, origin);
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src_step, src_offset_x, src_offset_y,
wholeSize.height, wholeSize.width, ocl::KernelArg::WriteOnly(dst),
static_cast<float>(scale), static_cast<float>(delta));
return k.run(2, gt2, lt2, false);
}
int iscale = cvRound(scale), idelta = cvRound(delta);
bool floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
int wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
if (!doubleSupport && wdepth == CV_64F)
return false;
char cvt[2][40];
ocl::Kernel k("sumConvert", ocl::imgproc::laplacian5_oclsrc,
format("-D ONLY_SUM_CONVERT "
"-D srcT=%s -D WT=%s -D dstT=%s -D coeffT=%s -D wdepth=%d "
"-D convertToWT=%s -D convertToDT=%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)),
ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)),
ocl::typeToStr(wdepth), wdepth,
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]),
ocl::convertTypeStr(wdepth, ddepth, kercn, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat d2x, d2y;
sepFilter2D(_src, d2x, depth, kd, ks, Point(-1, -1), 0, borderType);
sepFilter2D(_src, d2y, depth, ks, kd, Point(-1, -1), 0, borderType);
UMat dst = _dst.getUMat();
ocl::KernelArg d2xarg = ocl::KernelArg::ReadOnlyNoSize(d2x),
d2yarg = ocl::KernelArg::ReadOnlyNoSize(d2y),
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
if (wdepth >= CV_32F)
k.args(d2xarg, d2yarg, dstarg, (float)scale, (float)delta);
else
k.args(d2xarg, d2yarg, dstarg, iscale, idelta);
size_t globalsize[] = { (size_t)dst.cols * cn / kercn, (size_t)dst.rows };
return k.run(2, globalsize, NULL, false);
}
}
#endif
#if defined(HAVE_IPP)
namespace cv
{
static bool ipp_Laplacian(InputArray _src, OutputArray _dst, int ddepth, int ksize,
double scale, double delta, int borderType)
{
CV_INSTRUMENT_REGION_IPP()
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
2012-10-17 15:12:04 +08:00
int iscale = saturate_cast<int>(scale), idelta = saturate_cast<int>(delta);
bool floatScale = std::fabs(scale - iscale) > DBL_EPSILON, needScale = iscale != 1;
bool floatDelta = std::fabs(delta - idelta) > DBL_EPSILON, needDelta = delta != 0;
int borderTypeNI = borderType & ~BORDER_ISOLATED;
Mat src = _src.getMat(), dst = _dst.getMat();
if (src.data != dst.data)
{
Ipp32s bufsize;
IppStatus status = (IppStatus)-1;
IppiSize roisize = { src.cols, src.rows };
IppiMaskSize masksize = ksize == 3 ? ippMskSize3x3 : ippMskSize5x5;
IppiBorderType borderTypeIpp = ippiGetBorderType(borderTypeNI);
2014-04-12 19:40:26 +08:00
#define IPP_FILTER_LAPLACIAN(ippsrctype, ippdsttype, ippfavor) \
do \
2014-04-12 19:40:26 +08:00
{ \
if (borderTypeIpp >= 0 && ippiFilterLaplacianGetBufferSize_##ippfavor##_C1R(roisize, masksize, &bufsize) >= 0) \
{ \
Ipp8u * buffer = ippsMalloc_8u(bufsize); \
status = CV_INSTRUMENT_FUN_IPP(ippiFilterLaplacianBorder_##ippfavor##_C1R, src.ptr<ippsrctype>(), (int)src.step, dst.ptr<ippdsttype>(), \
(int)dst.step, roisize, masksize, borderTypeIpp, 0, buffer); \
ippsFree(buffer); \
} \
} while ((void)0, 0)
CV_SUPPRESS_DEPRECATED_START
if (sdepth == CV_8U && ddepth == CV_16S && !floatScale && !floatDelta)
{
IPP_FILTER_LAPLACIAN(Ipp8u, Ipp16s, 8u16s);
2014-04-12 19:40:26 +08:00
if (needScale && status >= 0)
status = CV_INSTRUMENT_FUN_IPP(ippiMulC_16s_C1IRSfs, (Ipp16s)iscale, dst.ptr<Ipp16s>(), (int)dst.step, roisize, 0);
if (needDelta && status >= 0)
status = CV_INSTRUMENT_FUN_IPP(ippiAddC_16s_C1IRSfs, (Ipp16s)idelta, dst.ptr<Ipp16s>(), (int)dst.step, roisize, 0);
}
else if (sdepth == CV_32F && ddepth == CV_32F)
{
IPP_FILTER_LAPLACIAN(Ipp32f, Ipp32f, 32f);
2014-04-12 19:40:26 +08:00
if (needScale && status >= 0)
status = CV_INSTRUMENT_FUN_IPP(ippiMulC_32f_C1IR, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, roisize);
if (needDelta && status >= 0)
status = CV_INSTRUMENT_FUN_IPP(ippiAddC_32f_C1IR, (Ipp32f)delta, dst.ptr<Ipp32f>(), (int)dst.step, roisize);
2014-04-12 19:40:26 +08:00
}
CV_SUPPRESS_DEPRECATED_END
if (status >= 0)
return true;
}
#undef IPP_FILTER_LAPLACIAN
return false;
}
}
2014-04-12 19:40:26 +08:00
#endif
void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
double scale, double delta, int borderType )
{
CV_INSTRUMENT_REGION()
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
if (ddepth < 0)
ddepth = sdepth;
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
CV_IPP_RUN((ksize == 3 || ksize == 5) && ((borderType & BORDER_ISOLATED) != 0 || !_src.isSubmatrix()) &&
((stype == CV_8UC1 && ddepth == CV_16S) || (ddepth == CV_32F && stype == CV_32FC1)) && (!cv::ocl::useOpenCL()),
ipp_Laplacian(_src, _dst, ddepth, ksize, scale, delta, borderType));
2012-08-24 18:36:16 +08:00
#ifdef HAVE_TEGRA_OPTIMIZATION
if (tegra::useTegra() && scale == 1.0 && delta == 0)
2012-08-24 18:36:16 +08:00
{
Mat src = _src.getMat(), dst = _dst.getMat();
2012-10-17 15:12:04 +08:00
if (ksize == 1 && tegra::laplace1(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
2012-10-17 15:12:04 +08:00
if (ksize == 3 && tegra::laplace3(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
2012-10-17 15:12:04 +08:00
if (ksize == 5 && tegra::laplace5(src, dst, borderType))
2012-08-24 18:36:16 +08:00
return;
}
#endif
2012-10-17 15:12:04 +08:00
if( ksize == 1 || ksize == 3 )
{
float K[2][9] =
{
{ 0, 1, 0, 1, -4, 1, 0, 1, 0 },
{ 2, 0, 2, 0, -8, 0, 2, 0, 2 }
};
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
if( scale != 1 )
kernel *= scale;
filter2D( _src, _dst, ddepth, kernel, Point(-1, -1), delta, borderType );
}
else
{
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
int wdepth = sdepth == CV_8U && ksize <= 5 ? CV_16S : sdepth <= CV_32F ? CV_32F : CV_64F;
int wtype = CV_MAKETYPE(wdepth, cn);
Mat kd, ks;
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
CV_OCL_RUN(_dst.isUMat(),
ocl_Laplacian5(_src, _dst, kd, ks, scale,
delta, borderType, wdepth, ddepth))
Mat src = _src.getMat(), dst = _dst.getMat();
Point ofs;
Size wsz(src.cols, src.rows);
if(!(borderType&BORDER_ISOLATED))
src.locateROI( wsz, ofs );
borderType = (borderType&~BORDER_ISOLATED);
const size_t STRIPE_SIZE = 1 << 14;
Ptr<FilterEngine> fx = createSeparableLinearFilter(stype,
2012-10-17 15:12:04 +08:00
wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
Ptr<FilterEngine> fy = createSeparableLinearFilter(stype,
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
2016-02-05 00:16:05 +08:00
int y = fx->start(src, wsz, ofs), dsty = 0, dy = 0;
fy->start(src, wsz, ofs);
const uchar* sptr = src.ptr() + src.step[0] * y;
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(CV_ELEM_SIZE(stype)*src.cols)), 1), src.rows);
Mat d2x( dy0 + kd.rows - 1, src.cols, wtype );
Mat d2y( dy0 + kd.rows - 1, src.cols, wtype );
for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy )
{
fx->proceed( sptr, (int)src.step, dy0, d2x.ptr(), (int)d2x.step );
dy = fy->proceed( sptr, (int)src.step, dy0, d2y.ptr(), (int)d2y.step );
if( dy > 0 )
{
Mat dstripe = dst.rowRange(dsty, dsty + dy);
d2x.rows = d2y.rows = dy; // modify the headers, which should work
d2x += d2y;
d2x.convertTo( dstripe, ddepth, scale, delta );
}
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////
CV_IMPL void
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE );
if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 )
dst *= -1;
}
CV_IMPL void
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE );
}
/* End of file. */