Add Python bindings for VideoCapture::waitAny #21826
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
The old documentation implies that the call is only valid for the next parallel region and must be called again if addtional regions should be affected as well.
Modify the SIMD loop in color_hsv.
* Modify the SIMD loops in color_hsv.
* Add FP supporting in bit logic.
* Add temporary compatibility code.
* Use max_nlanes instead of vlanes for array declaration.
* Use "CV_SIMD || CV_SIMD_SCALABLE".
* Revert the modify of the Universal Intrinsic API
* Fix warnings.
* Use v_select instead of bits manipulation.
[GSoC] New universal intrinsic backend for RVV
* Add new rvv backend (partially implemented).
* Modify the framework of Universal Intrinsic.
* Add CV_SIMD macro guards to current UI code.
* Use vlanes() instead of nlanes.
* Modify the UI test.
* Enable the new RVV (scalable) backend.
* Remove whitespace.
* Rename and some others modify.
* Update intrin.hpp but still not work on AVX/SSE
* Update conditional compilation macros.
* Use static variable for vlanes.
* Use max_nlanes for array defining.
Add conditional compilation directives to enable uses of std::chrono on supported compilers. Use std::chrono::steady_clock as a source to retrieve current tick count and clock frequency.
Fixesopencv/opencv#6902.
-enable using -DWITH_WAYLAND=ON
-adapted from https://github.com/pfpacket/opencv-wayland
-using xdg_shell stable protocol
-overrides HAVE_QT if HAVE_WAYLAND and WITH_WAYLAND are set
Signed-off-by: Joel Winarske <joel.winarske@gmail.com>
Co-authored-by: Ryo Munakata <afpacket@gmail.com>
Replaced sprintf with safer snprintf
* Straightforward replacement of sprintf with safer snprintf
* Trickier replacement of sprintf with safer snprintf
Some functions were changed to take another parameter: the size of the buffer, so that they can pass that size on to snprintf.
/wrkdirs/usr/ports/graphics/opencv/work/opencv-4.5.5/modules/core/include/opencv2/core/vsx_utils.hpp:352:12: warning: 'vec_permi' macro redefined [-Wmacro-redefined]
# define vec_permi(a, b, c) vec_xxpermdi(b, a, (3 ^ (((c) & 1) << 1 | (c) >> 1)))
^
/usr/lib/clang/13.0.0/include/altivec.h:13077:9: note: previous definition is here
#define vec_permi(__a, __b, __c) \
^
/wrkdirs/usr/ports/graphics/opencv/work/opencv-4.5.5/modules/core/include/opencv2/core/vsx_utils.hpp:370:25: error: redefinition of 'vec_promote'
VSX_FINLINE(vec_dword2) vec_promote(long long a, int b)
^
/usr/lib/clang/13.0.0/include/altivec.h:14604:1: note: previous definition is here
vec_promote(signed long long __a, int __b) {
^
/wrkdirs/usr/ports/graphics/opencv/work/opencv-4.5.5/modules/core/include/opencv2/core/vsx_utils.hpp:377:26: error: redefinition of 'vec_promote'
VSX_FINLINE(vec_udword2) vec_promote(unsigned long long a, int b)
^
/usr/lib/clang/13.0.0/include/altivec.h:14611:1: note: previous definition is here
vec_promote(unsigned long long __a, int __b) {
^
/wrkdirs/usr/ports/graphics/opencv/work/opencv-4.5.5/modules/core/include/opencv2/core/hal/intrin_vsx.hpp:1045:22: error: call to 'vec_rsqrt' is ambiguous
{ return v_float32x4(vec_rsqrt(x.val)); }
^~~~~~~~~
/usr/lib/clang/13.0.0/include/altivec.h:8472:34: note: candidate function
static vector float __ATTRS_o_ai vec_rsqrt(vector float __a) {
^
/wrkdirs/usr/ports/graphics/opencv/work/opencv-4.5.5/modules/core/include/opencv2/core/vsx_utils.hpp:362:29: note: candidate function
VSX_FINLINE(vec_float4) vec_rsqrt(const vec_float4& a)
^
/wrkdirs/usr/ports/graphics/opencv/work/opencv-4.5.5/modules/core/include/opencv2/core/hal/intrin_vsx.hpp:1047:22: error: call to 'vec_rsqrt' is ambiguous
{ return v_float64x2(vec_rsqrt(x.val)); }
^~~~~~~~~
/usr/lib/clang/13.0.0/include/altivec.h:8477:35: note: candidate function
static vector double __ATTRS_o_ai vec_rsqrt(vector double __a) {
^
/wrkdirs/usr/ports/graphics/opencv/work/opencv-4.5.5/modules/core/include/opencv2/core/vsx_utils.hpp:365:30: note: candidate function
VSX_FINLINE(vec_double2) vec_rsqrt(const vec_double2& a)
^
1 warning and 4 errors generated.
The specific functions were added to altivec.h in LLVM's 1ff93618e58df210def48d26878c20a1b414d900, c3da07d216dd20fbdb7302fd085c0a59e189ae3d and 10cc5bcd868c433f9a781aef82178b04e98bd098.
All classes are registered in the scope that corresponds to C++
namespace or exported class.
Example:
`cv::ml::Boost` is exported as `cv.ml.Boost`
`cv::SimpleBlobDetector::Params` is exported as
`cv.SimpleBlobDetector.Params`
For backward compatibility all classes are registered in the global
module with their mangling name containing scope information.
Example:
`cv::ml::Boost` has `cv.ml_Boost` alias to `cv.ml.Boost` type
* Added NEON support in builds for Windows on ARM
* Fixed `HAVE_CPU_NEON_SUPPORT` display broken during compiler test
* Fixed a build error prior to Visual Studio 2022
4.x: submodule or a class scope for exported classes
* feature: submodule or a class scope for exported classes
All classes are registered in the scope that corresponds to C++
namespace or exported class.
Example:
`cv::ml::Boost` is exported as `cv.ml.Boost`
`cv::SimpleBlobDetector::Params` is exported as
`cv.SimpleBlobDetector.Params`
For backward compatibility all classes are registered in the global
module with their mangling name containing scope information.
Example:
`cv::ml::Boost` has `cv.ml_Boost` alias to `cv.ml.Boost` type
* refactor: remove redundant GAPI aliases
* fix: use explicit string literals in CVPY_TYPE macro
* fix: add handling for class aliases
Thread Sanitizer identified an incorrect implementation of double checked locking.
Replaced it with a static, which therefore can only be created once.
Per intel docs for libva, when vaDeriveImage fails vaCreateImage +
vaPutImage should be tried. This is important as mesa with AMD HW
will always fail because the image is interlaced so a indirect
method must be used to get the surface to/from and image
Fixes https://github.com/opencv/opencv/issues/21536
* Fix wrong MSAN errors.
Because Fortran is called in Lapack, MSAN does not think the memory
has been written even though it is the case.
MSAN does no support well cross-language memory analysis.
* Make a dedicated check.
- Add special case handling when submodule has the same name as parent
- `PyDict_SetItemString` doesn't steal reference, so reference count
should be explicitly decremented to transfer object life-time
ownership
- Add sanity checks for module registration input
- Add Python 2 and Python 3 reference counting handling
clang-cl defines both __clang__ and _MSC_VER, yet uses `#pragma GCC` to disable certain diagnostics.
At the time `-Wreturn-type-c-linkage` was reported by clang-cl.
This PR fixes this behavior by reordering defines.
- Add special case handling when submodule has the same name as parent
- `PyDict_SetItemString` doesn't steal reference, so reference count
should be explicitly decremented to transfer object life-time
ownership
- Add sanity checks for module registration input
* Fix compile against lapack-3.10.0
Fix compilation against lapack >= 3.9.1 and 3.10.0 while not breaking older versions
OpenCVFindLAPACK.cmake & CMakeLists.txt: determine OPENCV_USE_LAPACK_PREFIX from LAPACK_VERSION
hal_internal.cpp : Only apply LAPACK_FUNC to functions whose number of inputs depends on LAPACK_FORTRAN_STR_LEN in lapack >= 3.9.1
lapack_check.cpp : remove LAPACK_FUNC which is not OK as function are not used with input parameters (so lapack.h preprocessing of "LAPACK_xxxx(...)" is not applicable with lapack >= 3.9.1
If not removed lapack_check fails so LAPACK is deactivated in build (not want we want)
use OCV_ prefix and don't use Global, instead generate OCV_LAPACK_FUNC depending on CMake Conditions
Remove CONFIG from find_package(LAPACK) and use LAPACK_GLOBAL and LAPACK_NAME to figure out if using netlib's reference LAPACK implementation and how to #define OCV_LAPACK_FUNC(f)
* Fix typos and grammar in comments
Fow now, it is possible to define valid rectangle for which some
functions overflow (e.g. br(), ares() ...).
This patch fixes the intersection operator so that it works with
any rectangle.
Update RVV backend for using Clang.
* Update cmake file of clang.
* Modify the RVV optimization on DNN to adapt to clang.
* Modify intrin_rvv: Disable some existing types.
* Modify intrin_rvv: Reinterpret instead of load&cast.
* Modify intrin_rvv: Update load&store without cast.
* Modify intrin_rvv: Rename vfredsum to fredosum.
* Modify intrin_rvv: Rewrite Check all/any by using vpopc.
* Modify intrin_rvv: Use reinterpret instead of c-style casting.
* Remove all macros which is not used in v_reinterpret
* Rename vpopc to vcpop according to spec.
1. Code uses PPC_FEATURE_HAS_VSX, but it's not checked similarly to
PPC_FEATURE2_ARCH_3_00 and PPC_FEATURE2_ARCH_3_00 for availability. FreeBSD has
those macros in machine/cpu.h, but I went with the way chosen for
PPC_FEATURE2_ARCH_3_00 and PPC_FEATURE2_ARCH_3_00. Other than that, FreeBSD also
has sys/auxv.h and that's where elf_aux_info() is defined.
2. getauxval() is actually Linux-only, but code checked for __unix__. It won't
work on all UNIX, so change it back to __linux__. Add another code variant
strictly for FreeBSD.
3. Update comment. This commit adds code for FreeBSD, but recently there
appeared support for powerpc64 in OpenBSD.
* feat: OpenCV extension with pure Python modules
* feat: cv2 is now a Python package instead of extension module
Python package cv2 now can handle both Python and C extension modules
properly without additional "subfolders" like "_extra_py_code".
* feat: can call native function from its reimplementation in Python
`PyObject*` to `std::vector<T>` conversion logic:
- If user passed Numpy Array
- If array is planar and T is a primitive type (doesn't require
constructor call) that matches with the element type of array, then
copy element one by one with the respect of the step between array
elements. If compiler is lucky (or brave enough) copy loop can be
vectorized.
For classes that require constructor calls this path is not
possible, because we can't begin an object lifetime without hacks.
- Otherwise fall-back to general case
- Otherwise - execute the general case:
If PyObject* corresponds to Sequence protocol - iterate over the
sequence elements and invoke the appropriate `pyopencv_to` function.
`std::vector<T>` to `PyObject*` conversion logic:
- If `std::vector<T>` is empty - return empty tuple.
- If `T` has a corresponding `Mat` `DataType` than return
Numpy array instance of the matching `dtype` e.g.
`std::vector<cv::Rect>` is returned as `np.ndarray` of shape `Nx4` and
`dtype=int`.
This branch helps to optimize further evaluations in user code.
- Otherwise - execute the general case:
Construct a tuple of length N = `std::vector::size` and insert
elements one by one.
Unnecessary functions were removed and code was rearranged to allow
compiler select the appropriate conversion function specialization.