Alexander Alekhin
ce8027c6fb
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-11-17 21:56:26 +00:00
Alexander Alekhin
9485113923
pre: OpenCV 3.4.13 (version++)
2020-11-17 21:50:30 +00:00
Alexander Alekhin
9acbfc6e05
Merge pull request #18711 from alalek:dnn_fix_model_public_api
2020-11-17 21:47:59 +00:00
Omar Alzaibaq
a316b11aaa
Merge pull request #18220 from Omar-AE:hddl-supported
...
* added HDDL VPU support
* changed to return True in one line if any device connected
* dnn: use releaseHDDLPlugin()
* dnn(hddl): fix conditions
2020-11-17 19:47:24 +00:00
Alexander Alekhin
23baf1a75e
dnn: fix High-Level public API (cv::dnn::Model class)
...
- proxy selected Net methods only (don't derive from Net directly)
- default Model ctor is protected
2020-11-17 11:01:31 +00:00
Sergey Slashchinin
32e7ef8a3d
Add fixes and tests for different layers
2020-11-17 13:39:32 +03:00
Alexander Alekhin
a12ceb04bb
pre: OpenCV 4.5.0 (version++)
2020-09-08 06:08:58 +00:00
Alexander Alekhin
50ff40d684
pre: OpenCV 3.4.12 (version++)
2020-09-06 22:26:32 +00:00
Alexander Alekhin
fa25faa2d2
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-08-06 14:15:52 +00:00
kadi soheib
6bed5c181b
Corrected Comment as requested by reviewer.
2020-07-31 23:43:38 +03:00
kadi soheib
17c430da88
Updated comment.
2020-07-04 06:37:59 +03:00
kadi soheib
96a501c08b
Adding comment from source code to documentation.
2020-07-04 06:37:58 +03:00
Alexander Alekhin
5f3012fc9a
pre: OpenCV 4.4.0 (version++)
2020-06-09 02:27:13 +00:00
Alexander Alekhin
a43e3bebe6
pre: OpenCV 3.4.11 (version++)
2020-06-08 18:46:27 +00:00
Liubov Batanina
d3aaf2d3a3
Merge pull request #17371 from l-bat:nms_model
...
* Fix NMS bug in DetectionModel
* Fixed comments
* Refactoring
2020-05-28 22:54:19 +00:00
Alexander Alekhin
21e28adb87
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-05-22 19:50:14 +00:00
Liubov Batanina
d991c22090
Merge pull request #16575 from l-bat:flownet2
...
Support FlowNet2 model
* Support DataAugmentation layer
* Fix warnings
* Fix comments
* Support Correlation layer
* TEST
* Support Correlation layer
* Supported Accum and FlowWarp layers
* Supported ChannelNorm layer
* Supported Resample with inputs.size() > 1
* Fixed comments
* Refactoring
* Added tests
* Add resample test
* Added asserts in resize layer
* Updated DataAugmentation layer
* Update convolution layer
* Refactoring
* Fix data augmentation layer
* Fix caffe importer
* Fix resize
* Switch to Mat ptr
* Remove useless resize type
* Used ResizeLayer in Accum
* Split ChannelNormLayer
* Delete duplicate assert
* Add sample
* Fix sample
* Added colormap
2020-05-19 12:29:50 +00:00
Alexander Alekhin
4cdb4652cf
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-03-20 21:41:15 +00:00
Pavel Rojtberg
66cf55ea1f
dnn: expose only float variant of NMSBoxes for bindings
...
the float variant was always shadowed by the int version as
Rect2d is implicitly convertible to Rect.
This swaps things which is fine, as the vector of boxes was always
copied and the computation was done in double.
2020-03-19 12:36:35 +01:00
Alexander Alekhin
d00e58cdb0
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-03-10 22:49:51 +00:00
Alexander Alekhin
db95aec4a7
dnn(ie): switch to nGraph backend by default
2020-03-10 14:33:22 +03:00
Alexander Alekhin
45d073f889
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-02-26 20:09:03 +03:00
Alexander Alekhin
01048e5603
Merge pull request #16616 from alalek:dnn_fix_input_shape
...
* dnn: fix processing of input shapes
- importer: avoid using of .setInput() => .setInputShape()
- setInput: shape limitation check (partial)
* dnn(test): test .setInput() in readNet()
2020-02-21 22:39:54 +03:00
Alexander Alekhin
560f85f8e5
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-01-28 14:26:57 +03:00
Alexander Alekhin
5429b1f5ff
Merge pull request #16223 from l-bat:lip_jppnet
2020-01-27 19:17:43 +00:00
Liubov Batanina
4a19ac5aca
Move instruction
2020-01-27 16:18:32 +03:00
Alexander Alekhin
3d14dd4e39
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2020-01-22 16:58:30 +03:00
Liubov Batanina
7e5b5390ba
Fix comments
2020-01-22 14:57:54 +03:00
Liubov Batanina
832ca0734d
Refactoring
2020-01-22 10:52:40 +03:00
Julien
886220b9be
Merge pull request #16273 from JulienMaille:wrapper_available_target
...
* add a wrapper for getAvailableTargets
* add java wrapper on Target enum
2020-01-17 19:24:37 +03:00
Liubov Batanina
7eba3a7c96
Add pack description
2020-01-09 13:59:35 +03:00
Liubov Batanina
752653c70b
Update global pooling
2019-12-28 18:03:40 +03:00
Brian Wignall
f9c514b391
Fix spelling typos
...
backport commit 659ffaddb4
2019-12-27 12:46:53 +00:00
Brian Wignall
659ffaddb4
Fix spelling typos
2019-12-26 06:45:03 -05:00
Liubov Batanina
543e0302d3
Support global pooling by axis
2019-12-24 16:16:58 +03:00
Alexander Alekhin
4c86fc13cb
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-12-19 15:09:05 +03:00
Alexander Alekhin
4342657762
Merge pull request #16034 from Quantizs:irLoadFromBuffer
2019-12-19 10:00:07 +00:00
antalzsiroscandid
aa80f754f4
dnn: reading IR models from buffer
2019-12-18 15:31:08 +01:00
Diego
5b0b59ecfb
Merge pull request #15189 from dvd42:keypoints_module
...
Keypoints module
2019-12-13 18:00:06 +03:00
Alexander Alekhin
92b9888837
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-12-12 13:02:19 +03:00
Alexander Alekhin
5ee7abbe3c
Merge pull request #16088 from alalek:dnn_eltwise_layer_different_src_channels
...
dnn(eltwise): fix handling of different number of channels
* dnn(test): reproducer for Eltwise layer issue from PR16063
* dnn(eltwise): rework support for inputs with different channels
* dnn(eltwise): get rid of finalize(), variableChannels
* dnn(eltwise): update input sorting by number of channels
- do not swap inputs if number of channels are same after truncation
* dnn(test): skip "shortcut" with batch size 2 on MYRIAD targets
2019-12-11 20:16:58 +03:00
Alexander Alekhin
4b0132ed7a
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-12-02 16:26:52 +03:00
Lubov Batanina
7523c777c5
Merge pull request #15537 from l-bat:ngraph
...
* Support nGraph
* Fix resize
2019-12-02 16:16:06 +03:00
Manjunath Bhat
78c5e41c23
Merge pull request #15808 from thebhatman:Mish_swish
...
* Added Swish and Mish activations
* Fixed whitespace errors
* Kernel implementation done
* Added function for launching kernel
* Changed type of 1.0
* Attempt to add test for Swish and Mish
* Resolving type mismatch for log
* exp from device
* Use log1pexp instead of adding 1
* Added openCL kernels
2019-12-02 00:06:17 +03:00
thebhatman
8a18d132fc
Port Swish and Mish layers
2019-12-01 11:55:39 +03:00
Alexander Alekhin
b6a58818bb
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-11-11 20:25:42 +00:00
Alexander Alekhin
055ffc0425
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
2019-10-24 18:21:19 +00:00
Yashas Samaga B L
613c12e590
Merge pull request #14827 from YashasSamaga:cuda4dnn-csl-low
...
CUDA backend for the DNN module
* stub cuda4dnn design
* minor fixes for tests and doxygen
* add csl public api directory to module headers
* add low-level CSL components
* add high-level CSL components
* integrate csl::Tensor into backbone code
* switch to CPU iff unsupported; otherwise, fail on error
* add fully connected layer
* add softmax layer
* add activation layers
* support arbitary rank TensorDescriptor
* pass input wrappers to `initCUDA()`
* add 1d/2d/3d-convolution
* add pooling layer
* reorganize and refactor code
* fixes for gcc, clang and doxygen; remove cxx14/17 code
* add blank_layer
* add LRN layer
* add rounding modes for pooling layer
* split tensor.hpp into tensor.hpp and tensor_ops.hpp
* add concat layer
* add scale layer
* add batch normalization layer
* split math.cu into activations.cu and math.hpp
* add eltwise layer
* add flatten layer
* add tensor transform api
* add asymmetric padding support for convolution layer
* add reshape layer
* fix rebase issues
* add permute layer
* add padding support for concat layer
* refactor and reorganize code
* add normalize layer
* optimize bias addition in scale layer
* add prior box layer
* fix and optimize normalize layer
* add asymmetric padding support for pooling layer
* add event API
* improve pooling performance for some padding scenarios
* avoid over-allocation of compute resources to kernels
* improve prior box performance
* enable layer fusion
* add const layer
* add resize layer
* add slice layer
* add padding layer
* add deconvolution layer
* fix channelwise ReLU initialization
* add vector traits
* add vectorized versions of relu, clipped_relu, power
* add vectorized concat kernels
* improve concat_with_offsets performance
* vectorize scale and bias kernels
* add support for multi-billion element tensors
* vectorize prior box kernels
* fix address alignment check
* improve bias addition performance of conv/deconv/fc layers
* restructure code for supporting multiple targets
* add DNN_TARGET_CUDA_FP64
* add DNN_TARGET_FP16
* improve vectorization
* add region layer
* improve tensor API, add dynamic ranks
1. use ManagedPtr instead of a Tensor in backend wrapper
2. add new methods to tensor classes
- size_range: computes the combined size of for a given axis range
- tensor span/view can be constructed from a raw pointer and shape
3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time)
4. remove device code from tensor classes (as they are unused)
5. enforce strict conditions on tensor class APIs to improve debugging ability
* fix parametric relu activation
* add squeeze/unsqueeze tensor API
* add reorg layer
* optimize permute and enable 2d permute
* enable 1d and 2d slice
* add split layer
* add shuffle channel layer
* allow tensors of different ranks in reshape primitive
* patch SliceOp to allow Crop Layer
* allow extra shape inputs in reshape layer
* use `std::move_backward` instead of `std::move` for insert in resizable_static_array
* improve workspace management
* add spatial LRN
* add nms (cpu) to region layer
* add max pooling with argmax ( and a fix to limits.hpp)
* add max unpooling layer
* rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA
* update supportBackend to be more rigorous
* remove stray include from preventing non-cuda build
* include op_cuda.hpp outside condition #if
* refactoring, fixes and many optimizations
* drop DNN_TARGET_CUDA_FP64
* fix gcc errors
* increase max. tensor rank limit to six
* add Interp layer
* drop custom layers; use BackendNode
* vectorize activation kernels
* fixes for gcc
* remove wrong assertion
* fix broken assertion in unpooling primitive
* fix build errors in non-CUDA build
* completely remove workspace from public API
* fix permute layer
* enable accuracy and perf. tests for DNN_TARGET_CUDA
* add asynchronous forward
* vectorize eltwise ops
* vectorize fill kernel
* fixes for gcc
* remove CSL headers from public API
* remove csl header source group from cmake
* update min. cudnn version in cmake
* add numerically stable FP32 log1pexp
* refactor code
* add FP16 specialization to cudnn based tensor addition
* vectorize scale1 and bias1 + minor refactoring
* fix doxygen build
* fix invalid alignment assertion
* clear backend wrappers before allocateLayers
* ignore memory lock failures
* do not allocate internal blobs
* integrate NVTX
* add numerically stable half precision log1pexp
* fix indentation, following coding style, improve docs
* remove accidental modification of IE code
* Revert "add asynchronous forward"
This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70.
* [cmake] throw error for unsupported CC versions
* fix rebase issues
* add more docs, refactor code, fix bugs
* minor refactoring and fixes
* resolve warnings/errors from clang
* remove haveCUDA() checks from supportBackend()
* remove NVTX integration
* changes based on review comments
* avoid exception when no CUDA device is present
* add color code for CUDA in Net::dump
2019-10-21 14:28:00 +03:00
Alexander Alekhin
48d41ab088
dnn: bump API version
2019-09-02 14:25:18 +03:00
Alexander Alekhin
70dfae31a2
experimental version++
2019-09-02 14:17:36 +03:00