OpenCV pthreads-based implementation changes:
- rework worker threads pool, allow to execute job by the main thread too
- rework synchronization scheme (wait for job completion, threads 'pong' answer is not required)
- allow "active wait" (spin) by worker threads and by the main thread
- use _mm_pause() during active wait (support for Hyper-Threading technology)
- use sched_yield() to avoid preemption of still working other workers
- don't use getTickCount()
- optional builtin thread pool profiler (disabled by compilation flag)
UMatData locks are not mapped on real locks (they are mapped to some "pre-initialized" pool).
Concurrent execution of these statements may lead to deadlock:
- a.copyTo(b) from thread 1
- c.copyTo(d) from thread 2
where:
- 'a' and 'd' are mapped to single lock "A".
- 'b' and 'c' are mapped to single lock "B".
Workaround is to process locks with strict order.
Adding capability to parse subsections of a byte array in Java bindings (#10489)
* Adding capability to parse subsections of a byte array in Java bindings. (Because Java lacks pointers. Therefore, reading images within a subsection of a byte array is impossible by Java's nature and limitations. Because of this, many IO functions in Java require additional parameters offset and length to define, which section of an array to be read.)
* Corrected according to the review. Previous interfaces were restored, instead internal interfaces were modified to provide subsampling of java byte arrays.
* Adding tests and test related files.
* Adding missing files for the test.
* Simplified the test
* Check was corrected according to discussion. An OutOfRangeException will be thrown instead of returning.
* java: update MatOfByte implementation checks / tests
fix the "initializing global variables with values that are not
compile-time constants" issue in Intel SDK for OpenCL. The root cause
is when initializing global variables with value, the variable need is
compile-time constants.
Thanks Zheng, Yang <yang.zheng@intel.com>,
Chodor, Jaroslaw <jaroslaw.chodor@intel.com> give a help.
Signed-off-by: Liu,Kaixuan <kaixuan.liu@intel.com>
Signed-off-by: Jun Zhao <jun.zhao@intel.com>
The opencv infrastructure mostly has the basics for supporting avx512 math functions,
but it wasn't hooked up (likely due to lack of users)
In order to compile the DNN functions for AVX512, a few things need to be hooked up
and this patch does that
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
* remove raw SSE2/NEON implementation from convert.cpp
* remove raw implementation from Cvt_SIMD
* remove raw implementation from cvtScale_SIMD
* remove raw implementation from cvtScaleAbs_SIMD
* remove duplicated implementation cvt_<float, short>
* remove duplicated implementation cvtScale_<short, short, float>
* add "from double" version of Cvt_SIMD
* modify the condition of test ConvertScaleAbs
* Update convert.cpp
fixed crash in cvtScaleAbs(8s=>8u)
* fixed compile error on Win32
* fixed several test failures because of accuracy loss in cvtScale(int=>int)
* fixed NEON implementation of v_cvt_f64(int=>double) intrinsic
* another attempt to fix test failures
* keep trying to fix the test failures and just introduced compile warnings
* fixed one remaining test (subtractScalar)
- don't store ProgramSource in compiled Programs (resolved problem with "source" buffers lifetime)
- completelly remove Program::read/write methods implementation:
- replaced with method to query RAW OpenCL binary without any "custom" data
- deprecate Program::getPrefix() methods
* fixed OpenCL functions on Mac, so that the tests pass
* fixed compile warnings; temporarily disabled OCL branch of TV L1 optical flow on mac
* fixed other few warnings on macos
If there are no OpenCL/UMat methods calls from application.
OpenCL subsystem is initialized:
- haveOpenCL() is called from application
- useOpenCL() is called from application
- access to OpenCL allocator: UMat is created (empty UMat is ignored) or UMat <-> Mat conversions are called
Don't call OpenCL functions if OPENCV_OPENCL_RUNTIME=disabled
(independent from OpenCL linkage type)