[BugFix] dnn (ONNX): Foce dropping constant inputs in parseClip if they are shared #25319
Resolves https://github.com/opencv/opencv/issues/25278
Merge with https://github.com/opencv/opencv_extra/pull/1165
In Gold-YOLO ,`Div` has a constant input `B=6` which is then parsed into a `Const` layer in the ONNX importer, but `Clip` also has the shared constant input `max=6` which is already a `Const` layer and then connected to `Elementwise` layer. This should not happen because in the `forward()` of `Elementwise` layer, the legacy code goes through and apply activation to each input. More details on https://github.com/opencv/opencv/issues/25278#issuecomment-2032199630.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Ownership check in TFLite importer #25312
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/25310
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Optimize int8 layers in DNN modules by using RISC-V Vector intrinsic. #25230
This patch optimize 3 functions in the int8 layer by using RVV Native Intrinsic.
This patch was tested on QEMU using VLEN=128 and VLEN=256 on `./bin/opencv_test_dnn --gtest_filter="*Int8*"`;
On the real device (k230, VLEN=128), `EfficientDet_int8` in `opencv_perf_dnn` showed a performance improvement of 1.46x.
| Name of Test | Original | optimized | Speed-up |
| ------------------------------------------ | -------- | ---------- | -------- |
| EfficientDet_int8::DNNTestNetwork::OCV/CPU | 2843.467 | 1947.013 | 1.46 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Merge with https://github.com/opencv/opencv_extra/pull/1158
Todo:
- [x] Fix Attention pattern recognition.
- [x] Handle other backends.
Benchmark:
"VIT_B_32 OCV/CPU", M1, results in milliseconds.
| Model | 4.x | This PR |
| - | - | - |
| VIT_B_32 OCV/CPU | 87.66 | **83.83** |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: avoid const layer forwarding in layer norm layer and attention layer #25238
While profiling ViTs with dnn, I found `ConstLayer` can take a proportion of the inference time, which is weird. This comes from the data copy during the inference of `ConstLayer`. There is a chance that we can improve the efficiency of data copying but the easiest and most convenient way is to avoid `ConstLayer`. This PR change the way how we handle constants in layer normalization layer and attention layer, which is storing in the layer blobs instead of making constant layers for them.
Checklists:
- [x] Backend compatibility in layer normalization layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn (CANN): Fix incorrect shape of 1d bias in Gemm #25166
Gemm layer was refactored some time ago. Users found that the mobilenet example in https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend does not work because of incorrect shape set for 1d bias in Gemm. This PR resolves this issue.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Release convolution weightsMat after usage #25181
### Pull Request Readiness Checklist
related (but not resolved): https://github.com/opencv/opencv/issues/24134
Minor memory footprint improvement. Also, adds a test for VmHWM.
RAM top memory usage (-230MB)
| YOLOv3 (237MB file) | 4.x | PR |
|---------------------|---------|---------|
| no winograd | 808 MB | 581 MB |
| winograd | 1985 MB | 1750 MB |
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixed ReduceMean layer behaviour #25120
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
a93c31e3c9/onnxruntime/core/providers/cpu/reduction/reduction_ops.cc (L433-L443)
dnn: try improving performance of Attention layer #25076
Checklist:
- [x] Use `Mat` over `Mat::zeros` for temporary buffer in forward
- [x] Use layer internal buffer over temporary Mat buffer
- [x] Try a single fastGemmBatch on the Q/K/V calculation
Performance:
Performance test case is `Layer_Attention.VisionTransformer/0`, which has input of shape {1, 197, 768}, weight of shape {768, 2304} and bias {2304}.
Data is in millisecond.
| | macOS 14.2.1, Apple M1 | Ubuntu 22.04.2, Intel i7 12700K |
| - | - | - |
| Current | 10.96 | 1.58 |
| w/ Mat | 6.27 | 1.41 |
| w/ Internals | 5.87 | 1.38 |
| w/ fastGemmBatch | 6.12 | 2.14 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix issue #25077#25100
Fixes https://github.com/opencv/opencv/issues/25077
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixes#24974 support HardSwishInt8 #24985
As given very clearly in the issue #24974 I made the required 2 changes to implement HardSwish Layer in INT8. Requesting comments.
resolves https://github.com/opencv/opencv/issues/24974
- [X] I agree to contribute to the project under Apache 2 License.
- [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [X] The PR is proposed to the proper branch
- [X] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: Dhanwanth1803 <dhanwanthvarala@gmail,com>
Vulkan backend for NaryEltwiseLayer in DNN module #24768
We improve Vulkan backend for ``NaryEltwiseLayer`` in DNN module by:
- add a basic framework for Vulkan backend in ``NaryEltwiseLayer``
- add a compute shader for binary forwarding (an imitation of what has been done in native OpenCV backend including broadcasting and eltwise-operation)
- typo fixed:
- Wrong info output in ``context.cpp``
Currently, our implementation (or all layers supporting Vulkan backend) runs pretty slow on discrete GPUs basically due to IO cost in function ``copyToHost``, and we are going to fix that by
- find out the best ``VkMemoryProperty`` for various discrete GPUs
- prevent ``copyToHost`` in middle layers during forwarding, (i.e keep data in GPU memory)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: IskXCr <IskXCr@outlook.com>
Handle warnings in loongson-related code #24925
See https://github.com/fengyuentau/opencv/actions/runs/7665377694/job/20891162958#step:14:16
Warnings needs to be handled before we add the loongson server to our CI.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Removed all pre-C++11 code, workarounds, and branches #23736
This removes a bunch of pre-C++11 workrarounds that are no longer necessary as C++11 is now required.
It is a nice clean up and simplification.
* No longer unconditionally #include <array> in cvdef.h, include explicitly where needed
* Removed deprecated CV_NODISCARD, already unused in the codebase
* Removed some pre-C++11 workarounds, and simplified some backwards compat defines
* Removed CV_CXX_STD_ARRAY
* Removed CV_CXX_MOVE_SEMANTICS and CV_CXX_MOVE
* Removed all tests of CV_CXX11, now assume it's always true. This allowed removing a lot of dead code.
* Updated some documentation consequently.
* Removed all tests of CV_CXX11, now assume it's always true
* Fixed links.
---------
Co-authored-by: Maksim Shabunin <maksim.shabunin@gmail.com>
Co-authored-by: Alexander Smorkalov <alexander.smorkalov@xperience.ai>
python: accept path-like objects wherever file names are expected #24773
Merry Christmas, all 🎄
Implements #15731
Support is enabled for all arguments named `filename` or `filepath` (case-insensitive), or annotated with `CV_WRAP_FILE_PATH`.
Support is based on `PyOS_FSPath`, which is available in Python 3.6+. When running on older Python versions the arguments must have a `str` value as before.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn onnx: add group norm layer #24610
dnn onnx: add group norm layer
Todo:
- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Co-authored-by: fengyuentau <yuantao.feng@opencv.org.cn>
Replace interactive batched Matrix Multiply. #24812
This PR replaces iterative batch matrix multiplication which `FastGemmBatch` in Einsum layer.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: no layer norm fusion if axes.back() is not the axis of last dimension #24808
Merge with https://github.com/opencv/opencv_extra/pull/1137
Resolves https://github.com/opencv/opencv/issues/24797
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn onnx: add mod #24765
Resolves https://github.com/opencv/opencv/issues/23174
TODO:
- [x] enable some conformance tests
- [x] add backends
- [x] CANN
- [x] OpenVINO
- [x] CUDA
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn onnx: support constaint inputs in einsum importer #24753
Merge with https://github.com/opencv/opencv_extra/pull/1132.
Resolves https://github.com/opencv/opencv/issues/24697
Credits to @LaurentBerger.
---
This is a workaround. I suggest to get input shapes and calculate the output shapes in `getMemoryShapes` so as to keep the best compatibility. It is not always robust getting shapes during the importer stage and we should avoid that as much as possible.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fixes#22747. Support [crop] configuration for DarkNet #24384
Request for comments. This is my first PR.
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1112
resolves https://github.com/opencv/opencv/issues/22747
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Try to enable Winograd by default in FP32 mode and disable it by default in FP16 mode #24709
Hopefully, it will resolve regressions since 4.8.1 (see also https://github.com/opencv/opencv/pull/24587)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ ] I agree to contribute to the project under Apache 2 License.
- [ ] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ ] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
dnn: add attention layer #24476Resolves#24609
Merge with: https://github.com/opencv/opencv_extra/pull/1128.
Attention operator spec from onnxruntime: https://github.com/microsoft/onnxruntime/blob/v1.16.1/docs/ContribOperators.md#com.microsoft.Attention.
TODO:
- [x] benchmark (before this PR vs. with this PR vs. ORT).
- [x] Layer fusion: Take care Slice with end=INT64_MAX.
- [x] Layer fusion: match more potential attention (VIT) patterns.
- [x] Single-head attention is supported.
- [x] Test AttentionSubgraph fusion.
- [x] Add acc tests for VIT_B_32 and VitTrack
- [x] Add perf tests for VIT_B_32 and VitTrack
## Benchmarks
Platform: Macbook Air M1.
### Attention Subgraph
Input scale: [1, 197, 768].
| | mean (ms) | median (ms) | min (ms) |
| ---------------------- | --------- | ----------- | -------- |
| w/ Attention (this PR) | 3.75 | 3.68 | 3.22 |
| w/o Attention | 9.06 | 9.01 | 8.24 |
| ORT (python) | 4.32 | 2.63 | 2.50 |
### ViTs
All data in millisecond (ms).
| ViTs | With Attention | Without Attention | ORT |
| -------- | -------------- | ----------------- | ------ |
| vit_b_16 | 302.77 | 365.35 | 109.70 |
| vit_b_32 | 89.92 | 116.22 | 30.36 |
| vit_l_16 | 1593.32 | 1730.74 | 419.92 |
| vit_l_32 | 468.11 | 577.41 | 134.12 |
| VitTrack | 3.80 | 3.87 | 2.25 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add blobrecttoimage #24539
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/14659
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work #14659
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn: refactor ONNX MatMul with fastGemm #24694
Done:
- [x] add backends
- [x] CUDA
- [x] OpenVINO
- [x] CANN
- [x] OpenCL
- [x] Vulkan
- [x] add perf tests
- [x] const B case
### Benchmark
Tests are done on M1. All data is in milliseconds (ms).
| Configuration | MatMul (Prepacked) | MatMul | InnerProduct |
| - | - | - | - |
| A=[12, 197, 197], B=[12, 197, 64], trans_a=0, trans_b=0 | **0.39** | 0.41 | 1.33 |
| A=[12, 197, 64], B=[12, 64, 197], trans_a=0, trans_b=0 | **0.42** | 0.42 | 1.17 |
| A=[12, 50, 64], B=[12, 64, 50], trans_a=0, trans_b=0 | **0.13** | 0.15 | 0.33 |
| A=[12, 50, 50], B=[12, 50, 64], trans_a=0, trans_b=0 | **0.11** | 0.13 | 0.22 |
| A=[16, 197, 197], B=[16, 197, 64], trans_a=0, trans_b=0 | **0.46** | 0.54 | 1.46 |
| A=[16, 197, 64], B=[16, 64, 197], trans_a=0, trans_b=0 | **0.46** | 0.95 | 1.74 |
| A=[16, 50, 64], B=[16, 64, 50], trans_a=0, trans_b=0 | **0.18** | 0.32 | 0.43 |
| A=[16, 50, 50], B=[16, 50, 64], trans_a=0, trans_b=0 | **0.15** | 0.25 | 0.25 |
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Make default axis of softmax in onnx "-1" without opset option #24613
Try to solve problem: https://github.com/opencv/opencv/pull/24476#discussion_r1404821158
**ONNX**
`opset <= 11` use 1
`else` use -1
**TensorFlow**
`TF version = 2.x` use -1
`else` use 1
**Darknet, Caffe, Torch**
use 1 by definition
Classify and extend convolution and depthwise performance tests #24547
This PR aims to:
1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added)
2. Classify the existing convolution performance test to below cases
- CONV_1x1
- CONV_3x3_S1_D1 (winograd)
- CONV
- DEPTHWISE
3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned):
(i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved.
(ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]`
(iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... `
> **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt)
**Performance test result on Apple M2**
**Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md)
**Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip)
**Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**:
1. `CONV_1x1_S1_D1` dropped significant with small or large input shape.
2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0.
---
**Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads.
**Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md)
**Brief summary for 4.8.1 vs 4.5.5**:
1. `CONV_5x5_S1_D1` dropped significant.
2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape.
---
TODO:
- [x] Perform tests on arm with each opencv version
- [x] Perform tests on x86 with each opencv version
- [x] Split each test classification with single test config
- [x] test enable fp16
Add test for YoloX Yolo v6 and Yolo v8 #24611
This PR adds test for YOLOv6 model (which was absent before)
The onnx weights for the test are located in this PR [ #1126](https://github.com/opencv/opencv_extra/pull/1126)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn cuda: support Sub #24647
Related https://github.com/opencv/opencv/issues/24606#issuecomment-1837390257
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn onnx graph simplifier: handle optional inputs of Slice #24655
Resolves https://github.com/opencv/opencv/issues/24609
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add support for custom padding in DNN preprocessing #24569
This PR add functionality for specifying value in padding.
It is required in many preprocessing pipelines in DNNs such as Yolox object detection model
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fix graph fusion with commutative ops #24577
### Pull Request Readiness Checklist
resolves https://github.com/opencv/opencv/issues/24568
**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1125
TODO:
- [x] replace recursive function to sequential
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Add yolov5n to tests #24553
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [ X] I agree to contribute to the project under Apache 2 License.
- [ X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [ X] The PR is proposed to the proper branch
- [ X] There is a reference to the original bug report and related work
- [ X] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ X] The feature is well documented and sample code can be built with the project CMake
dnn: add openvino, opencl and cuda backends for layer normalization layer #24552
Merge after https://github.com/opencv/opencv/pull/24544.
Todo:
- [x] openvino
- [x] opencl
- [x] cuda
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
* add Winograd FP16 implementation
* fixed dispatching of FP16 code paths in dnn; use dynamic dispatcher only when NEON_FP16 is enabled in the build and the feature is present in the host CPU at runtime
* fixed some warnings
* hopefully fixed winograd on x64 (and maybe other platforms)
---------
Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
dnn test: move layer norm tests into conformance tests #24544
Merge with https://github.com/opencv/opencv_extra/pull/1122
## Motivation
Some ONNX operators, such as `LayerNormalization`, `BatchNormalization` and so on, produce outputs for training (mean, stdev). So they have reference outputs of conformance tests for those training outputs as well. However, when it comes to inference, we do not need and produce those outputs for training here in dnn. Hence, output size does not match if we use dnn to infer those conformance models. This has become the barrier if we want to test these operators using their conformance tests.
<!--
| Operator | Inference needed | Outputs (required - total) | Optional outputs for training? |
| ----------------------- | ----------------------------------- | -------------------------- | ------------------------------ |
| BatchNormalization | Yes | 1 - 3 | Yes |
| Dropout | Maybe, can be eliminated via fusion | 1 - 2 | Yes |
| GRU | Yes | 0 - 2 | No |
| LSTM | Yes | 0 - 3 | No |
| LayerNormalization | Yes | 1 - 3 | Yes |
| MaxPool | Yes | 1 - 2 | Yes |
| RNN | Yes | 0 - 2 | No |
| SoftmaxCrossEntropyLoss | No | 1 - 2 | -- |
-->
**I checked all ONNX operators with optional outputs. Turns out there are only `BatchNormalization`, `Dropout`, `LayerNormalization` and `MaxPool` has optional outputs for training. All except `LayerNormalization` have models set for training mode and eval mode. Blame ONNX for that.**
## Solution
In this pull request, we remove graph outputs if the graph looks like the following:
```
[X] [Scale] [Bias] [X] [Scale] [Bias]
\ | / this patch \ | /
LayerNormalization -----------> LayerNormalization
/ | \ |
[Y] [Mean] [Stdev] [Y]
```
We can update conformance tests and turn on some cases as well if extending to more layers.
Notes:
1. This workaround does not solve expanded function operators if they are fused into a single operator, such as `$onnx/onnx/backend/test/data/node/test_layer_normalization_2d_axis1_expanded`, but they can be run without fusion. Note that either dnn or onnxruntime does not fuse those expanded function operators.
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Fast gemm for einsum #24509
## This PR adds performance tests for Einsum Layer with FastGemm. See below results of performance test on different inputs
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Enable softmax layer vectorization on RISC-V RVV #24510
Related: https://github.com/opencv/opencv/pull/24466
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake
Commutative rules for DNN subgraphs fusion #24483
### Pull Request Readiness Checklist
related: https://github.com/opencv/opencv/pull/24463#issuecomment-1783033931
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn (onnx): add subgraph fusion tests #24500
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
dnn onnx: add instance norm layer #24378
Resolves https://github.com/opencv/opencv/issues/24377
Relates https://github.com/opencv/opencv/pull/24092#discussion_r1349841644
| Perf | multi-thread | single-thread |
| - | - | - |
| x: [2, 64, 180, 240] | 3.95ms | 11.12ms |
Todo:
- [x] speed up by multi-threading
- [x] add perf
- [x] add backend: OpenVINO
- [x] add backend: CUDA
- [x] add backend: OpenCL (no fp16)
- [ ] add backend: CANN (will be done via https://github.com/opencv/opencv/pull/24462)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
```
force_builders=Linux OpenCL,Win64 OpenCL,Custom
buildworker:Custom=linux-4
build_image:Custom=ubuntu:18.04
modules_filter:Custom=none
disable_ipp:Custom=ON
```
* improve and refactor softmax layer
* fix building error
* compatible region layer
* fix axisStep when disable SIMD
* fix dynamic array
* try to fix error
* use nlanes from VTraits
* move axisBias to srcOffset
* fix bug caused by axisBias
* remove macro
* replace #ifdef with #if for CV_SIMD
dnn: add shared fastNorm kernel for mvn, instance norm and layer norm #24409
Relates https://github.com/opencv/opencv/pull/24378#issuecomment-1756906570
TODO:
- [x] add fastNorm
- [x] refactor layer norm with fastNorm
- [x] refactor mvn with fastNorm
- [ ] add onnx mvn in importer (in a new PR?)
- [ ] refactor instance norm with fastNorm (in another PR https://github.com/opencv/opencv/pull/24378, need to merge this one first though)
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Ellipses supported added for Einsum Layer #24322
This PR added addresses issues not covered in #24037. Namely these are:
Test case for this patch is in this PR [#1106](https://github.com/opencv/opencv_extra/pull/1106) in opencv extra
Added:
- [x] Broadcasting reduction "...ii ->...I"
- [x] Add lazy shape deduction. "...ij, ...jk->...ik"
Features to add:
- [ ] Add implicit output computation support. "bij,bjk ->" (output subscripts should be "bik")
- [ ] Add support for CUDA backend
- [ ] BatchWiseMultiply optimize
- [ ] Performance test
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
Pertaining Issue: https://github.com/opencv/opencv/issues/5697
### Pull Request Readiness Checklist
See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request
- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake