Commit Graph

88 Commits

Author SHA1 Message Date
Yuantao Feng
ba70ec99b3
Merge pull request #24122 from fengyuentau:remove_tengine
dnn: cleanup of tengine backend #24122

🚀 Cleanup for OpenCV 5.0. Tengine backend is added for convolution layer speedup on ARM CPUs, but it is not maintained and the convolution layer on our default backend has reached similar performance to that of Tengine.

Tengine backend related PRs:
- https://github.com/opencv/opencv/pull/16724
- https://github.com/opencv/opencv/pull/18323

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-08-09 09:26:02 +03:00
Dmitry Kurtaev
a8d3d1f6f9
Merge pull request #23604 from dkurt:dnn_no_protobuf
Build DNN without Protobuf

DNN module can be built without Protobuf for Darknet, TFLite, OpenVINO, Torch (not PyTorch) models.

```
cmake \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_LIST=dnn \
    -DWITH_PROTOBUF=OFF \
    -DWITH_OPENCL=OFF

7.1M    lib/libopencv_dnn.so.4.7.0
```


```
cmake \
    -DCMAKE_BUILD_TYPE=Release \
    -DBUILD_LIST=dnn \
    -DWITH_OPENCL=OFF

3.9M    lib/libopencv_dnn.so.4.7.0
```

### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-05-15 12:23:18 +03:00
Zihao Mu
e03e2e7f94
Merge pull request #23192 from zihaomu:clean_up_SIMD_code
### Purpose of this PR:
- Move all dispatch and SIMD code of `convolution layer` into `simd.hpp` file.
- Support Winograd at AVX-only machine.
- Re-name the folder from `fast_conv` to `cpu_kernels`. In the future, we can put other layers of CPU optimization into it, like `GEMM` or `MatMul`.

## Performance Test
Since this patch just focuses on the code style, the performance is expected as the same as before.
Test with the following script: 
`./bin/opencv_perf_dnn '--gtest_filter=*conv*' --gtest_output="xml:../1-0th.xml" --perf_threads=1`

### Test on X86 platform
Min (ms)
|Name of Test|4.x | patch | 4.x vs patch (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|0.98|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|0.95|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.001|0.001|0.97|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.002|0.002|1.04|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.002|0.002|0.94|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.040|0.044|0.93|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.010|0.010|1.00|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.106|0.103|1.03|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.041|0.040|1.03|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.340|0.329|1.03|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.590|0.567|1.04|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.374|1.314|1.05|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.715|3.528|1.05|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.181|1.166|1.01|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.689|2.587|1.04|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.754|4.500|1.06|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|9.612|9.112|1.05|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.000|64.676|1.07|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|20.248|18.451|1.10|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|1.395|1.392|1.00|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|1.990|1.984|1.00|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.393|1.360|1.02|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|1.813|1.744|1.04|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.190|1.191|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.286|1.284|1.00|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.295|2.279|1.01|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.322|1.331|0.99|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|3.784|3.533|1.07|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.838|1.844|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.957|1.959|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|2.596|2.573|1.01|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|4.183|4.083|1.02|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|2.413|2.406|1.00|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|2.538|2.546|1.00|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.972|2.980|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|3.452|3.464|1.00|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|3.082|3.105|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.043|3.919|1.03|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|5.538|5.531|1.00|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.393|3.418|0.99|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|4.325|4.234|1.02|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|6.009|5.908|1.02|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|6.557|6.376|1.03|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|10.114|9.472|1.07|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|10.373|9.879|1.05|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|12.782|11.624|1.10|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|90.931|90.552|1.00|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|6.091|5.818|1.05|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|7.083|6.643|1.07|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.054|5.059|1.00|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|5.005|4.931|1.02|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|4.951|5.065|0.98|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|11.957|11.293|1.06|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|5.328|5.250|1.01|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|5.544|5.292|1.05|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|6.186|5.893|1.05|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|6.153|5.834|1.05|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|8.154|8.107|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|12.699|12.256|1.04|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|11.355|11.217|1.01|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.062|17.814|1.07|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|6.820|6.531|1.04|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|14.502|13.483|1.08|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|6.270|6.123|1.02|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|13.173|12.451|1.06|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|8.326|7.652|1.09|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|17.605|16.465|1.07|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|15.675|14.771|1.06|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.420|0.423|0.99|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|6.788|6.491|1.05|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|6.456|6.168|1.05|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.263|0.261|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|7.690|7.398|1.04|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.200|0.202|0.99|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.542|10.464|1.01|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|10.876|10.728|1.01|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|7.194|6.768|1.06|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|7.099|6.731|1.05|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.147|0.162|0.91|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|18.558|17.141|1.08|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|7.641|7.219|1.06|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|22.666|20.999|1.08|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|8.523|7.921|1.08|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|8.514|8.109|1.05|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|8.300|7.878|1.05|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|13.403|13.131|1.02|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|8.920|8.357|1.07|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|28.827|27.616|1.04|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|12.895|12.670|1.02|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|14.120|13.078|1.08|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|27.541|27.582|1.00|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|32.367|31.140|1.04|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|14.934|14.910|1.00|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|18.289|18.491|0.99|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|37.857|36.845|1.03|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|37.402|36.566|1.02|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|19.031|19.164|0.99|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.019|19.135|0.99|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|20.077|19.400|1.03|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.883|21.302|1.03|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|51.288|49.851|1.03|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|27.349|28.359|0.96|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|24.915|25.130|0.99|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|25.488|25.899|0.98|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|27.346|27.390|1.00|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|28.033|28.301|0.99|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|50.216|49.970|1.00|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|29.670|29.513|1.01|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|50.565|49.634|1.02|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|37.900|37.814|1.00|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|41.367|39.742|1.04|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|49.128|50.350|0.98|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|79.643|80.645|0.99|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|41.439|40.895|1.01|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|46.504|46.220|1.01|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|98.086|96.842|1.01|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|102.447|97.299|1.05|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|145.047|144.996|1.00|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|206.104|195.543|1.05|


### Test on M1(ARM) platform
|Name of Test|4.x|patch|4.x vs patch (x-factor)|
|---|:-:|:-:|:-:|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 19}, OCN=2, G=2, S=2, P=(1, 1), BIAS, OCV/CPU)|0.001|0.001|0.97|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 2, 25}, OCN=2, G=2, P=(2, 2), PM=SAME, OCV/CPU)|0.001|0.001|0.94|
|conv1d::Conv1D::(GFLOPS=0.000, K=[3], IN={1, 6, 10}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.002|0.002|0.92|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 4, 9, 10, 10}, OCN=4, S=[1 x 1 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.003|0.003|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[1 x 1 x 1], IN={1, 8, 1, 10, 10}, OCN=8, G=8, P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.003|0.003|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 3 x 3], IN={1, 2, 19, 19, 19}, OCN=2, G=2, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), BIAS, OCV/CPU)|0.031|0.031|1.00|
|conv3d::Conv3D::(GFLOPS=0.000, K=[3 x 4 x 2], IN={1, 4, 8, 10, 10}, OCN=4, G=4, S=[1 x 2 x 1], BIAS, OCV/CPU)|0.009|0.009|1.00|
|conv3d::Conv3D::(GFLOPS=0.001, K=[3 x 3 x 3], IN={1, 2, 25, 19, 19}, OCN=2, G=2, S=[1 x 2 x 2], P=(2, 2) x (2, 2) x (2, 2), PM=SAME, OCV/CPU)|0.066|0.066|1.01|
|conv3d::Conv3D::(GFLOPS=0.002, K=[3 x 1 x 4], IN={1, 14, 5, 10, 10}, OCN=14, PM=SAME, OCV/CPU)|0.102|0.102|1.00|
|conv3d::Conv3D::(GFLOPS=0.006, K=[5 x 5 x 5], IN={1, 4, 50, 19, 19}, OCN=4, S=[2 x 2 x 2], P=(1, 1) x (1, 1) x (1, 1), PM=VALID, OCV/CPU)|0.328|0.328|1.00|
|conv3d::Conv3D::(GFLOPS=0.027, K=[3 x 3 x 3], IN={1, 6, 10, 38, 50}, OCN=6, PM=VALID, BIAS, OCV/CPU)|0.693|0.747|0.93|
|conv3d::Conv3D::(GFLOPS=0.030, K=[5 x 5 x 5], IN={1, 6, 19, 19, 19}, OCN=6, G=2, OCV/CPU)|1.268|1.266|1.00|
|conv3d::Conv3D::(GFLOPS=0.045, K=[7 x 7 x 7], IN={1, 2, 38, 38, 38}, OCN=2, S=[1 x 2 x 1], OCV/CPU)|3.530|3.581|0.99|
|conv3d::Conv3D::(GFLOPS=0.053, K=[3 x 3 x 3], IN={1, 10, 98, 10, 10}, OCN=10, PM=SAME, OCV/CPU)|1.186|1.188|1.00|
|conv3d::Conv3D::(GFLOPS=0.071, K=[7 x 7 x 7], IN={1, 6, 15, 19, 19}, OCN=6, S=[2 x 1 x 1], P=(3, 3) x (3, 3) x (3, 3), PM=SAME, BIAS, OCV/CPU)|2.682|2.683|1.00|
|conv3d::Conv3D::(GFLOPS=0.093, K=[5 x 5 x 5], IN={1, 4, 40, 75, 75}, OCN=4, S=[2 x 2 x 2], OCV/CPU)|4.490|4.501|1.00|
|conv3d::Conv3D::(GFLOPS=0.116, K=[5 x 5 x 5], IN={1, 2, 21, 75, 100}, OCN=2, BIAS, OCV/CPU)|8.914|8.938|1.00|
|conv3d::Conv3D::(GFLOPS=1.267, K=[5 x 5 x 5], IN={1, 3, 75, 75, 100}, OCN=3, PM=SAME, BIAS, OCV/CPU)|69.819|69.876|1.00|
|conv3d::Conv3D::(GFLOPS=1.343, K=[3 x 3 x 3], IN={1, 11, 9, 150, 200}, OCN=11, PM=VALID, BIAS, OCV/CPU)|24.058|22.420|1.07|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 512, 26, 26}, OCN=256, OCV/CPU)|2.240|2.236|1.00|
|conv::Conv::(GFLOPS=0.177, K=[1 x 1], IN={1, 1024, 13, 13}, OCN=512, OCV/CPU)|3.132|3.136|1.00|
|conv::Conv::(GFLOPS=0.178, K=[1 x 1], IN={1, 256, 52, 52}, OCN=128, OCV/CPU)|1.920|1.919|1.00|
|conv::Conv::(GFLOPS=0.210, K=[1 x 1], IN={1, 576, 38, 50}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.343|2.346|1.00|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 128, 56, 56}, OCN=32, P=[1 x 1], OCV/CPU)|1.234|1.116|1.11|
|conv::Conv::(GFLOPS=0.231, K=[3 x 3], IN={1, 256, 14, 14}, OCN=256, P=[1 x 1], OCV/CPU)|1.109|1.121|0.99|
|conv::Conv::(GFLOPS=0.280, K=[1 x 1], IN={1, 576, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|3.197|3.084|1.04|
|conv::Conv::(GFLOPS=0.302, K=[3 x 3], IN={1, 64, 64, 64}, OCN=64, PM=SAME, OCV/CPU)|1.123|1.148|0.98|
|conv::Conv::(GFLOPS=0.357, K=[1 x 1], IN={1, 64, 208, 208}, OCN=64, OCV/CPU)|4.836|5.061|0.96|
|conv::Conv::(GFLOPS=0.420, K=[3 x 3], IN={1, 96, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.535|1.463|1.05|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 128, 40, 40}, OCN=128, PM=SAME, OCV/CPU)|1.756|1.584|1.11|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 256, 20, 20}, OCN=256, PM=SAME, OCV/CPU)|1.821|1.820|1.00|
|conv::Conv::(GFLOPS=0.472, K=[3 x 3], IN={1, 512, 10, 10}, OCN=512, PM=SAME, OCV/CPU)|7.049|6.672|1.06|
|conv::Conv::(GFLOPS=0.561, K=[3 x 3], IN={1, 128, 38, 50}, OCN=128, PM=SAME, BIAS, OCV/CPU)|1.967|1.922|1.02|
|conv::Conv::(GFLOPS=0.624, K=[3 x 3], IN={1, 128, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|1.943|1.977|0.98|
|conv::Conv::(GFLOPS=0.701, K=[3 x 3], IN={1, 128, 38, 50}, OCN=160, PM=SAME, BIAS, OCV/CPU)|2.464|2.310|1.07|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 64, 104, 104}, OCN=64, P=[1 x 1], OCV/CPU)|2.860|2.904|0.98|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 128, 52, 52}, OCN=128, P=[1 x 1], OCV/CPU)|2.428|2.483|0.98|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 256, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|2.955|2.983|0.99|
|conv::Conv::(GFLOPS=0.798, K=[3 x 3], IN={1, 512, 13, 13}, OCN=512, P=[1 x 1], OCV/CPU)|4.328|4.484|0.97|
|conv::Conv::(GFLOPS=0.830, K=[3 x 3], IN={1, 64, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|2.712|2.778|0.98|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 192, 38, 38}, OCN=192, PM=SAME, OCV/CPU)|3.205|3.331|0.96|
|conv::Conv::(GFLOPS=0.958, K=[3 x 3], IN={1, 384, 19, 19}, OCN=384, PM=SAME, OCV/CPU)|4.193|4.412|0.95|
|conv::Conv::(GFLOPS=1.022, K=[3 x 3], IN={1, 576, 19, 19}, OCN=273, PM=SAME, BIAS, OCV/CPU)|5.026|4.565|1.10|
|conv::Conv::(GFLOPS=1.112, K=[3 x 3], IN={1, 512, 10, 10}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|14.490|14.213|1.02|
|conv::Conv::(GFLOPS=1.181, K=[3 x 3], IN={1, 64, 160, 200}, OCN=128, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|14.886|14.003|1.06|
|conv::Conv::(GFLOPS=1.182, K=[3 x 3], IN={1, 32, 320, 400}, OCN=64, S=[2 x 2], P=[1 x 1], BIAS, OCV/CPU)|15.923|15.184|1.05|
|conv::Conv::(GFLOPS=1.195, K=[9 x 9], IN={1, 32, 240, 320}, OCN=3, P=[4 x 4], BIAS, OCV/CPU)|45.136|41.696|1.08|
|conv::Conv::(GFLOPS=1.196, K=[3 x 3], IN={1, 384, 26, 26}, OCN=256, P=[1 x 1], OCV/CPU)|4.995|4.631|1.08|
|conv::Conv::(GFLOPS=1.210, K=[3 x 3], IN={1, 32, 256, 256}, OCN=32, PM=SAME, OCV/CPU)|6.402|6.261|1.02|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 64, 75, 75}, OCN=192, PM=SAME, BIAS, OCV/CPU)|4.478|3.965|1.13|
|conv::Conv::(GFLOPS=1.245, K=[3 x 3], IN={1, 96, 75, 100}, OCN=96, PM=SAME, BIAS, OCV/CPU)|3.908|3.978|0.98|
|conv::Conv::(GFLOPS=1.248, K=[3 x 3], IN={1, 256, 46, 46}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|4.176|4.206|0.99|
|conv::Conv::(GFLOPS=1.258, K=[3 x 3], IN={1, 1280, 10, 10}, OCN=546, PM=SAME, BIAS, OCV/CPU)|21.509|21.136|1.02|
|conv::Conv::(GFLOPS=1.261, K=[3 x 3], IN={1, 192, 38, 50}, OCN=192, PM=SAME, BIAS, OCV/CPU)|4.426|4.082|1.08|
|conv::Conv::(GFLOPS=1.416, K=[3 x 3], IN={1, 128, 62, 82}, OCN=128, BIAS, OCV/CPU)|4.098|4.289|0.96|
|conv::Conv::(GFLOPS=1.500, K=[3 x 3], IN={1, 128, 64, 84}, OCN=128, BIAS, OCV/CPU)|4.646|5.105|0.91|
|conv::Conv::(GFLOPS=1.586, K=[3 x 3], IN={1, 128, 66, 86}, OCN=128, BIAS, OCV/CPU)|4.746|4.724|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 26, 26}, OCN=512, P=[1 x 1], OCV/CPU)|5.614|5.779|0.97|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 256, 52, 52}, OCN=512, S=[2 x 2], P=[1 x 1], OCV/CPU)|21.909|20.718|1.06|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 13, 13}, OCN=1024, P=[1 x 1], OCV/CPU)|8.256|8.290|1.00|
|conv::Conv::(GFLOPS=1.595, K=[3 x 3], IN={1, 512, 26, 26}, OCN=1024, S=[2 x 2], P=[1 x 1], OCV/CPU)|25.196|23.267|1.08|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 104, 104}, OCN=128, P=[1 x 1], OCV/CPU)|5.721|5.172|1.11|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 64, 208, 208}, OCN=128, S=[2 x 2], P=[1 x 1], OCV/CPU)|20.066|18.322|1.10|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 52, 52}, OCN=256, P=[1 x 1], OCV/CPU)|4.448|4.542|0.98|
|conv::Conv::(GFLOPS=1.596, K=[3 x 3], IN={1, 128, 104, 104}, OCN=256, S=[2 x 2], P=[1 x 1], OCV/CPU)|19.193|19.013|1.01|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 208, 208}, OCN=64, P=[1 x 1], OCV/CPU)|6.009|5.964|1.01|
|conv::Conv::(GFLOPS=1.598, K=[3 x 3], IN={1, 32, 416, 416}, OCN=64, S=[2 x 2], P=[1 x 1], OCV/CPU)|20.169|20.009|1.01|
|conv::Conv::(GFLOPS=1.659, K=[3 x 3], IN={1, 960, 10, 10}, OCN=960, PM=SAME, OCV/CPU)|22.584|23.423|0.96|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, G=128, P=[1 x 1], BIAS, OCV/CPU)|0.372|0.504|0.74|
|conv::Conv::(GFLOPS=1.660, K=[3 x 3], IN={1, 128, 75, 75}, OCN=128, PM=SAME, OCV/CPU)|5.426|5.456|0.99|
|conv::Conv::(GFLOPS=1.675, K=[3 x 3], IN={1, 128, 68, 88}, OCN=128, BIAS, OCV/CPU)|4.945|5.221|0.95|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, G=256, P=[1 x 1], BIAS, OCV/CPU)|0.210|0.261|0.81|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 256, 38, 38}, OCN=256, PM=SAME, OCV/CPU)|5.720|5.997|0.95|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, G=512, P=[1 x 1], BIAS, OCV/CPU)|0.149|0.161|0.93|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|7.154|7.225|0.99|
|conv::Conv::(GFLOPS=1.704, K=[3 x 3], IN={1, 512, 19, 19}, OCN=512, PM=SAME, OCV/CPU)|7.184|7.223|0.99|
|conv::Conv::(GFLOPS=1.766, K=[3 x 3], IN={1, 128, 70, 90}, OCN=128, BIAS, OCV/CPU)|5.324|5.343|1.00|
|conv::Conv::(GFLOPS=1.859, K=[3 x 3], IN={1, 128, 72, 92}, OCN=128, BIAS, OCV/CPU)|5.114|5.238|0.98|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, G=1024, P=[1 x 1], BIAS, OCV/CPU)|0.111|0.121|0.92|
|conv::Conv::(GFLOPS=1.888, K=[3 x 3], IN={1, 1024, 10, 10}, OCN=1024, PM=SAME, OCV/CPU)|25.907|26.804|0.97|
|conv::Conv::(GFLOPS=1.954, K=[3 x 3], IN={1, 128, 74, 94}, OCN=128, BIAS, OCV/CPU)|5.695|5.654|1.01|
|conv::Conv::(GFLOPS=1.995, K=[9 x 9], IN={1, 3, 320, 400}, OCN=32, P=[4 x 4], BIAS, OCV/CPU)|27.435|27.566|1.00|
|conv::Conv::(GFLOPS=2.052, K=[3 x 3], IN={1, 128, 76, 96}, OCN=128, BIAS, OCV/CPU)|6.944|6.164|1.13|
|conv::Conv::(GFLOPS=2.100, K=[3 x 3], IN={1, 144, 75, 75}, OCN=144, PM=SAME, OCV/CPU)|7.180|6.717|1.07|
|conv::Conv::(GFLOPS=2.153, K=[3 x 3], IN={1, 128, 78, 98}, OCN=128, BIAS, OCV/CPU)|6.817|6.050|1.13|
|conv::Conv::(GFLOPS=2.156, K=[3 x 3], IN={1, 576, 19, 19}, OCN=576, PM=SAME, OCV/CPU)|9.225|8.660|1.07|
|conv::Conv::(GFLOPS=2.255, K=[3 x 3], IN={1, 128, 80, 100}, OCN=128, BIAS, OCV/CPU)|7.496|6.625|1.13|
|conv::Conv::(GFLOPS=2.719, K=[3 x 3], IN={1, 96, 256, 256}, OCN=96, S=[2 x 2], PM=SAME, OCV/CPU)|35.520|36.056|0.99|
|conv::Conv::(GFLOPS=3.319, K=[3 x 3], IN={1, 128, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|9.990|9.702|1.03|
|conv::Conv::(GFLOPS=3.321, K=[3 x 3], IN={1, 64, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|10.517|10.746|0.98|
|conv::Conv::(GFLOPS=3.398, K=[7 x 7], IN={1, 128, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|36.702|36.731|1.00|
|conv::Conv::(GFLOPS=3.407, K=[3 x 3], IN={1, 512, 19, 19}, OCN=1024, D=[6 x 6], P=[6 x 6], BIAS, OCV/CPU)|41.035|38.280|1.07|
|conv::Conv::(GFLOPS=3.408, K=[3 x 3], IN={1, 256, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|10.981|10.573|1.04|
|conv::Conv::(GFLOPS=4.247, K=[3 x 3], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|12.863|12.384|1.04|
|conv::Conv::(GFLOPS=4.247, K=[5 x 5], IN={1, 144, 128, 128}, OCN=144, S=[2 x 2], PM=SAME, OCV/CPU)|50.437|54.088|0.93|
|conv::Conv::(GFLOPS=4.566, K=[7 x 7], IN={1, 172, 46, 46}, OCN=128, P=[3 x 3], BIAS, OCV/CPU)|50.650|50.635|1.00|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 256, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|14.696|14.606|1.01|
|conv::Conv::(GFLOPS=4.993, K=[3 x 3], IN={1, 512, 46, 46}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|16.201|15.426|1.05|
|conv::Conv::(GFLOPS=4.994, K=[3 x 3], IN={1, 128, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|16.061|14.292|1.12|
|conv::Conv::(GFLOPS=4.997, K=[3 x 3], IN={1, 64, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|17.743|18.250|0.97|
|conv::Conv::(GFLOPS=5.780, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, S=[2 x 2], PM=SAME, OCV/CPU)|77.909|78.165|1.00|
|conv::Conv::(GFLOPS=6.116, K=[3 x 3], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|21.579|21.879|0.99|
|conv::Conv::(GFLOPS=6.118, K=[3 x 3], IN={1, 144, 128, 128}, OCN=144, PM=SAME, OCV/CPU)|20.424|19.589|1.04|
|conv::Conv::(GFLOPS=6.637, K=[3 x 3], IN={1, 256, 75, 75}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|19.389|19.461|1.00|
|conv::Conv::(GFLOPS=6.638, K=[3 x 3], IN={1, 128, 150, 150}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|21.319|20.358|1.05|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 150, 200}, OCN=192, PM=SAME, BIAS, OCV/CPU)|22.609|21.826|1.04|
|conv::Conv::(GFLOPS=6.641, K=[3 x 3], IN={1, 64, 300, 300}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|25.497|25.789|0.99|
|conv::Conv::(GFLOPS=6.814, K=[3 x 3], IN={1, 512, 38, 38}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|21.966|22.108|0.99|
|conv::Conv::(GFLOPS=8.025, K=[3 x 3], IN={1, 1024, 19, 19}, OCN=1206, P=[1 x 1], BIAS, OCV/CPU)|35.883|33.470|1.07|
|conv::Conv::(GFLOPS=9.986, K=[3 x 3], IN={1, 512, 46, 46}, OCN=512, P=[1 x 1], BIAS, OCV/CPU)|31.041|29.314|1.06|
|conv::Conv::(GFLOPS=9.987, K=[3 x 3], IN={1, 256, 92, 92}, OCN=256, P=[1 x 1], BIAS, OCV/CPU)|29.922|28.145|1.06|
|conv::Conv::(GFLOPS=9.989, K=[3 x 3], IN={1, 128, 184, 184}, OCN=128, P=[1 x 1], BIAS, OCV/CPU)|31.624|31.148|1.02|
|conv::Conv::(GFLOPS=9.993, K=[3 x 3], IN={1, 64, 368, 368}, OCN=64, P=[1 x 1], BIAS, OCV/CPU)|38.564|39.164|0.98|
|conv::Conv::(GFLOPS=10.087, K=[3 x 3], IN={1, 576, 38, 50}, OCN=512, PM=SAME, BIAS, OCV/CPU)|31.502|30.269|1.04|
|conv::Conv::(GFLOPS=10.701, K=[3 x 3], IN={1, 512, 38, 38}, OCN=804, P=[1 x 1], BIAS, OCV/CPU)|34.248|34.589|0.99|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 240, 64, 64}, OCN=240, PM=SAME, OCV/CPU)|130.211|134.120|0.97|
|conv::Conv::(GFLOPS=11.797, K=[5 x 5], IN={1, 480, 32, 32}, OCN=480, PM=SAME, OCV/CPU)|127.490|132.874|0.96|
|conv::Conv::(GFLOPS=16.987, K=[5 x 5], IN={1, 1152, 16, 16}, OCN=1152, PM=SAME, OCV/CPU)|199.834|200.081|1.00|
|conv::Conv::(GFLOPS=23.122, K=[5 x 5], IN={1, 672, 32, 32}, OCN=672, PM=SAME, OCV/CPU)|247.346|247.523|1.00|


### Pull Request Readiness Checklist

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [ ] There is a reference to the original bug report and related work
- [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [ ] The feature is well documented and sample code can be built with the project CMake


```
force_builders=Linux AVX2,Custom Win
build_image:Custom Win=msvs2019
CPU_BASELINE:Custom Win=AVX512_SKX
```
2023-03-10 11:59:49 +03:00
Alexander Alekhin
bdff0949bb dnn(tflite): add 3rdparty flatbuffers with pre-generated schema 2023-02-21 16:06:19 +00:00
Dmitry Kurtaev
76350cd30f
Merge pull request #23161 from dkurt:dnn_tflite
TFLite models importer

* initial commit

* Refactor TFLiteImporter

* Better FlatBuffers detection

* Add permute before 4D->3D reshape

* Track layers layout

* TFLite Convolution2DTransposeBias layer

* Skip TFLite tests without FlatBuffers

* Fix check of FlatBuffers in tests. Add readNetFromTFLite from buffer

* TFLite Max Unpooling test

* Add skip for TFLite unpooling test

* Revert DW convolution workaround

* Fix ObjC bindings

* Better errors handling

* Regenerate TFLite schema using flatc

* dnn(tflite): more checks, better logging

* Checks for unimplemented fusion. Fix tests
2023-02-13 14:00:20 +00:00
Yuantao Feng
a2b3acfc6e
dnn: add the CANN backend (#22634)
* cann backend impl v1

* cann backend impl v2: use opencv parsers to build models for cann

* adjust fc according to the new transA and transB

* put cann net in cann backend node and reuse forwardLayer

* use fork() to create a child process and compile cann model

* remove legacy code

* remove debug code

* fall bcak to CPU backend if there is one layer not supoorted by CANN backend

* fix netInput forward
2022-12-21 09:04:41 +03:00
Alexander Alekhin
347246901e Merge pull request #21745 from alalek:dnn_plugin_openvino 2022-10-08 22:32:25 +00:00
Alexander Alekhin
43b2bb2c25 dnn: plugin support for OpenVINO 2022-10-07 16:57:31 +00:00
wxsheng
4154bd0667
Add Loongson Advanced SIMD Extension support: -DCPU_BASELINE=LASX
* Add Loongson Advanced SIMD Extension support: -DCPU_BASELINE=LASX
* Add resize.lasx.cpp for Loongson SIMD acceleration
* Add imgwarp.lasx.cpp for Loongson SIMD acceleration
* Add LASX acceleration support for dnn/conv
* Add CV_PAUSE(v) for Loongarch
* Set LASX by default on Loongarch64
* LoongArch: tune test threshold for Core/HAL.mat_decomp/15

Co-authored-by: shengwenxue <shengwenxue@loongson.cn>
2022-09-10 09:39:43 +03:00
Zihao Mu
7b582b71ba
Merge pull request #21036 from fengyuentau:timvx_backend_support
dnn: TIM-VX NPU backend support

* Add TimVX NPU backend for DNN module.

* use official branch from tim-vx repo; fix detecting viv sdk

Co-authored-by: fytao <yuantao.feng@outlook.com>
2022-03-31 21:42:11 +00:00
Alexander Alekhin
19926e2979 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2022-02-11 17:32:37 +00:00
Alexander Alekhin
effce0573b dnn: drop legacy Inference Engine NN builder API 2022-02-10 11:55:24 +00:00
Maksim Shabunin
d1e76a34a0 3.4: Use modern OpenVINO package interface
original commit: 437af37b13
2022-02-02 09:04:03 +00:00
Maksim Shabunin
437af37b13 Use modern OpenVINO package interface 2022-02-01 16:52:17 +00:00
Alexander Alekhin
d9e7c1626a Merge pull request #21153 from alalek:build_warnings_msvs2017 2021-12-01 12:49:28 +00:00
Alexander Alekhin
66b2140892 build: eliminate C4309 warning from protobuf files with MSVS2017 2021-11-30 04:27:39 +00:00
Hanxi Guo
1fcf7ba5bc
Merge pull request #20406 from MarkGHX:gsoc_2021_webnn
[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN

* Add WebNN backend for OpenCV DNN Module

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Add WebNN head files into OpenCV 3rd partiy files

Create webnn.hpp

update cmake

Complete README and add OpenCVDetectWebNN.cmake file

add webnn.cpp

Modify webnn.cpp

Can successfully compile the codes for creating a MLContext

Update webnn.cpp

Update README.md

Update README.md

Update README.md

Update README.md

Update cmake files and

update README.md

Update OpenCVDetectWebNN.cmake and README.md

Update OpenCVDetectWebNN.cmake

Fix OpenCVDetectWebNN.cmake and update README.md

Add source webnn_cpp.cpp and libary libwebnn_proc.so

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

update dnn.cpp

update op_webnn

update op_webnn

Update op_webnn.hpp

update op_webnn.cpp & hpp

Update op_webnn.hpp

Update op_webnn

update the skeleton

Update op_webnn.cpp

Update op_webnn

Update op_webnn.cpp

Update op_webnn.cpp

Update op_webnn.hpp

update op_webnn

update op_webnn

Solved the problems of released variables.

Fixed the bugs in op_webnn.cpp

Implement op_webnn

Implement Relu by WebNN API

Update dnn.cpp for better test

Update elementwise_layers.cpp

Implement ReLU6

Update elementwise_layers.cpp

Implement SoftMax using WebNN API

Implement Reshape by WebNN API

Implement PermuteLayer by WebNN API

Implement PoolingLayer using WebNN API

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Implement poolingLayer by WebNN API and add more detailed logs

Update dnn.cpp

Update dnn.cpp

Remove redundant codes and add more logs for poolingLayer

Add more logs in the pooling layer implementation

Fix the indent issue and resolve the compiling issue

Fix the build problems

Fix the build issue

FIx the build issue

Update dnn.cpp

Update dnn.cpp

* Fix the build issue

* Implement BatchNorm Layer by WebNN API

* Update convolution_layer.cpp

This is a temporary file for Conv2d layer implementation

* Integrate some general functions into op_webnn.cpp&hpp

* Update const_layer.cpp

* Update convolution_layer.cpp

Still have some bugs that should be fixed.

* Update conv2d layer and fc layer

still have some problems to be fixed.

* update constLayer, conv layer, fc layer

There are still some bugs to be fixed.

* Fix the build issue

* Update concat_layer.cpp

Still have some bugs to be fixed.

* Update conv2d layer, fully connected layer and const layer

* Update convolution_layer.cpp

* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)

* Delete bib19450.aux

* Add WebNN backend for OpenCV DNN Module

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Add WebNN head files into OpenCV 3rd partiy files

Create webnn.hpp

update cmake

Complete README and add OpenCVDetectWebNN.cmake file

add webnn.cpp

Modify webnn.cpp

Can successfully compile the codes for creating a MLContext

Update webnn.cpp

Update README.md

Update README.md

Update README.md

Update README.md

Update cmake files and

update README.md

Update OpenCVDetectWebNN.cmake and README.md

Update OpenCVDetectWebNN.cmake

Fix OpenCVDetectWebNN.cmake and update README.md

Add source webnn_cpp.cpp and libary libwebnn_proc.so

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

Update dnn.cpp

update dnn.cpp

update op_webnn

update op_webnn

Update op_webnn.hpp

update op_webnn.cpp & hpp

Update op_webnn.hpp

Update op_webnn

update the skeleton

Update op_webnn.cpp

Update op_webnn

Update op_webnn.cpp

Update op_webnn.cpp

Update op_webnn.hpp

update op_webnn

update op_webnn

Solved the problems of released variables.

Fixed the bugs in op_webnn.cpp

Implement op_webnn

Implement Relu by WebNN API

Update dnn.cpp for better test

Update elementwise_layers.cpp

Implement ReLU6

Update elementwise_layers.cpp

Implement SoftMax using WebNN API

Implement Reshape by WebNN API

Implement PermuteLayer by WebNN API

Implement PoolingLayer using WebNN API

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Update pooling_layer.cpp

Implement poolingLayer by WebNN API and add more detailed logs

Update dnn.cpp

Update dnn.cpp

Remove redundant codes and add more logs for poolingLayer

Add more logs in the pooling layer implementation

Fix the indent issue and resolve the compiling issue

Fix the build problems

Fix the build issue

FIx the build issue

Update dnn.cpp

Update dnn.cpp

* Fix the build issue

* Implement BatchNorm Layer by WebNN API

* Update convolution_layer.cpp

This is a temporary file for Conv2d layer implementation

* Integrate some general functions into op_webnn.cpp&hpp

* Update const_layer.cpp

* Update convolution_layer.cpp

Still have some bugs that should be fixed.

* Update conv2d layer and fc layer

still have some problems to be fixed.

* update constLayer, conv layer, fc layer

There are still some bugs to be fixed.

* Update conv2d layer, fully connected layer and const layer

* Update convolution_layer.cpp

* Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron)

* Update dnn.cpp

* Fix Error in dnn.cpp

* Resolve duplication in conditions in convolution_layer.cpp

* Fixed the issues in the comments

* Fix building issue

* Update tutorial

* Fixed comments

* Address the comments

* Update CMakeLists.txt

* Offer more accurate perf test on native

* Add better perf tests for both native and web

* Modify per tests for better results

* Use more latest version of Electron

* Support latest WebNN Clamp op

* Add definition of HAVE_WEBNN macro

* Support group convolution

* Implement Scale_layer using WebNN

* Add Softmax option for native classification example

* Fix comments

* Fix comments
2021-11-23 21:15:31 +00:00
Alexander Alekhin
d934bb15b0
Merge pull request #20998 from alalek:update_protobuf_3.19.1
3rdparty(protobuf): upgrade 3.5.2 => 3.19.1

* 3rdparty(protobuf): upgrade 3.5.2 => 3.19.1

* dnn: update protobuf files (3.19.1)

* 3rdparty(protobuf): re-apply OpenCV patch for custom fields (3.19.1)

* protobuf: suppress new build warnings

* protobuf: remove unused files
2021-11-10 12:03:45 +00:00
Alexander Alekhin
7842181b47 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2021-11-05 09:27:46 +00:00
Alexander Alekhin
c1d61c88e9 dnn(cmake): don't hijack OpenCL options with Tengine 2021-11-04 09:59:19 +00:00
SamFC10
fa90e14b06 int8 layers and 8-bit quantization support 2021-08-19 09:56:47 +05:30
HAN Liutong
aaca4987c9
Merge pull request #20287 from hanliutong:dev-rvv-0.10
Optimization of DNN using native RISC-V vector intrinsics.

* Use RVV to optimize fastGEMM (FP32) in DNN.

* Use RVV to optimize fastGEMM1T in DNN.

* Use RVV to optimize fastConv in DNN.

* Use RVV to optimize fastDepthwiseConv in DNN.

* Vectorize tails using vl.

* Use "vl" instead of scalar to handle small block in fastConv.

* Fix memory access out of bound in "fastGEMM1T".

* Remove setvl.

* Remove useless initialization.

* Use loop unrolling to handle tail part instead of switch.
2021-08-11 01:16:03 +03:00
Alexander Alekhin
170bf6d7af Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2021-05-01 09:44:24 +00:00
Suleyman TURKMEN
159534313e Update CMakeLists.txt 2021-04-26 22:43:04 +03:00
NesQl
3fc1487cc9
Merge pull request #18323 from liqi-c:tengine-lite-update
Tengine lite update

* update tengine

* Modify for arm32 build.

* format optimization

* add teng_ befor some tengine api

* update graph_t to teng_graph_t

* update graph_t to teng_graph_t

* Code structure optimization

* optimization

* optimization

* remove space

* update tengine url

Co-authored-by: liqi <qli@openailab.com>
2020-09-23 09:34:29 +00:00
YashasSamaga
ead1dcf308 error if cuda4dnn depends are not resolved 2020-07-11 21:37:51 +05:30
YashasSamaga
62a63021c7 add cuDNN 8 support 2020-06-30 21:51:23 +05:30
cyy
206c843f36
Merge pull request #17499 from cyyever:fix_CUDA11
Fix cuda11

* use cudnn_version.h to detect version when it is available

* remove nppi from CUDA11

* use ocv_list_filterout

* dnn(cuda): temporary disable CUDNN 8.0
2020-06-27 20:34:44 +00:00
Giles Payne
02385472b6
Merge pull request #17165 from komakai:objc-binding
Objc binding

* Initial work on Objective-C wrapper

* Objective-C generator script; update manually generated wrappers

* Add Mat tests

* Core Tests

* Imgproc wrapper generation and tests

* Fixes for Imgcodecs wrapper

* Miscellaneous fixes. Swift build support

* Objective-C wrapper build/install

* Add Swift wrappers for videoio/objdetect/feature2d

* Framework build;iOS support

* Fix toArray functions;Use enum types whenever possible

* Use enum types where possible;prepare test build

* Update test

* Add test runner scripts for iOS and macOS

* Add test scripts and samples

* Build fixes

* Fix build (cmake 3.17.x compatibility)

* Fix warnings

* Fix enum name conflicting handling

* Add support for document generation with Jazzy

* Swift/Native fast accessor functions

* Add Objective-C wrapper for calib3d, dnn, ml, photo and video modules

* Remove IntOut/FloatOut/DoubleOut classes

* Fix iOS default test platform value

* Fix samples

* Revert default framework name to opencv2

* Add converter util functions

* Fix failing test

* Fix whitespace

* Add handling for deprecated methods;fix warnings;define __OPENCV_BUILD

* Suppress cmake warnings

* Reduce severity of "jazzy not found" log message

* Fix incorrect #include of compatibility header in ios.h

* Use explicit returns in subscript/get implementation

* Reduce minimum required cmake version to 3.15 for Objective-C/Swift binding
2020-06-08 18:32:53 +00:00
Alexander Alekhin
c722625f28 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-04-28 16:53:19 +00:00
Alexander Alekhin
9181ecfc7b cmake: fix protobuf handling 2020-04-27 02:11:19 +00:00
Alexander Alekhin
2cef100303 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-04-16 18:28:27 +00:00
Ilya Lavrenov
91b0100287 Fixed compilation when NN builder is not built 2020-04-14 15:05:01 +03:00
Alexander Alekhin
e661ad2a67 eliminate build warnings 2020-03-27 11:39:07 +00:00
Alexander Alekhin
b4b4d21212 eliminate build warnings 2020-03-26 19:18:09 +00:00
Alexander Alekhin
d00e58cdb0 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-03-10 22:49:51 +00:00
Alexander Alekhin
510a8520c7 Merge pull request #16746 from alalek:dnn_switch_ie_backend_ngraph 2020-03-10 13:52:33 +00:00
Alexander Alekhin
db95aec4a7 dnn(ie): switch to nGraph backend by default 2020-03-10 14:33:22 +03:00
Alexander Alekhin
9b3be01b83 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2020-03-09 20:27:34 +00:00
NesQl
0bcdf7d03e
Merge pull request #16724 from liqi-c:3.4-tengine
* Add Tengine support .

* Modify printf to CV_LOG_WARNING

* a few minor fixes in the code

* Renew Tengine version

* Add header file for CV_LOG_WARNING

* Add #ifdef HAVE_TENGINE in tengine_graph_convolution.cpp

* remove trailing whitespace

* Remove trailing whitespace

* Modify for compile problem

* Modify some code style error

* remove whitespace

* Move some code style problem

* test

* add ios limit and build problem

* Modified as alalek suggested

* Add cmake 2.8 support

* modify cmake 3.5.1 problem

* test and set BUILD_ANDROID_PROJECTS OFF

* remove some compile error

* remove some extra code in tengine

* close test.

* Test again

* disable android.

* delete ndk version judgement

* Remove setenv() call . and add License information

* Set tengine default OFF. Close test .

Co-authored-by: Vadim Pisarevsky <vadim.pisarevsky@gmail.com>
2020-03-09 14:59:23 +00:00
Alexander Alekhin
124bf8339f dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 08:07:54 +00:00
Alexander Alekhin
29d214474f dnn(IE): use HAVE_DNN_IE_NN_BUILDER_2019 for NN Builder API code
- CMake option: OPENCV_DNN_IE_NN_BUILDER_2019
2020-03-03 07:45:09 +00:00
Julien
4e2ef8c8f5 Merge pull request #16218 from JulienMaille:cuda-dnn-for-older-gpus
Enable cuda4dnn on hardware without support for __half

* Enable cuda4dnn on hardware without support for half (ie. compute capability < 5.3)

Update CMakeLists.txt

Lowered minimum CC to 3.0

* UPD: added ifdef on new copy kernel

* added fp16 support detection at runtime

* Clarified #if condition on atomicAdd definition

* More explicit CMake error message
2020-01-15 18:28:37 +03:00
Alexander Alekhin
92b9888837 Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-12-12 13:02:19 +03:00
Alexander Alekhin
5ee7abbe3c
Merge pull request #16088 from alalek:dnn_eltwise_layer_different_src_channels
dnn(eltwise): fix handling of different number of channels

* dnn(test): reproducer for Eltwise layer issue from PR16063

* dnn(eltwise): rework support for inputs with different channels

* dnn(eltwise): get rid of finalize(), variableChannels

* dnn(eltwise): update input sorting by number of channels

- do not swap inputs if number of channels are same after truncation

* dnn(test): skip "shortcut" with batch size 2 on MYRIAD targets
2019-12-11 20:16:58 +03:00
Alexander Alekhin
4b0132ed7a Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-12-02 16:26:52 +03:00
Lubov Batanina
7523c777c5 Merge pull request #15537 from l-bat:ngraph
* Support nGraph

* Fix resize
2019-12-02 16:16:06 +03:00
Yashas Samaga B L
613c12e590 Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
CUDA backend for the DNN module

* stub cuda4dnn design

* minor fixes for tests and doxygen

* add csl public api directory to module headers

* add low-level CSL components

* add high-level CSL components

* integrate csl::Tensor into backbone code

* switch to CPU iff unsupported; otherwise, fail on error

* add fully connected layer

* add softmax layer

* add activation layers

* support arbitary rank TensorDescriptor

* pass input wrappers to `initCUDA()`

* add 1d/2d/3d-convolution

* add pooling layer

* reorganize and refactor code

* fixes for gcc, clang and doxygen; remove cxx14/17 code

* add blank_layer

* add LRN layer

* add rounding modes for pooling layer

* split tensor.hpp into tensor.hpp and tensor_ops.hpp

* add concat layer

* add scale layer

* add batch normalization layer

* split math.cu into activations.cu and math.hpp

* add eltwise layer

* add flatten layer

* add tensor transform api

* add asymmetric padding support for convolution layer

* add reshape layer

* fix rebase issues

* add permute layer

* add padding support for concat layer

* refactor and reorganize code

* add normalize layer

* optimize bias addition in scale layer

* add prior box layer

* fix and optimize normalize layer

* add asymmetric padding support for pooling layer

* add event API

* improve pooling performance for some padding scenarios

* avoid over-allocation of compute resources to kernels

* improve prior box performance

* enable layer fusion

* add const layer

* add resize layer

* add slice layer

* add padding layer

* add deconvolution layer

* fix channelwise  ReLU initialization

* add vector traits

* add vectorized versions of relu, clipped_relu, power

* add vectorized concat kernels

* improve concat_with_offsets performance

* vectorize scale and bias kernels

* add support for multi-billion element tensors

* vectorize prior box kernels

* fix address alignment check

* improve bias addition performance of conv/deconv/fc layers

* restructure code for supporting multiple targets

* add DNN_TARGET_CUDA_FP64

* add DNN_TARGET_FP16

* improve vectorization

* add region layer

* improve tensor API, add dynamic ranks

1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
  - size_range: computes the combined size of for a given axis range
  - tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability

* fix parametric relu activation

* add squeeze/unsqueeze tensor API

* add reorg layer

* optimize permute and enable 2d permute

* enable 1d and 2d slice

* add split layer

* add shuffle channel layer

* allow tensors of different ranks in reshape primitive

* patch SliceOp to allow Crop Layer

* allow extra shape inputs in reshape layer

* use `std::move_backward` instead of `std::move` for insert in resizable_static_array

* improve workspace management

* add spatial LRN

* add nms (cpu) to region layer

* add max pooling with argmax ( and a fix to limits.hpp)

* add max unpooling layer

* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA

* update supportBackend to be more rigorous

* remove stray include from preventing non-cuda build

* include op_cuda.hpp outside condition #if

* refactoring, fixes and many optimizations

* drop DNN_TARGET_CUDA_FP64

* fix gcc errors

* increase max. tensor rank limit to six

* add Interp layer

* drop custom layers; use BackendNode

* vectorize activation kernels

* fixes for gcc

* remove wrong assertion

* fix broken assertion in unpooling primitive

* fix build errors in non-CUDA build

* completely remove workspace from public API

* fix permute layer

* enable accuracy and perf. tests for DNN_TARGET_CUDA

* add asynchronous forward

* vectorize eltwise ops

* vectorize fill kernel

* fixes for gcc

* remove CSL headers from public API

* remove csl header source group from cmake

* update min. cudnn version in cmake

* add numerically stable FP32 log1pexp

* refactor code

* add FP16 specialization to cudnn based tensor addition

* vectorize scale1 and bias1 + minor refactoring

* fix doxygen build

* fix invalid alignment assertion

* clear backend wrappers before allocateLayers

* ignore memory lock failures

* do not allocate internal blobs

* integrate NVTX

* add numerically stable half precision log1pexp

* fix indentation, following coding style,  improve docs

* remove accidental modification of IE code

* Revert "add asynchronous forward"

This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.

* [cmake] throw error for unsupported CC versions

* fix rebase issues

* add more docs, refactor code, fix bugs

* minor refactoring and fixes

* resolve warnings/errors from clang

* remove haveCUDA() checks from supportBackend()

* remove NVTX integration

* changes based on review comments

* avoid exception when no CUDA device is present

* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00
Alexander Alekhin
2ad0487cec Merge remote-tracking branch 'upstream/3.4' into merge-3.4 2019-08-13 18:32:29 +00:00
Tomoaki Teshima
40c71a2463 suppress noisy warning
* add -Wno-psabi when using GCC 6
  * add -Wundef for CUDA 10
  * add -Wdeprecated-declarations when using GCC 7
  * add -Wstrict-aliasing and -Wtautological-compare for GCC 7
  * replace cudaThreadSynchronize with cudaDeviceSynchronize
2019-08-08 21:49:32 +09:00