opencv/modules/dnn/src/layers/detection_output_layer.cpp

1003 lines
40 KiB
C++
Raw Normal View History

/*M ///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_inf_engine.hpp"
#include <float.h>
#include <string>
2017-10-17 21:43:04 +08:00
#include "../nms.inl.hpp"
2018-02-28 18:58:55 +08:00
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
2018-02-28 18:58:55 +08:00
#endif
namespace cv
{
namespace dnn
{
namespace util
{
class NormalizedBBox
{
public:
float xmin, ymin, xmax, ymax;
NormalizedBBox()
: xmin(0), ymin(0), xmax(0), ymax(0), has_size_(false), size_(0) {}
float size() const { return size_; }
bool has_size() const { return has_size_; }
void set_size(float value) { size_ = value; has_size_ = true; }
void clear_size() { size_ = 0; has_size_ = false; }
private:
bool has_size_;
float size_;
};
template <typename T>
static inline bool SortScorePairDescend(const std::pair<float, T>& pair1,
const std::pair<float, T>& pair2)
{
return pair1.first > pair2.first;
}
static inline float caffe_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b);
2017-12-14 00:06:30 +08:00
static inline float caffe_norm_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b);
} // namespace
2018-03-15 21:16:56 +08:00
class DetectionOutputLayerImpl CV_FINAL : public DetectionOutputLayer
{
public:
unsigned _numClasses;
bool _shareLocation;
int _numLocClasses;
int _backgroundLabelId;
cv::String _codeType;
bool _varianceEncodedInTarget;
int _keepTopK;
float _confidenceThreshold;
float _nmsThreshold;
int _topK;
2018-06-03 07:21:08 +08:00
// Whenever predicted bounding boxes are represented in YXHW instead of XYWH layout.
bool _locPredTransposed;
2017-12-14 00:06:30 +08:00
// It's true whenever predicted bounding boxes and proposals are normalized to [0, 1].
bool _bboxesNormalized;
bool _clip;
bool _groupByClasses;
enum { _numAxes = 4 };
static const std::string _layerName;
typedef std::map<int, std::vector<util::NormalizedBBox> > LabelBBox;
bool getParameterDict(const LayerParams &params,
const std::string &parameterName,
DictValue& result)
{
if (!params.has(parameterName))
{
return false;
}
result = params.get(parameterName);
return true;
}
template<typename T>
T getParameter(const LayerParams &params,
const std::string &parameterName,
const size_t &idx=0,
const bool required=true,
const T& defaultValue=T())
{
DictValue dictValue;
bool success = getParameterDict(params, parameterName, dictValue);
if(!success)
{
if(required)
{
std::string message = _layerName;
message += " layer parameter does not contain ";
message += parameterName;
message += " parameter.";
CV_Error(Error::StsBadArg, message);
}
else
{
return defaultValue;
}
}
return dictValue.get<T>(idx);
}
void getCodeType(const LayerParams &params)
{
String codeTypeString = params.get<String>("code_type").toLowerCase();
if (codeTypeString == "center_size")
_codeType = "CENTER_SIZE";
else
_codeType = "CORNER";
}
DetectionOutputLayerImpl(const LayerParams &params)
{
_numClasses = getParameter<unsigned>(params, "num_classes");
_shareLocation = getParameter<bool>(params, "share_location");
_numLocClasses = _shareLocation ? 1 : _numClasses;
_backgroundLabelId = getParameter<int>(params, "background_label_id");
_varianceEncodedInTarget = getParameter<bool>(params, "variance_encoded_in_target", 0, false, false);
_keepTopK = getParameter<int>(params, "keep_top_k");
_confidenceThreshold = getParameter<float>(params, "confidence_threshold", 0, false, -FLT_MAX);
_topK = getParameter<int>(params, "top_k", 0, false, -1);
_locPredTransposed = getParameter<bool>(params, "loc_pred_transposed", 0, false, false);
2017-12-14 00:06:30 +08:00
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
_clip = getParameter<bool>(params, "clip", 0, false, false);
_groupByClasses = getParameter<bool>(params, "group_by_classes", 0, false, true);
getCodeType(params);
// Parameters used in nms.
_nmsThreshold = getParameter<float>(params, "nms_threshold");
CV_Assert(_nmsThreshold > 0.);
setParamsFrom(params);
}
2018-03-15 21:16:56 +08:00
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
2018-11-15 04:25:23 +08:00
(backendId == DNN_BACKEND_INFERENCE_ENGINE && !_locPredTransposed && _bboxesNormalized && !_clip);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
2018-03-15 21:16:56 +08:00
std::vector<MatShape> &internals) const CV_OVERRIDE
{
2017-12-14 00:06:30 +08:00
CV_Assert(inputs.size() >= 3);
CV_Assert(inputs[0][0] == inputs[1][0]);
int numPriors = inputs[2][2] / 4;
CV_Assert((numPriors * _numLocClasses * 4) == total(inputs[0], 1));
CV_Assert(int(numPriors * _numClasses) == total(inputs[1], 1));
CV_Assert(inputs[2][1] == 1 + (int)(!_varianceEncodedInTarget));
// num() and channels() are 1.
// Since the number of bboxes to be kept is unknown before nms, we manually
// set it to maximal number of detections, [keep_top_k] parameter.
// Each row is a 7 dimension std::vector, which stores
// [image_id, label, confidence, xmin, ymin, xmax, ymax]
outputs.resize(1, shape(1, 1, _keepTopK, 7));
return false;
}
#ifdef HAVE_OPENCL
// Decode all bboxes in a batch
bool ocl_DecodeBBoxesAll(UMat& loc_mat, UMat& prior_mat,
const int num, const int numPriors, const bool share_location,
const int num_loc_classes, const int background_label_id,
const cv::String& code_type, const bool variance_encoded_in_target,
const bool clip, std::vector<LabelBBox>& all_decode_bboxes)
{
UMat outmat = UMat(loc_mat.dims, loc_mat.size, CV_32F);
size_t nthreads = loc_mat.total();
String kernel_name;
if (code_type == "CORNER")
kernel_name = "DecodeBBoxesCORNER";
else if (code_type == "CENTER_SIZE")
kernel_name = "DecodeBBoxesCENTER_SIZE";
else
return false;
for (int i = 0; i < num; ++i)
{
ocl::Kernel kernel(kernel_name.c_str(), ocl::dnn::detection_output_oclsrc);
kernel.set(0, (int)nthreads);
kernel.set(1, ocl::KernelArg::PtrReadOnly(loc_mat));
kernel.set(2, ocl::KernelArg::PtrReadOnly(prior_mat));
kernel.set(3, (int)variance_encoded_in_target);
kernel.set(4, (int)numPriors);
kernel.set(5, (int)share_location);
kernel.set(6, (int)num_loc_classes);
kernel.set(7, (int)background_label_id);
kernel.set(8, (int)clip);
kernel.set(9, (int)_locPredTransposed);
kernel.set(10, ocl::KernelArg::PtrWriteOnly(outmat));
if (!kernel.run(1, &nthreads, NULL, false))
return false;
}
all_decode_bboxes.clear();
all_decode_bboxes.resize(num);
{
Mat mat = outmat.getMat(ACCESS_READ);
const float* decode_data = mat.ptr<float>();
for (int i = 0; i < num; ++i)
{
LabelBBox& decode_bboxes = all_decode_bboxes[i];
for (int c = 0; c < num_loc_classes; ++c)
{
int label = share_location ? -1 : c;
decode_bboxes[label].resize(numPriors);
for (int p = 0; p < numPriors; ++p)
{
int startIdx = p * num_loc_classes * 4;
util::NormalizedBBox& bbox = decode_bboxes[label][p];
bbox.xmin = decode_data[startIdx + c * 4];
bbox.ymin = decode_data[startIdx + c * 4 + 1];
bbox.xmax = decode_data[startIdx + c * 4 + 2];
bbox.ymax = decode_data[startIdx + c * 4 + 3];
}
}
}
}
return true;
}
void ocl_GetConfidenceScores(const UMat& inp1, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<Mat>& confPreds)
{
int shape[] = { numClasses, numPredsPerClass };
for (int i = 0; i < num; i++)
confPreds.push_back(Mat(2, shape, CV_32F));
shape[0] = num * numPredsPerClass;
shape[1] = inp1.total() / shape[0];
UMat umat = inp1.reshape(1, 2, &shape[0]);
for (int i = 0; i < num; ++i)
{
Range ranges[] = { Range(i * numPredsPerClass, (i + 1) * numPredsPerClass), Range::all() };
transpose(umat(ranges), confPreds[i]);
}
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
if (use_half)
{
std::vector<UMat> orig_inputs;
std::vector<UMat> orig_outputs;
inps.getUMatVector(orig_inputs);
outs.getUMatVector(orig_outputs);
inputs.resize(orig_inputs.size());
for (size_t i = 0; i < orig_inputs.size(); i++)
convertFp16(orig_inputs[i], inputs[i]);
}
else
{
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
}
std::vector<LabelBBox> allDecodedBBoxes;
std::vector<Mat> allConfidenceScores;
int num = inputs[0].size[0];
// extract predictions from input layers
{
int numPriors = inputs[2].size[2] / 4;
// Retrieve all confidences
ocl_GetConfidenceScores(inputs[1], num, numPriors, _numClasses, allConfidenceScores);
// Decode all loc predictions to bboxes
bool ret = ocl_DecodeBBoxesAll(inputs[0], inputs[2], num, numPriors,
_shareLocation, _numLocClasses, _backgroundLabelId,
_codeType, _varianceEncodedInTarget, _clip,
allDecodedBBoxes);
if (!ret)
return false;
}
size_t numKept = 0;
std::vector<std::map<int, std::vector<int> > > allIndices;
for (int i = 0; i < num; ++i)
{
numKept += processDetections_(allDecodedBBoxes[i], allConfidenceScores[i], allIndices);
}
if (numKept == 0)
{
// Set confidences to zeros.
Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
if (use_half)
{
std::vector<UMat> orig_outputs;
outs.getUMatVector(orig_outputs);
orig_outputs[0](ranges).setTo(0);
} else
outputs[0](ranges).setTo(0);
return true;
}
int outputShape[] = {1, 1, (int)numKept, 7};
UMat umat = UMat(4, outputShape, CV_32F);
{
Mat mat = umat.getMat(ACCESS_WRITE);
float* outputsData = mat.ptr<float>();
size_t count = 0;
for (int i = 0; i < num; ++i)
{
count += outputDetections_(i, &outputsData[count * 7],
allDecodedBBoxes[i], allConfidenceScores[i],
allIndices[i], _groupByClasses);
}
CV_Assert(count == numKept);
}
if (use_half)
{
UMat half_umat;
convertFp16(umat, half_umat);
std::vector<UMat> orig_outputs;
outs.getUMatVector(orig_outputs);
orig_outputs.clear();
orig_outputs.push_back(half_umat);
outs.assign(orig_outputs);
} else {
outputs.clear();
outputs.push_back(umat);
outs.assign(outputs);
}
return true;
}
#endif
2018-03-15 21:16:56 +08:00
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
if (_bboxesNormalized)
{
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
}
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
2017-06-28 19:46:58 +08:00
std::vector<LabelBBox> allDecodedBBoxes;
std::vector<Mat> allConfidenceScores;
int num = inputs[0].size[0];
// extract predictions from input layers
{
int numPriors = inputs[2].size[2] / 4;
const float* locationData = inputs[0].ptr<float>();
const float* confidenceData = inputs[1].ptr<float>();
const float* priorData = inputs[2].ptr<float>();
// Retrieve all location predictions
std::vector<LabelBBox> allLocationPredictions;
GetLocPredictions(locationData, num, numPriors, _numLocClasses,
_shareLocation, _locPredTransposed, allLocationPredictions);
// Retrieve all confidences
GetConfidenceScores(confidenceData, num, numPriors, _numClasses, allConfidenceScores);
// Retrieve all prior bboxes
std::vector<util::NormalizedBBox> priorBBoxes;
std::vector<std::vector<float> > priorVariances;
2017-12-14 00:06:30 +08:00
GetPriorBBoxes(priorData, numPriors, _bboxesNormalized, priorBBoxes, priorVariances);
// Decode all loc predictions to bboxes
2017-12-14 00:06:30 +08:00
util::NormalizedBBox clipBounds;
if (_clip)
{
CV_Assert(_bboxesNormalized || inputs.size() >= 4);
clipBounds.xmin = clipBounds.ymin = 0.0f;
if (_bboxesNormalized)
clipBounds.xmax = clipBounds.ymax = 1.0f;
else
{
// Input image sizes;
CV_Assert(inputs[3].dims == 4);
clipBounds.xmax = inputs[3].size[3] - 1;
clipBounds.ymax = inputs[3].size[2] - 1;
2017-12-14 00:06:30 +08:00
}
}
DecodeBBoxesAll(allLocationPredictions, priorBBoxes, priorVariances, num,
_shareLocation, _numLocClasses, _backgroundLabelId,
2017-12-14 00:06:30 +08:00
_codeType, _varianceEncodedInTarget, _clip, clipBounds,
_bboxesNormalized, allDecodedBBoxes);
}
size_t numKept = 0;
std::vector<std::map<int, std::vector<int> > > allIndices;
for (int i = 0; i < num; ++i)
{
numKept += processDetections_(allDecodedBBoxes[i], allConfidenceScores[i], allIndices);
}
if (numKept == 0)
{
// Set confidences to zeros.
Range ranges[] = {Range::all(), Range::all(), Range::all(), Range(2, 3)};
outputs[0](ranges).setTo(0);
2017-07-15 01:47:56 +08:00
return;
}
int outputShape[] = {1, 1, (int)numKept, 7};
outputs[0].create(4, outputShape, CV_32F);
float* outputsData = outputs[0].ptr<float>();
size_t count = 0;
for (int i = 0; i < num; ++i)
{
count += outputDetections_(i, &outputsData[count * 7],
allDecodedBBoxes[i], allConfidenceScores[i],
allIndices[i], _groupByClasses);
}
CV_Assert(count == numKept);
// Sync results back due changed output shape.
outputs_arr.assign(outputs);
}
size_t outputDetections_(
const int i, float* outputsData,
const LabelBBox& decodeBBoxes, Mat& confidenceScores,
const std::map<int, std::vector<int> >& indicesMap,
bool groupByClasses
)
{
std::vector<int> dstIndices;
std::vector<std::pair<float, int> > allScores;
for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
{
int label = it->first;
if (confidenceScores.rows <= label)
CV_Error_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
const std::vector<float>& scores = confidenceScores.row(label);
const std::vector<int>& indices = it->second;
const int numAllScores = allScores.size();
allScores.reserve(numAllScores + indices.size());
for (size_t j = 0; j < indices.size(); ++j)
{
allScores.push_back(std::make_pair(scores[indices[j]], numAllScores + j));
}
}
if (!groupByClasses)
std::sort(allScores.begin(), allScores.end(), util::SortScorePairDescend<int>);
dstIndices.resize(allScores.size());
for (size_t j = 0; j < dstIndices.size(); ++j)
{
dstIndices[allScores[j].second] = j;
}
size_t count = 0;
for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
{
int label = it->first;
if (confidenceScores.rows <= label)
CV_Error_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
const std::vector<float>& scores = confidenceScores.row(label);
int locLabel = _shareLocation ? -1 : label;
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(locLabel);
if (label_bboxes == decodeBBoxes.end())
CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", locLabel));
const std::vector<int>& indices = it->second;
for (size_t j = 0; j < indices.size(); ++j, ++count)
{
int idx = indices[j];
int dstIdx = dstIndices[count];
const util::NormalizedBBox& decode_bbox = label_bboxes->second[idx];
outputsData[dstIdx * 7] = i;
outputsData[dstIdx * 7 + 1] = label;
outputsData[dstIdx * 7 + 2] = scores[idx];
outputsData[dstIdx * 7 + 3] = decode_bbox.xmin;
outputsData[dstIdx * 7 + 4] = decode_bbox.ymin;
outputsData[dstIdx * 7 + 5] = decode_bbox.xmax;
outputsData[dstIdx * 7 + 6] = decode_bbox.ymax;
}
}
return count;
}
size_t processDetections_(
const LabelBBox& decodeBBoxes, Mat& confidenceScores,
std::vector<std::map<int, std::vector<int> > >& allIndices
)
{
std::map<int, std::vector<int> > indices;
size_t numDetections = 0;
for (int c = 0; c < (int)_numClasses; ++c)
{
if (c == _backgroundLabelId)
continue; // Ignore background class.
if (c >= confidenceScores.rows)
CV_Error_(cv::Error::StsError, ("Could not find confidence predictions for label %d", c));
const std::vector<float> scores = confidenceScores.row(c);
int label = _shareLocation ? -1 : c;
LabelBBox::const_iterator label_bboxes = decodeBBoxes.find(label);
if (label_bboxes == decodeBBoxes.end())
CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
2017-12-14 00:06:30 +08:00
if (_bboxesNormalized)
NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
indices[c], util::caffe_norm_box_overlap);
else
NMSFast_(label_bboxes->second, scores, _confidenceThreshold, _nmsThreshold, 1.0, _topK,
indices[c], util::caffe_box_overlap);
numDetections += indices[c].size();
}
if (_keepTopK > -1 && numDetections > (size_t)_keepTopK)
{
std::vector<std::pair<float, std::pair<int, int> > > scoreIndexPairs;
for (std::map<int, std::vector<int> >::iterator it = indices.begin();
it != indices.end(); ++it)
{
int label = it->first;
const std::vector<int>& labelIndices = it->second;
if (label >= confidenceScores.rows)
CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
const std::vector<float>& scores = confidenceScores.row(label);
for (size_t j = 0; j < labelIndices.size(); ++j)
{
size_t idx = labelIndices[j];
CV_Assert(idx < scores.size());
scoreIndexPairs.push_back(std::make_pair(scores[idx], std::make_pair(label, idx)));
}
}
// Keep outputs k results per image.
std::sort(scoreIndexPairs.begin(), scoreIndexPairs.end(),
util::SortScorePairDescend<std::pair<int, int> >);
scoreIndexPairs.resize(_keepTopK);
std::map<int, std::vector<int> > newIndices;
for (size_t j = 0; j < scoreIndexPairs.size(); ++j)
{
int label = scoreIndexPairs[j].second.first;
int idx = scoreIndexPairs[j].second.second;
newIndices[label].push_back(idx);
}
allIndices.push_back(newIndices);
return (size_t)_keepTopK;
}
else
{
allIndices.push_back(indices);
return numDetections;
}
}
// **************************************************************
// Utility functions
// **************************************************************
// Compute bbox size
2017-12-14 00:06:30 +08:00
static float BBoxSize(const util::NormalizedBBox& bbox, bool normalized)
{
if (bbox.xmax < bbox.xmin || bbox.ymax < bbox.ymin)
{
return 0; // If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0.
}
else
{
if (bbox.has_size())
{
return bbox.size();
}
else
{
float width = bbox.xmax - bbox.xmin;
float height = bbox.ymax - bbox.ymin;
if (normalized)
{
return width * height;
}
else
{
// If bbox is not within range [0, 1].
return (width + 1) * (height + 1);
}
}
}
}
// Decode a bbox according to a prior bbox
template<bool variance_encoded_in_target>
static void DecodeBBox(
const util::NormalizedBBox& prior_bbox, const std::vector<float>& prior_variance,
const cv::String& code_type,
2017-12-14 00:06:30 +08:00
const bool clip_bbox, const util::NormalizedBBox& clip_bounds,
const bool normalized_bbox, const util::NormalizedBBox& bbox,
util::NormalizedBBox& decode_bbox)
{
float bbox_xmin = variance_encoded_in_target ? bbox.xmin : prior_variance[0] * bbox.xmin;
float bbox_ymin = variance_encoded_in_target ? bbox.ymin : prior_variance[1] * bbox.ymin;
float bbox_xmax = variance_encoded_in_target ? bbox.xmax : prior_variance[2] * bbox.xmax;
float bbox_ymax = variance_encoded_in_target ? bbox.ymax : prior_variance[3] * bbox.ymax;
if (code_type == "CORNER")
{
decode_bbox.xmin = prior_bbox.xmin + bbox_xmin;
decode_bbox.ymin = prior_bbox.ymin + bbox_ymin;
decode_bbox.xmax = prior_bbox.xmax + bbox_xmax;
decode_bbox.ymax = prior_bbox.ymax + bbox_ymax;
}
else if (code_type == "CENTER_SIZE")
{
float prior_width = prior_bbox.xmax - prior_bbox.xmin;
float prior_height = prior_bbox.ymax - prior_bbox.ymin;
2017-12-14 00:06:30 +08:00
if (!normalized_bbox)
{
prior_width += 1.0f;
prior_height += 1.0f;
}
CV_Assert(prior_width > 0);
CV_Assert(prior_height > 0);
2017-12-14 00:06:30 +08:00
float prior_center_x = prior_bbox.xmin + prior_width * .5;
float prior_center_y = prior_bbox.ymin + prior_height * .5;
float decode_bbox_center_x, decode_bbox_center_y;
float decode_bbox_width, decode_bbox_height;
decode_bbox_center_x = bbox_xmin * prior_width + prior_center_x;
decode_bbox_center_y = bbox_ymin * prior_height + prior_center_y;
decode_bbox_width = exp(bbox_xmax) * prior_width;
decode_bbox_height = exp(bbox_ymax) * prior_height;
decode_bbox.xmin = decode_bbox_center_x - decode_bbox_width * .5;
decode_bbox.ymin = decode_bbox_center_y - decode_bbox_height * .5;
decode_bbox.xmax = decode_bbox_center_x + decode_bbox_width * .5;
decode_bbox.ymax = decode_bbox_center_y + decode_bbox_height * .5;
}
else
CV_Error(Error::StsBadArg, "Unknown type.");
if (clip_bbox)
{
2017-12-14 00:06:30 +08:00
// Clip the util::NormalizedBBox.
decode_bbox.xmin = std::max(std::min(decode_bbox.xmin, clip_bounds.xmax), clip_bounds.xmin);
decode_bbox.ymin = std::max(std::min(decode_bbox.ymin, clip_bounds.ymax), clip_bounds.ymin);
decode_bbox.xmax = std::max(std::min(decode_bbox.xmax, clip_bounds.xmax), clip_bounds.xmin);
decode_bbox.ymax = std::max(std::min(decode_bbox.ymax, clip_bounds.ymax), clip_bounds.ymin);
}
decode_bbox.clear_size();
2017-12-14 00:06:30 +08:00
decode_bbox.set_size(BBoxSize(decode_bbox, normalized_bbox));
}
// Decode a set of bboxes according to a set of prior bboxes
static void DecodeBBoxes(
const std::vector<util::NormalizedBBox>& prior_bboxes,
const std::vector<std::vector<float> >& prior_variances,
const cv::String& code_type, const bool variance_encoded_in_target,
2017-12-14 00:06:30 +08:00
const bool clip_bbox, const util::NormalizedBBox& clip_bounds,
const bool normalized_bbox, const std::vector<util::NormalizedBBox>& bboxes,
std::vector<util::NormalizedBBox>& decode_bboxes)
{
CV_Assert(prior_bboxes.size() == prior_variances.size());
CV_Assert(prior_bboxes.size() == bboxes.size());
size_t num_bboxes = prior_bboxes.size();
CV_Assert(num_bboxes == 0 || prior_variances[0].size() == 4);
decode_bboxes.clear(); decode_bboxes.resize(num_bboxes);
if(variance_encoded_in_target)
{
for (int i = 0; i < num_bboxes; ++i)
DecodeBBox<true>(prior_bboxes[i], prior_variances[i], code_type,
2017-12-14 00:06:30 +08:00
clip_bbox, clip_bounds, normalized_bbox,
bboxes[i], decode_bboxes[i]);
}
else
{
for (int i = 0; i < num_bboxes; ++i)
DecodeBBox<false>(prior_bboxes[i], prior_variances[i], code_type,
2017-12-14 00:06:30 +08:00
clip_bbox, clip_bounds, normalized_bbox,
bboxes[i], decode_bboxes[i]);
}
}
// Decode all bboxes in a batch
static void DecodeBBoxesAll(const std::vector<LabelBBox>& all_loc_preds,
const std::vector<util::NormalizedBBox>& prior_bboxes,
const std::vector<std::vector<float> >& prior_variances,
const int num, const bool share_location,
const int num_loc_classes, const int background_label_id,
const cv::String& code_type, const bool variance_encoded_in_target,
2017-12-14 00:06:30 +08:00
const bool clip, const util::NormalizedBBox& clip_bounds,
const bool normalized_bbox, std::vector<LabelBBox>& all_decode_bboxes)
{
CV_Assert(all_loc_preds.size() == num);
all_decode_bboxes.clear();
all_decode_bboxes.resize(num);
for (int i = 0; i < num; ++i)
{
// Decode predictions into bboxes.
const LabelBBox& loc_preds = all_loc_preds[i];
LabelBBox& decode_bboxes = all_decode_bboxes[i];
for (int c = 0; c < num_loc_classes; ++c)
{
int label = share_location ? -1 : c;
if (label == background_label_id)
continue; // Ignore background class.
LabelBBox::const_iterator label_loc_preds = loc_preds.find(label);
if (label_loc_preds == loc_preds.end())
CV_Error_(cv::Error::StsError, ("Could not find location predictions for label %d", label));
DecodeBBoxes(prior_bboxes, prior_variances,
2017-12-14 00:06:30 +08:00
code_type, variance_encoded_in_target, clip, clip_bounds,
normalized_bbox, label_loc_preds->second, decode_bboxes[label]);
}
}
}
// Get prior bounding boxes from prior_data
// prior_data: 1 x 2 x num_priors * 4 x 1 blob.
// num_priors: number of priors.
// prior_bboxes: stores all the prior bboxes in the format of util::NormalizedBBox.
// prior_variances: stores all the variances needed by prior bboxes.
static void GetPriorBBoxes(const float* priorData, const int& numPriors,
2017-12-14 00:06:30 +08:00
bool normalized_bbox, std::vector<util::NormalizedBBox>& priorBBoxes,
std::vector<std::vector<float> >& priorVariances)
{
priorBBoxes.clear(); priorBBoxes.resize(numPriors);
priorVariances.clear(); priorVariances.resize(numPriors);
for (int i = 0; i < numPriors; ++i)
{
int startIdx = i * 4;
util::NormalizedBBox& bbox = priorBBoxes[i];
bbox.xmin = priorData[startIdx];
bbox.ymin = priorData[startIdx + 1];
bbox.xmax = priorData[startIdx + 2];
bbox.ymax = priorData[startIdx + 3];
2017-12-14 00:06:30 +08:00
bbox.set_size(BBoxSize(bbox, normalized_bbox));
}
for (int i = 0; i < numPriors; ++i)
{
int startIdx = (numPriors + i) * 4;
// not needed here: priorVariances[i].clear();
for (int j = 0; j < 4; ++j)
{
priorVariances[i].push_back(priorData[startIdx + j]);
}
}
}
// Get location predictions from loc_data.
// loc_data: num x num_preds_per_class * num_loc_classes * 4 blob.
// num: the number of images.
// num_preds_per_class: number of predictions per class.
// num_loc_classes: number of location classes. It is 1 if share_location is
// true; and is equal to number of classes needed to predict otherwise.
// share_location: if true, all classes share the same location prediction.
// loc_pred_transposed: if true, represent four bounding box values as
// [y,x,height,width] or [x,y,width,height] otherwise.
// loc_preds: stores the location prediction, where each item contains
// location prediction for an image.
static void GetLocPredictions(const float* locData, const int num,
const int numPredsPerClass, const int numLocClasses,
const bool shareLocation, const bool locPredTransposed,
std::vector<LabelBBox>& locPreds)
{
locPreds.clear();
if (shareLocation)
{
CV_Assert(numLocClasses == 1);
}
locPreds.resize(num);
for (int i = 0; i < num; ++i, locData += numPredsPerClass * numLocClasses * 4)
{
LabelBBox& labelBBox = locPreds[i];
for (int p = 0; p < numPredsPerClass; ++p)
{
int startIdx = p * numLocClasses * 4;
for (int c = 0; c < numLocClasses; ++c)
{
int label = shareLocation ? -1 : c;
if (labelBBox.find(label) == labelBBox.end())
{
labelBBox[label].resize(numPredsPerClass);
}
util::NormalizedBBox& bbox = labelBBox[label][p];
if (locPredTransposed)
{
bbox.ymin = locData[startIdx + c * 4];
bbox.xmin = locData[startIdx + c * 4 + 1];
bbox.ymax = locData[startIdx + c * 4 + 2];
bbox.xmax = locData[startIdx + c * 4 + 3];
}
else
{
bbox.xmin = locData[startIdx + c * 4];
bbox.ymin = locData[startIdx + c * 4 + 1];
bbox.xmax = locData[startIdx + c * 4 + 2];
bbox.ymax = locData[startIdx + c * 4 + 3];
}
}
}
}
}
// Get confidence predictions from conf_data.
// conf_data: num x num_preds_per_class * num_classes blob.
// num: the number of images.
// num_preds_per_class: number of predictions per class.
// num_classes: number of classes.
// conf_preds: stores the confidence prediction, where each item contains
// confidence prediction for an image.
static void GetConfidenceScores(const float* confData, const int num,
const int numPredsPerClass, const int numClasses,
std::vector<Mat>& confPreds)
{
int shape[] = { numClasses, numPredsPerClass };
for (int i = 0; i < num; i++)
confPreds.push_back(Mat(2, shape, CV_32F));
for (int i = 0; i < num; ++i, confData += numPredsPerClass * numClasses)
{
Mat labelScores = confPreds[i];
for (int c = 0; c < numClasses; ++c)
{
for (int p = 0; p < numPredsPerClass; ++p)
{
labelScores.at<float>(c, p) = confData[p * numClasses + c];
}
}
}
}
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
template<bool normalized>
static float JaccardOverlap(const util::NormalizedBBox& bbox1,
const util::NormalizedBBox& bbox2)
{
util::NormalizedBBox intersect_bbox;
2017-12-14 00:06:30 +08:00
intersect_bbox.xmin = std::max(bbox1.xmin, bbox2.xmin);
intersect_bbox.ymin = std::max(bbox1.ymin, bbox2.ymin);
intersect_bbox.xmax = std::min(bbox1.xmax, bbox2.xmax);
intersect_bbox.ymax = std::min(bbox1.ymax, bbox2.ymax);
2017-12-14 00:06:30 +08:00
float intersect_size = BBoxSize(intersect_bbox, normalized);
if (intersect_size > 0)
{
2017-12-14 00:06:30 +08:00
float bbox1_size = BBoxSize(bbox1, normalized);
float bbox2_size = BBoxSize(bbox2, normalized);
return intersect_size / (bbox1_size + bbox2_size - intersect_size);
}
else
{
return 0.;
}
}
2018-03-15 21:16:56 +08:00
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
2019-01-14 14:55:44 +08:00
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine::Builder::DetectionOutputLayer ieLayer(name);
ieLayer.setNumClasses(_numClasses);
ieLayer.setShareLocation(_shareLocation);
ieLayer.setBackgroudLabelId(_backgroundLabelId);
ieLayer.setNMSThreshold(_nmsThreshold);
ieLayer.setTopK(_topK);
ieLayer.setKeepTopK(_keepTopK);
ieLayer.setConfidenceThreshold(_confidenceThreshold);
ieLayer.setVariantEncodedInTarget(_varianceEncodedInTarget);
ieLayer.setCodeType("caffe.PriorBoxParameter." + _codeType);
ieLayer.setInputPorts(std::vector<InferenceEngine::Port>(3));
InferenceEngine::Builder::Layer l = ieLayer;
l.getParameters()["eta"] = std::string("1.0");
return Ptr<BackendNode>(new InfEngineBackendNode(l));
#else
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "DetectionOutput";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::CNNLayer> ieLayer(new InferenceEngine::CNNLayer(lp));
ieLayer->params["num_classes"] = format("%d", _numClasses);
ieLayer->params["share_location"] = _shareLocation ? "1" : "0";
ieLayer->params["background_label_id"] = format("%d", _backgroundLabelId);
ieLayer->params["nms_threshold"] = format("%f", _nmsThreshold);
ieLayer->params["top_k"] = format("%d", _topK);
ieLayer->params["keep_top_k"] = format("%d", _keepTopK);
ieLayer->params["eta"] = "1.0";
ieLayer->params["confidence_threshold"] = format("%f", _confidenceThreshold);
ieLayer->params["variance_encoded_in_target"] = _varianceEncodedInTarget ? "1" : "0";
ieLayer->params["code_type"] = "caffe.PriorBoxParameter." + _codeType;
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
2019-01-14 14:55:44 +08:00
#endif
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
};
float util::caffe_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b)
2017-12-14 00:06:30 +08:00
{
return DetectionOutputLayerImpl::JaccardOverlap<false>(a, b);
}
float util::caffe_norm_box_overlap(const util::NormalizedBBox& a, const util::NormalizedBBox& b)
2017-10-17 00:16:52 +08:00
{
return DetectionOutputLayerImpl::JaccardOverlap<true>(a, b);
}
const std::string DetectionOutputLayerImpl::_layerName = std::string("DetectionOutput");
Ptr<DetectionOutputLayer> DetectionOutputLayer::create(const LayerParams &params)
{
return Ptr<DetectionOutputLayer>(new DetectionOutputLayerImpl(params));
}
}
}