opencv/modules/gpu/src/cuda/mathfunc.cu

1583 lines
66 KiB
Plaintext
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "opencv2/gpu/device/limits_gpu.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
#include "transform.hpp"
#include "internal_shared.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
#ifndef CV_PI
#define CV_PI 3.1415926535897932384626433832795f
#endif
//////////////////////////////////////////////////////////////////////////////////////
// Cart <-> Polar
namespace cv { namespace gpu { namespace mathfunc
{
2010-12-10 18:23:32 +08:00
template <int size, typename T>
__device__ void sum_in_smem(volatile T* data, const unsigned int tid)
{
T sum = data[tid];
if (size >= 512) { if (tid < 256) { data[tid] = sum = sum + data[tid + 256]; } __syncthreads(); }
if (size >= 256) { if (tid < 128) { data[tid] = sum = sum + data[tid + 128]; } __syncthreads(); }
if (size >= 128) { if (tid < 64) { data[tid] = sum = sum + data[tid + 64]; } __syncthreads(); }
if (tid < 32)
{
if (size >= 64) data[tid] = sum = sum + data[tid + 32];
if (size >= 32) data[tid] = sum = sum + data[tid + 16];
if (size >= 16) data[tid] = sum = sum + data[tid + 8];
if (size >= 8) data[tid] = sum = sum + data[tid + 4];
if (size >= 4) data[tid] = sum = sum + data[tid + 2];
if (size >= 2) data[tid] = sum = sum + data[tid + 1];
}
}
struct Nothing
{
static __device__ void calc(int, int, float, float, float*, size_t, float)
{
}
};
struct Magnitude
{
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
{
dst[y * dst_step + x] = sqrtf(x_data * x_data + y_data * y_data);
}
};
struct MagnitudeSqr
{
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
{
dst[y * dst_step + x] = x_data * x_data + y_data * y_data;
}
};
struct Atan2
{
static __device__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
{
dst[y * dst_step + x] = scale * atan2f(y_data, x_data);
}
};
template <typename Mag, typename Angle>
__global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step,
float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < width && y < height)
{
float x_data = xptr[y * x_step + x];
float y_data = yptr[y * y_step + x];
Mag::calc(x, y, x_data, y_data, mag, mag_step, scale);
Angle::calc(x, y, x_data, y_data, angle, angle_step, scale);
}
}
struct NonEmptyMag
{
static __device__ float get(const float* mag, size_t mag_step, int x, int y)
{
return mag[y * mag_step + x];
}
};
struct EmptyMag
{
static __device__ float get(const float*, size_t, int, int)
{
return 1.0f;
}
};
template <typename Mag>
__global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale,
float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < width && y < height)
{
float mag_data = Mag::get(mag, mag_step, x, y);
float angle_data = angle[y * angle_step + x];
float sin_a, cos_a;
sincosf(scale * angle_data, &sin_a, &cos_a);
xptr[y * x_step + x] = mag_data * cos_a;
yptr[y * y_step + x] = mag_data * sin_a;
}
}
template <typename Mag, typename Angle>
void cartToPolar_caller(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(x.cols, threads.x);
grid.y = divUp(x.rows, threads.y);
const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f;
cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(),
mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream);
static const caller_t callers[2][2][2] =
{
{
{
cartToPolar_caller<Magnitude, Atan2>,
cartToPolar_caller<Magnitude, Nothing>
},
{
cartToPolar_caller<MagnitudeSqr, Atan2>,
cartToPolar_caller<MagnitudeSqr, Nothing>,
}
},
{
{
cartToPolar_caller<Nothing, Atan2>,
cartToPolar_caller<Nothing, Nothing>
},
{
cartToPolar_caller<Nothing, Atan2>,
cartToPolar_caller<Nothing, Nothing>,
}
}
};
callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream);
}
template <typename Mag>
void polarToCart_caller(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
{
dim3 threads(16, 16, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(mag.cols, threads.x);
grid.y = divUp(mag.rows, threads.y);
const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f;
polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.data, mag.step/mag.elemSize(),
angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
{
typedef void (*caller_t)(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream);
static const caller_t callers[2] =
{
polarToCart_caller<NonEmptyMag>,
polarToCart_caller<EmptyMag>
};
callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream);
}
//////////////////////////////////////////////////////////////////////////////////////
// Compare
template <typename T1, typename T2>
struct NotEqual
{
__device__ uchar operator()(const T1& src1, const T2& src2)
{
return static_cast<uchar>(static_cast<int>(src1 != src2) * 255);
}
};
template <typename T1, typename T2>
inline void compare_ne(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
{
NotEqual<T1, T2> op;
transform(static_cast< DevMem2D_<T1> >(src1), static_cast< DevMem2D_<T2> >(src2), dst, op, 0);
}
void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
{
compare_ne<uint, uint>(src1, src2, dst);
}
void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst)
{
compare_ne<float, float>(src1, src2, dst);
}
//////////////////////////////////////////////////////////////////////////////
// Per-element bit-wise logical matrix operations
struct Mask8U
{
explicit Mask8U(PtrStep mask): mask(mask) {}
__device__ bool operator()(int y, int x) const { return mask.ptr(y)[x]; }
PtrStep mask;
};
struct MaskTrue { __device__ bool operator()(int y, int x) const { return true; } };
// Unary operations
enum { UN_OP_NOT };
template <typename T, int opid>
struct UnOp { __device__ T operator()(T lhs, T rhs); };
template <typename T>
struct UnOp<T, UN_OP_NOT>{ __device__ T operator()(T x) { return ~x; } };
template <typename T, int cn, typename UnOp, typename Mask>
__global__ void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, UnOp op, Mask mask)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < cols && y < rows && mask(y, x))
{
T* dsty = (T*)dst.ptr(y);
const T* srcy = (const T*)src.ptr(y);
#pragma unroll
for (int i = 0; i < cn; ++i)
dsty[cn * x + i] = op(srcy[cn * x + i]);
}
}
template <int opid, typename Mask>
void bitwise_un_op(int rows, int cols, const PtrStep src, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream)
{
dim3 threads(16, 16);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
switch (elem_size)
{
case 1: bitwise_un_op<unsigned char, 1><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned char, opid>(), mask); break;
case 2: bitwise_un_op<unsigned short, 1><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned short, opid>(), mask); break;
case 3: bitwise_un_op<unsigned char, 3><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned char, opid>(), mask); break;
case 4: bitwise_un_op<unsigned int, 1><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned int, opid>(), mask); break;
case 6: bitwise_un_op<unsigned short, 3><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned short, opid>(), mask); break;
case 8: bitwise_un_op<unsigned int, 2><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned int, opid>(), mask); break;
case 12: bitwise_un_op<unsigned int, 3><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned int, opid>(), mask); break;
case 16: bitwise_un_op<unsigned int, 4><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned int, opid>(), mask); break;
case 24: bitwise_un_op<unsigned int, 6><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned int, opid>(), mask); break;
case 32: bitwise_un_op<unsigned int, 8><<<grid, threads>>>(rows, cols, src, dst, UnOp<unsigned int, opid>(), mask); break;
}
if (stream == 0) cudaSafeCall(cudaThreadSynchronize());
}
void bitwise_not_caller(int rows, int cols,const PtrStep src, int elem_size, PtrStep dst, cudaStream_t stream)
{
bitwise_un_op<UN_OP_NOT>(rows, cols, src, dst, elem_size, MaskTrue(), stream);
}
void bitwise_not_caller(int rows, int cols,const PtrStep src, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
{
bitwise_un_op<UN_OP_NOT>(rows, cols, src, dst, elem_size, Mask8U(mask), stream);
}
// Binary operations
enum { BIN_OP_OR, BIN_OP_AND, BIN_OP_XOR };
template <typename T, int opid>
struct BinOp { __device__ T operator()(T lhs, T rhs); };
template <typename T>
struct BinOp<T, BIN_OP_OR>{ __device__ T operator()(T lhs, T rhs) { return lhs | rhs; } };
template <typename T>
struct BinOp<T, BIN_OP_AND>{ __device__ T operator()(T lhs, T rhs) { return lhs & rhs; } };
template <typename T>
struct BinOp<T, BIN_OP_XOR>{ __device__ T operator()(T lhs, T rhs) { return lhs ^ rhs; } };
template <typename T, int cn, typename BinOp, typename Mask>
__global__ void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, BinOp op, Mask mask)
{
const int x = blockDim.x * blockIdx.x + threadIdx.x;
const int y = blockDim.y * blockIdx.y + threadIdx.y;
if (x < cols && y < rows && mask(y, x))
{
T* dsty = (T*)dst.ptr(y);
const T* src1y = (const T*)src1.ptr(y);
const T* src2y = (const T*)src2.ptr(y);
#pragma unroll
for (int i = 0; i < cn; ++i)
dsty[cn * x + i] = op(src1y[cn * x + i], src2y[cn * x + i]);
}
}
template <int opid, typename Mask>
void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream)
{
dim3 threads(16, 16);
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
switch (elem_size)
{
case 1: bitwise_bin_op<unsigned char, 1><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned char, opid>(), mask); break;
case 2: bitwise_bin_op<unsigned short, 1><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned short, opid>(), mask); break;
case 3: bitwise_bin_op<unsigned char, 3><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned char, opid>(), mask); break;
case 4: bitwise_bin_op<unsigned int, 1><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned int, opid>(), mask); break;
case 6: bitwise_bin_op<unsigned short, 3><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned short, opid>(), mask); break;
case 8: bitwise_bin_op<unsigned int, 2><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned int, opid>(), mask); break;
case 12: bitwise_bin_op<unsigned int, 3><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned int, opid>(), mask); break;
case 16: bitwise_bin_op<unsigned int, 4><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned int, opid>(), mask); break;
case 24: bitwise_bin_op<unsigned int, 6><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned int, opid>(), mask); break;
case 32: bitwise_bin_op<unsigned int, 8><<<grid, threads>>>(rows, cols, src1, src2, dst, BinOp<unsigned int, opid>(), mask); break;
}
if (stream == 0) cudaSafeCall(cudaThreadSynchronize());
}
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream)
{
bitwise_bin_op<BIN_OP_OR>(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream);
}
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
{
bitwise_bin_op<BIN_OP_OR>(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream);
}
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream)
{
bitwise_bin_op<BIN_OP_AND>(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream);
}
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
{
bitwise_bin_op<BIN_OP_AND>(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream);
}
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, cudaStream_t stream)
{
bitwise_bin_op<BIN_OP_XOR>(rows, cols, src1, src2, dst, elem_size, MaskTrue(), stream);
}
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elem_size, PtrStep dst, const PtrStep mask, cudaStream_t stream)
{
bitwise_bin_op<BIN_OP_XOR>(rows, cols, src1, src2, dst, elem_size, Mask8U(mask), stream);
}
//////////////////////////////////////////////////////////////////////////////
// Min max
2010-11-25 18:19:06 +08:00
// To avoid shared bank conflicts we convert each value into value of
// appropriate type (32 bits minimum)
2010-11-24 17:19:11 +08:00
template <typename T> struct MinMaxTypeTraits {};
template <> struct MinMaxTypeTraits<unsigned char> { typedef int best_type; };
template <> struct MinMaxTypeTraits<char> { typedef int best_type; };
2010-11-24 17:19:11 +08:00
template <> struct MinMaxTypeTraits<unsigned short> { typedef int best_type; };
template <> struct MinMaxTypeTraits<short> { typedef int best_type; };
2010-11-24 17:19:11 +08:00
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
namespace minmax
{
__constant__ int ctwidth;
__constant__ int ctheight;
2010-11-25 18:19:06 +08:00
// Global counter of blocks finished its work
__device__ unsigned int blocks_finished = 0;
2010-11-25 18:19:06 +08:00
// Estimates good thread configuration
// - threads variable satisfies to threads.x * threads.y == 256
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
{
threads = dim3(32, 8);
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
2010-11-25 18:19:06 +08:00
// Returns required buffer sizes
void get_buf_size_required(int cols, int rows, int elem_size, int& bufcols, int& bufrows)
{
dim3 threads, grid;
estimate_thread_cfg(cols, rows, threads, grid);
bufcols = grid.x * grid.y * elem_size;
bufrows = 2;
}
2010-11-25 18:19:06 +08:00
// Estimates device constants which are used in the kernels using specified thread configuration
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
{
int twidth = divUp(divUp(cols, grid.x), threads.x);
int theight = divUp(divUp(rows, grid.y), threads.y);
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth)));
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight)));
}
2010-11-25 18:19:06 +08:00
// Does min and max in shared memory
template <typename T>
__device__ void merge(unsigned int tid, unsigned int offset, volatile T* minval, volatile T* maxval)
{
minval[tid] = min(minval[tid], minval[tid + offset]);
maxval[tid] = max(maxval[tid], maxval[tid + offset]);
}
template <int size, typename T>
__device__ void find_min_max_in_smem(volatile T* minval, volatile T* maxval, const unsigned int tid)
{
if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval); } __syncthreads(); }
if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval); } __syncthreads(); }
if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval); } __syncthreads(); }
if (tid < 32)
{
if (size >= 64) merge(tid, 32, minval, maxval);
if (size >= 32) merge(tid, 16, minval, maxval);
if (size >= 16) merge(tid, 8, minval, maxval);
if (size >= 8) merge(tid, 4, minval, maxval);
if (size >= 4) merge(tid, 2, minval, maxval);
if (size >= 2) merge(tid, 1, minval, maxval);
}
}
2010-11-29 18:29:21 +08:00
template <int nthreads, typename T, typename Mask>
__global__ void min_max_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval)
{
2010-11-24 17:19:11 +08:00
typedef typename MinMaxTypeTraits<T>::best_type best_type;
__shared__ best_type sminval[nthreads];
__shared__ best_type smaxval[nthreads];
unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
T mymin = numeric_limits_gpu<T>::max();
T mymax = numeric_limits_gpu<T>::is_signed ? -numeric_limits_gpu<T>::max() : numeric_limits_gpu<T>::min();
2010-11-29 18:29:21 +08:00
unsigned int y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
unsigned int x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
for (unsigned int y = y0; y < y_end; y += blockDim.y)
{
2010-11-29 18:29:21 +08:00
const T* src_row = (const T*)src.ptr(y);
for (unsigned int x = x0; x < x_end; x += blockDim.x)
{
2010-11-29 18:29:21 +08:00
T val = src_row[x];
if (mask(y, x))
{
mymin = min(mymin, val);
mymax = max(mymax, val);
}
}
}
sminval[tid] = mymin;
smaxval[tid] = mymax;
__syncthreads();
find_min_max_in_smem<nthreads, best_type>(sminval, smaxval, tid);
if (tid == 0)
{
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
}
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
if (tid == 0)
{
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
__threadfence();
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = ticket == gridDim.x * gridDim.y - 1;
}
__syncthreads();
if (is_last)
{
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
sminval[tid] = minval[idx];
smaxval[tid] = maxval[idx];
__syncthreads();
find_min_max_in_smem<nthreads, best_type>(sminval, smaxval, tid);
if (tid == 0)
{
minval[0] = (T)sminval[0];
maxval[0] = (T)smaxval[0];
blocks_finished = 0;
}
}
#else
if (tid == 0)
{
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
}
#endif
}
2010-11-29 18:29:21 +08:00
template <typename T>
void min_max_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
2010-11-29 18:29:21 +08:00
T* minval_buf = (T*)buf.ptr(0);
T* maxval_buf = (T*)buf.ptr(1);
min_max_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
}
template void min_max_mask_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template void min_max_mask_caller<char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_mask_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template void min_max_mask_caller<short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_mask_caller<int>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template void min_max_mask_caller<float>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template void min_max_mask_caller<double>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template <typename T>
2010-11-25 18:19:06 +08:00
void min_max_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
2010-11-25 18:19:06 +08:00
T* minval_buf = (T*)buf.ptr(0);
T* maxval_buf = (T*)buf.ptr(1);
2010-11-29 18:29:21 +08:00
min_max_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
2010-11-25 18:19:06 +08:00
}
template void min_max_caller<unsigned char>(const DevMem2D, double*, double*, PtrStep);
template void min_max_caller<char>(const DevMem2D, double*, double*, PtrStep);
2010-11-25 18:19:06 +08:00
template void min_max_caller<unsigned short>(const DevMem2D, double*, double*, PtrStep);
template void min_max_caller<short>(const DevMem2D, double*, double*, PtrStep);
2010-11-25 18:19:06 +08:00
template void min_max_caller<int>(const DevMem2D, double*, double*, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_caller<float>(const DevMem2D, double*,double*, PtrStep);
2010-11-25 18:19:06 +08:00
template void min_max_caller<double>(const DevMem2D, double*, double*, PtrStep);
template <int nthreads, typename T>
2010-11-29 18:29:21 +08:00
__global__ void min_max_pass2_kernel(T* minval, T* maxval, int size)
2010-11-25 18:19:06 +08:00
{
typedef typename MinMaxTypeTraits<T>::best_type best_type;
__shared__ best_type sminval[nthreads];
__shared__ best_type smaxval[nthreads];
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
sminval[tid] = minval[idx];
smaxval[tid] = maxval[idx];
__syncthreads();
find_min_max_in_smem<nthreads, best_type>(sminval, smaxval, tid);
if (tid == 0)
{
minval[0] = (T)sminval[0];
maxval[0] = (T)smaxval[0];
2010-11-25 18:19:06 +08:00
}
}
2010-11-25 18:19:06 +08:00
template <typename T>
2010-11-29 18:29:21 +08:00
void min_max_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
2010-11-29 18:29:21 +08:00
T* minval_buf = (T*)buf.ptr(0);
T* maxval_buf = (T*)buf.ptr(1);
min_max_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf);
min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
}
template void min_max_mask_multipass_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template void min_max_mask_multipass_caller<char>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_mask_multipass_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template void min_max_mask_multipass_caller<short>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_mask_multipass_caller<int>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template void min_max_mask_multipass_caller<float>(const DevMem2D, const PtrStep, double*, double*, PtrStep);
template <typename T>
void min_max_multipass_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
2010-11-25 18:19:06 +08:00
T* minval_buf = (T*)buf.ptr(0);
T* maxval_buf = (T*)buf.ptr(1);
2010-11-29 18:29:21 +08:00
min_max_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf);
min_max_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
}
2010-11-29 18:29:21 +08:00
template void min_max_multipass_caller<unsigned char>(const DevMem2D, double*, double*, PtrStep);
template void min_max_multipass_caller<char>(const DevMem2D, double*, double*, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_multipass_caller<unsigned short>(const DevMem2D, double*, double*, PtrStep);
template void min_max_multipass_caller<short>(const DevMem2D, double*, double*, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_multipass_caller<int>(const DevMem2D, double*, double*, PtrStep);
template void min_max_multipass_caller<float>(const DevMem2D, double*, double*, PtrStep);
} // namespace minmax
///////////////////////////////////////////////////////////////////////////////
// minMaxLoc
2010-11-25 18:19:06 +08:00
namespace minmaxloc {
__constant__ int ctwidth;
__constant__ int ctheight;
// Global counter of blocks finished its work
__device__ unsigned int blocks_finished = 0;
// Estimates good thread configuration
// - threads variable satisfies to threads.x * threads.y == 256
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
{
threads = dim3(32, 8);
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
// Returns required buffer sizes
void get_buf_size_required(int cols, int rows, int elem_size, int& b1cols,
int& b1rows, int& b2cols, int& b2rows)
{
dim3 threads, grid;
estimate_thread_cfg(cols, rows, threads, grid);
b1cols = grid.x * grid.y * elem_size; // For values
b1rows = 2;
b2cols = grid.x * grid.y * sizeof(int); // For locations
b2rows = 2;
}
// Estimates device constants which are used in the kernels using specified thread configuration
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
{
int twidth = divUp(divUp(cols, grid.x), threads.x);
int theight = divUp(divUp(rows, grid.y), threads.y);
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(ctwidth)));
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(ctheight)));
}
template <typename T>
__device__ void merge(unsigned int tid, unsigned int offset, volatile T* minval, volatile T* maxval,
volatile unsigned int* minloc, volatile unsigned int* maxloc)
{
T val = minval[tid + offset];
if (val < minval[tid])
{
minval[tid] = val;
minloc[tid] = minloc[tid + offset];
}
val = maxval[tid + offset];
if (val > maxval[tid])
{
maxval[tid] = val;
maxloc[tid] = maxloc[tid + offset];
}
}
template <int size, typename T>
__device__ void find_min_max_loc_in_smem(volatile T* minval, volatile T* maxval, volatile unsigned int* minloc,
volatile unsigned int* maxloc, const unsigned int tid)
{
if (size >= 512) { if (tid < 256) { merge(tid, 256, minval, maxval, minloc, maxloc); } __syncthreads(); }
if (size >= 256) { if (tid < 128) { merge(tid, 128, minval, maxval, minloc, maxloc); } __syncthreads(); }
if (size >= 128) { if (tid < 64) { merge(tid, 64, minval, maxval, minloc, maxloc); } __syncthreads(); }
if (tid < 32)
{
if (size >= 64) merge(tid, 32, minval, maxval, minloc, maxloc);
if (size >= 32) merge(tid, 16, minval, maxval, minloc, maxloc);
if (size >= 16) merge(tid, 8, minval, maxval, minloc, maxloc);
if (size >= 8) merge(tid, 4, minval, maxval, minloc, maxloc);
if (size >= 4) merge(tid, 2, minval, maxval, minloc, maxloc);
if (size >= 2) merge(tid, 1, minval, maxval, minloc, maxloc);
}
}
template <int nthreads, typename T, typename Mask>
__global__ void min_max_loc_kernel(const DevMem2D src, Mask mask, T* minval, T* maxval,
unsigned int* minloc, unsigned int* maxloc)
{
typedef typename MinMaxTypeTraits<T>::best_type best_type;
__shared__ best_type sminval[nthreads];
__shared__ best_type smaxval[nthreads];
__shared__ unsigned int sminloc[nthreads];
__shared__ unsigned int smaxloc[nthreads];
unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
T mymin = numeric_limits_gpu<T>::max();
T mymax = numeric_limits_gpu<T>::is_signed ? -numeric_limits_gpu<T>::max() : numeric_limits_gpu<T>::min();
unsigned int myminloc = 0;
unsigned int mymaxloc = 0;
2010-11-29 18:44:25 +08:00
unsigned int y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
unsigned int x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
for (unsigned int y = y0; y < y_end; y += blockDim.y)
{
2010-11-29 18:44:25 +08:00
const T* ptr = (const T*)src.ptr(y);
for (unsigned int x = x0; x < x_end; x += blockDim.x)
{
if (mask(y, x))
{
T val = ptr[x];
if (val <= mymin) { mymin = val; myminloc = y * src.cols + x; }
if (val >= mymax) { mymax = val; mymaxloc = y * src.cols + x; }
}
}
}
sminval[tid] = mymin;
smaxval[tid] = mymax;
sminloc[tid] = myminloc;
smaxloc[tid] = mymaxloc;
__syncthreads();
find_min_max_loc_in_smem<nthreads, best_type>(sminval, smaxval, sminloc, smaxloc, tid);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
if (tid == 0)
{
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0];
maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0];
__threadfence();
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = ticket == gridDim.x * gridDim.y - 1;
}
__syncthreads();
if (is_last)
{
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
sminval[tid] = minval[idx];
smaxval[tid] = maxval[idx];
sminloc[tid] = minloc[idx];
smaxloc[tid] = maxloc[idx];
__syncthreads();
find_min_max_loc_in_smem<nthreads, best_type>(sminval, smaxval, sminloc, smaxloc, tid);
if (tid == 0)
{
minval[0] = (T)sminval[0];
maxval[0] = (T)smaxval[0];
minloc[0] = sminloc[0];
maxloc[0] = smaxloc[0];
blocks_finished = 0;
}
}
#else
if (tid == 0)
{
minval[blockIdx.y * gridDim.x + blockIdx.x] = (T)sminval[0];
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
minloc[blockIdx.y * gridDim.x + blockIdx.x] = sminloc[0];
maxloc[blockIdx.y * gridDim.x + blockIdx.x] = smaxloc[0];
}
#endif
}
template <typename T>
void min_max_loc_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* minval_buf = (T*)valbuf.ptr(0);
T* maxval_buf = (T*)valbuf.ptr(1);
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
min_max_loc_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
unsigned int minloc_, maxloc_;
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
}
template void min_max_loc_mask_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_caller<char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_caller<short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_caller<int>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_caller<float>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_caller<double>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template <typename T>
void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* minval_buf = (T*)valbuf.ptr(0);
T* maxval_buf = (T*)valbuf.ptr(1);
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
min_max_loc_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
unsigned int minloc_, maxloc_;
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
}
template void min_max_loc_caller<unsigned char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_caller<char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_caller<unsigned short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_caller<short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_caller<int>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_caller<float>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_caller<double>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
// This kernel will be used only when compute capability is 1.0
template <int nthreads, typename T>
2010-11-29 18:29:21 +08:00
__global__ void min_max_loc_pass2_kernel(T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, int size)
{
typedef typename MinMaxTypeTraits<T>::best_type best_type;
__shared__ best_type sminval[nthreads];
__shared__ best_type smaxval[nthreads];
__shared__ unsigned int sminloc[nthreads];
__shared__ unsigned int smaxloc[nthreads];
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
unsigned int idx = min(tid, gridDim.x * gridDim.y - 1);
sminval[tid] = minval[idx];
smaxval[tid] = maxval[idx];
sminloc[tid] = minloc[idx];
smaxloc[tid] = maxloc[idx];
__syncthreads();
find_min_max_loc_in_smem<nthreads, best_type>(sminval, smaxval, sminloc, smaxloc, tid);
if (tid == 0)
{
minval[0] = (T)sminval[0];
maxval[0] = (T)smaxval[0];
minloc[0] = sminloc[0];
maxloc[0] = smaxloc[0];
}
}
template <typename T>
void min_max_loc_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* minval_buf = (T*)valbuf.ptr(0);
T* maxval_buf = (T*)valbuf.ptr(1);
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
min_max_loc_kernel<256, T, Mask8U><<<grid, threads>>>(src, Mask8U(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
unsigned int minloc_, maxloc_;
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
}
template void min_max_loc_mask_multipass_caller<unsigned char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_multipass_caller<char>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_multipass_caller<unsigned short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_multipass_caller<short>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_multipass_caller<int>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_mask_multipass_caller<float>(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
template <typename T>
2010-11-29 18:29:21 +08:00
void min_max_loc_multipass_caller(const DevMem2D src, double* minval, double* maxval,
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* minval_buf = (T*)valbuf.ptr(0);
T* maxval_buf = (T*)valbuf.ptr(1);
unsigned int* minloc_buf = (unsigned int*)locbuf.ptr(0);
unsigned int* maxloc_buf = (unsigned int*)locbuf.ptr(1);
min_max_loc_kernel<256, T, MaskTrue><<<grid, threads>>>(src, MaskTrue(), minval_buf, maxval_buf, minloc_buf, maxloc_buf);
2010-11-29 18:29:21 +08:00
min_max_loc_pass2_kernel<256, T><<<1, 256>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
T minval_, maxval_;
cudaSafeCall(cudaMemcpy(&minval_, minval_buf, sizeof(T), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxval_, maxval_buf, sizeof(T), cudaMemcpyDeviceToHost));
*minval = minval_;
*maxval = maxval_;
unsigned int minloc_, maxloc_;
cudaSafeCall(cudaMemcpy(&minloc_, minloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
cudaSafeCall(cudaMemcpy(&maxloc_, maxloc_buf, sizeof(int), cudaMemcpyDeviceToHost));
minloc[1] = minloc_ / src.cols; minloc[0] = minloc_ - minloc[1] * src.cols;
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
}
2010-11-29 18:29:21 +08:00
template void min_max_loc_multipass_caller<unsigned char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_multipass_caller<char>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_loc_multipass_caller<unsigned short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_multipass_caller<short>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
2010-11-29 18:29:21 +08:00
template void min_max_loc_multipass_caller<int>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
template void min_max_loc_multipass_caller<float>(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
} // namespace minmaxloc
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// countNonZero
namespace countnonzero
{
__constant__ int ctwidth;
__constant__ int ctheight;
__device__ unsigned int blocks_finished = 0;
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
{
threads = dim3(32, 8);
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows)
{
dim3 threads, grid;
estimate_thread_cfg(cols, rows, threads, grid);
bufcols = grid.x * grid.y * sizeof(int);
bufrows = 1;
}
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
{
int twidth = divUp(divUp(cols, grid.x), threads.x);
int theight = divUp(divUp(rows, grid.y), threads.y);
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth)));
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight)));
}
template <int nthreads, typename T>
__global__ void count_non_zero_kernel(const DevMem2D src, volatile unsigned int* count)
{
__shared__ unsigned int scount[nthreads];
unsigned int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
unsigned int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
unsigned int cnt = 0;
for (unsigned int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
{
const T* ptr = (const T*)src.ptr(y0 + y * blockDim.y);
for (unsigned int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
cnt += ptr[x0 + x * blockDim.x] != 0;
}
scount[tid] = cnt;
__syncthreads();
2010-12-10 18:23:32 +08:00
sum_in_smem<nthreads, unsigned int>(scount, tid);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
if (tid == 0)
{
count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0];
__threadfence();
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = ticket == gridDim.x * gridDim.y - 1;
}
__syncthreads();
if (is_last)
{
scount[tid] = tid < gridDim.x * gridDim.y ? count[tid] : 0;
__syncthreads();
2010-12-10 18:23:32 +08:00
sum_in_smem<nthreads, unsigned int>(scount, tid);
if (tid == 0)
{
count[0] = scount[0];
blocks_finished = 0;
}
}
#else
if (tid == 0) count[blockIdx.y * gridDim.x + blockIdx.x] = scount[0];
#endif
}
template <typename T>
int count_non_zero_caller(const DevMem2D src, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
unsigned int* count_buf = (unsigned int*)buf.ptr(0);
count_non_zero_kernel<256, T><<<grid, threads>>>(src, count_buf);
cudaSafeCall(cudaThreadSynchronize());
unsigned int count;
cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost));
return count;
}
template int count_non_zero_caller<unsigned char>(const DevMem2D, PtrStep);
template int count_non_zero_caller<char>(const DevMem2D, PtrStep);
template int count_non_zero_caller<unsigned short>(const DevMem2D, PtrStep);
template int count_non_zero_caller<short>(const DevMem2D, PtrStep);
template int count_non_zero_caller<int>(const DevMem2D, PtrStep);
template int count_non_zero_caller<float>(const DevMem2D, PtrStep);
template int count_non_zero_caller<double>(const DevMem2D, PtrStep);
template <int nthreads, typename T>
2010-11-29 18:29:21 +08:00
__global__ void count_non_zero_pass2_kernel(unsigned int* count, int size)
{
__shared__ unsigned int scount[nthreads];
unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
scount[tid] = tid < size ? count[tid] : 0;
__syncthreads();
sum_in_smem<nthreads, unsigned int>(scount, tid);
if (tid == 0)
count[0] = scount[0];
}
template <typename T>
2010-11-29 18:29:21 +08:00
int count_non_zero_multipass_caller(const DevMem2D src, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
unsigned int* count_buf = (unsigned int*)buf.ptr(0);
count_non_zero_kernel<256, T><<<grid, threads>>>(src, count_buf);
2010-11-29 18:29:21 +08:00
count_non_zero_pass2_kernel<256, T><<<1, 256>>>(count_buf, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
unsigned int count;
cudaSafeCall(cudaMemcpy(&count, count_buf, sizeof(int), cudaMemcpyDeviceToHost));
return count;
}
2010-11-29 18:29:21 +08:00
template int count_non_zero_multipass_caller<unsigned char>(const DevMem2D, PtrStep);
template int count_non_zero_multipass_caller<char>(const DevMem2D, PtrStep);
2010-11-29 18:29:21 +08:00
template int count_non_zero_multipass_caller<unsigned short>(const DevMem2D, PtrStep);
template int count_non_zero_multipass_caller<short>(const DevMem2D, PtrStep);
2010-11-29 18:29:21 +08:00
template int count_non_zero_multipass_caller<int>(const DevMem2D, PtrStep);
template int count_non_zero_multipass_caller<float>(const DevMem2D, PtrStep);
} // namespace countnonzero
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// transpose
__global__ void transpose(const DevMem2Di src, PtrStepi dst)
{
__shared__ int s_mem[16 * 17];
int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y;
int smem_idx = threadIdx.y * blockDim.x + threadIdx.x + threadIdx.y;
if (y < src.rows && x < src.cols)
{
s_mem[smem_idx] = src.ptr(y)[x];
}
__syncthreads();
smem_idx = threadIdx.x * blockDim.x + threadIdx.y + threadIdx.x;
x = blockIdx.y * blockDim.x + threadIdx.x;
y = blockIdx.x * blockDim.y + threadIdx.y;
if (y < src.cols && x < src.rows)
{
dst.ptr(y)[x] = s_mem[smem_idx];
}
}
void transpose_gpu(const DevMem2Di& src, const DevMem2Di& dst)
{
dim3 threads(16, 16, 1);
dim3 grid(divUp(src.cols, 16), divUp(src.rows, 16), 1);
transpose<<<grid, threads>>>(src, dst);
cudaSafeCall( cudaThreadSynchronize() );
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////
// min/max
struct MinOp
{
template <typename T>
__device__ T operator()(T a, T b)
{
return min(a, b);
}
__device__ float operator()(float a, float b)
{
return fmin(a, b);
}
__device__ double operator()(double a, double b)
{
return fmin(a, b);
}
};
struct MaxOp
{
template <typename T>
__device__ T operator()(T a, T b)
{
return max(a, b);
}
__device__ float operator()(float a, float b)
{
return fmax(a, b);
}
__device__ double operator()(double a, double b)
{
return fmax(a, b);
}
};
struct ScalarMinOp
{
double s;
explicit ScalarMinOp(double s_) : s(s_) {}
template <typename T>
__device__ T operator()(T a)
{
return saturate_cast<T>(fmin((double)a, s));
}
};
struct ScalarMaxOp
{
double s;
explicit ScalarMaxOp(double s_) : s(s_) {}
template <typename T>
__device__ T operator()(T a)
{
return saturate_cast<T>(fmax((double)a, s));
}
};
template <typename T>
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
MinOp op;
transform(src1, src2, dst, op, stream);
}
template void min_gpu<uchar >(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream);
template void min_gpu<char >(const DevMem2D_<char>& src1, const DevMem2D_<char>& src2, const DevMem2D_<char>& dst, cudaStream_t stream);
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void min_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void min_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void min_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void min_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
template <typename T>
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
MaxOp op;
transform(src1, src2, dst, op, stream);
}
template void max_gpu<uchar >(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst, cudaStream_t stream);
template void max_gpu<char >(const DevMem2D_<char>& src1, const DevMem2D_<char>& src2, const DevMem2D_<char>& dst, cudaStream_t stream);
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, const DevMem2D_<ushort>& src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void max_gpu<short >(const DevMem2D_<short>& src1, const DevMem2D_<short>& src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void max_gpu<int >(const DevMem2D_<int>& src1, const DevMem2D_<int>& src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void max_gpu<float >(const DevMem2D_<float>& src1, const DevMem2D_<float>& src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void max_gpu<double>(const DevMem2D_<double>& src1, const DevMem2D_<double>& src2, const DevMem2D_<double>& dst, cudaStream_t stream);
template <typename T>
void min_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
ScalarMinOp op(src2);
transform(src1, dst, op, stream);
}
template void min_gpu<uchar >(const DevMem2D& src1, double src2, const DevMem2D& dst, cudaStream_t stream);
template void min_gpu<char >(const DevMem2D_<char>& src1, double src2, const DevMem2D_<char>& dst, cudaStream_t stream);
template void min_gpu<ushort>(const DevMem2D_<ushort>& src1, double src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void min_gpu<short >(const DevMem2D_<short>& src1, double src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void min_gpu<int >(const DevMem2D_<int>& src1, double src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void min_gpu<float >(const DevMem2D_<float>& src1, double src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void min_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
template <typename T>
void max_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream)
{
ScalarMaxOp op(src2);
transform(src1, dst, op, stream);
}
template void max_gpu<uchar >(const DevMem2D& src1, double src2, const DevMem2D& dst, cudaStream_t stream);
template void max_gpu<char >(const DevMem2D_<char>& src1, double src2, const DevMem2D_<char>& dst, cudaStream_t stream);
template void max_gpu<ushort>(const DevMem2D_<ushort>& src1, double src2, const DevMem2D_<ushort>& dst, cudaStream_t stream);
template void max_gpu<short >(const DevMem2D_<short>& src1, double src2, const DevMem2D_<short>& dst, cudaStream_t stream);
template void max_gpu<int >(const DevMem2D_<int>& src1, double src2, const DevMem2D_<int>& dst, cudaStream_t stream);
template void max_gpu<float >(const DevMem2D_<float>& src1, double src2, const DevMem2D_<float>& dst, cudaStream_t stream);
template void max_gpu<double>(const DevMem2D_<double>& src1, double src2, const DevMem2D_<double>& dst, cudaStream_t stream);
//////////////////////////////////////////////////////////////////////////////
// Sum
namespace sum
{
__constant__ int ctwidth;
__constant__ int ctheight;
__device__ unsigned int blocks_finished = 0;
const int threads_x = 32;
const int threads_y = 8;
void estimate_thread_cfg(int cols, int rows, dim3& threads, dim3& grid)
{
threads = dim3(threads_x, threads_y);
grid = dim3(divUp(cols, threads.x * threads.y),
divUp(rows, threads.y * threads.x));
grid.x = min(grid.x, threads.x);
grid.y = min(grid.y, threads.y);
}
template <typename T>
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows)
{
dim3 threads, grid;
estimate_thread_cfg(cols, rows, threads, grid);
bufcols = grid.x * grid.y * sizeof(T);
bufrows = 1;
}
void set_kernel_consts(int cols, int rows, const dim3& threads, const dim3& grid)
{
int twidth = divUp(divUp(cols, grid.x), threads.x);
int theight = divUp(divUp(rows, grid.y), threads.y);
cudaSafeCall(cudaMemcpyToSymbol(ctwidth, &twidth, sizeof(twidth)));
cudaSafeCall(cudaMemcpyToSymbol(ctheight, &theight, sizeof(theight)));
}
template <typename T, int nthreads>
__global__ void sum_kernel(const DevMem2D_<T> src, T* result)
{
__shared__ T smem[nthreads];
const int x0 = blockIdx.x * blockDim.x * ctwidth + threadIdx.x;
const int y0 = blockIdx.y * blockDim.y * ctheight + threadIdx.y;
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
const int bid = blockIdx.y * gridDim.x + blockIdx.x;
T sum = 0;
for (int y = 0; y < ctheight && y0 + y * blockDim.y < src.rows; ++y)
{
const T* ptr = src.ptr(y0 + y * blockDim.y);
for (int x = 0; x < ctwidth && x0 + x * blockDim.x < src.cols; ++x)
sum += ptr[x0 + x * blockDim.x];
}
smem[tid] = sum;
__syncthreads();
sum_in_smem<nthreads, T>(smem, tid);
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ bool is_last;
if (tid == 0)
{
result[bid] = smem[0];
__threadfence();
unsigned int ticket = atomicInc(&blocks_finished, gridDim.x * gridDim.y);
is_last = (ticket == gridDim.x * gridDim.y - 1);
}
__syncthreads();
if (is_last)
{
smem[tid] = tid < gridDim.x * gridDim.y ? result[tid] : 0;
__syncthreads();
sum_in_smem<nthreads, T>(smem, tid);
if (tid == 0)
{
result[0] = smem[0];
blocks_finished = 0;
}
}
#else
if (tid == 0) result[bid] = smem[0];
#endif
}
template <typename T>
T sum_caller(const DevMem2D_<T> src, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* buf_ = (T*)buf.ptr(0);
sum_kernel<T, threads_x * threads_y><<<grid, threads>>>(src, buf_);
cudaSafeCall(cudaThreadSynchronize());
T sum;
cudaSafeCall(cudaMemcpy(&sum, buf_, sizeof(T), cudaMemcpyDeviceToHost));
return sum;
}
template unsigned char sum_caller<unsigned char>(const DevMem2D_<unsigned char>, PtrStep);
template char sum_caller<char>(const DevMem2D_<char>, PtrStep);
template unsigned short sum_caller<unsigned short>(const DevMem2D_<unsigned short>, PtrStep);
template short sum_caller<short>(const DevMem2D_<short>, PtrStep);
template int sum_caller<int>(const DevMem2D_<int>, PtrStep);
template float sum_caller<float>(const DevMem2D_<float>, PtrStep);
template double sum_caller<double>(const DevMem2D_<double>, PtrStep);
template <typename T, int nthreads>
__global__ void sum_pass2_kernel(T* result, int size)
{
__shared__ T smem[nthreads];
int tid = threadIdx.y * blockDim.x + threadIdx.x;
smem[tid] = tid < size ? result[tid] : 0;
sum_in_smem<nthreads, T>(smem, tid);
if (tid == 0)
result[0] = smem[0];
}
template <typename T>
T sum_multipass_caller(const DevMem2D_<T> src, PtrStep buf)
{
dim3 threads, grid;
estimate_thread_cfg(src.cols, src.rows, threads, grid);
set_kernel_consts(src.cols, src.rows, threads, grid);
T* buf_ = (T*)buf.ptr(0);
sum_kernel<T, threads_x * threads_y><<<grid, threads>>>(src, buf_);
sum_pass2_kernel<T, threads_x * threads_y><<<1, threads_x * threads_y>>>(
buf_, grid.x * grid.y);
cudaSafeCall(cudaThreadSynchronize());
T sum;
cudaSafeCall(cudaMemcpy(&sum, buf_, sizeof(T), cudaMemcpyDeviceToHost));
return sum;
}
template unsigned char sum_multipass_caller<unsigned char>(const DevMem2D_<unsigned char>, PtrStep);
template char sum_multipass_caller<char>(const DevMem2D_<char>, PtrStep);
template unsigned short sum_multipass_caller<unsigned short>(const DevMem2D_<unsigned short>, PtrStep);
template short sum_multipass_caller<short>(const DevMem2D_<short>, PtrStep);
template int sum_multipass_caller<int>(const DevMem2D_<int>, PtrStep);
template float sum_multipass_caller<float>(const DevMem2D_<float>, PtrStep);
} // namespace sum
}}}